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Abstract 
During the past couple of years, a lot of effort has been put into solving all kinds of 
Markov Modulated discrete-time queueing models, which occur, almost in a natural way, 
in the performance analysis of slotted systems, such as ATM multiplexers and switching 
elements. However, in most cases, the practical application of such solutions is limited, 
due to the large state space that is usually involved. In this paper, we try to set a first 
step towards obtaining approximate solutions for a discrete-time multiserver queueing 
model with a general heterogeneous Markov Modulated cell arrival process, that allow 
accurate predictions concerning the behavior of the buffer occupancy in such a model, and 
still remains tractable, both from an analytical and a computational point-of-view. We 
first introduce a solution technique which leads to a closed-form expression for the jOint 
probability generating function of the buffer occupancy and the state of the arrival 
process, from which an expression for V(z), the probability generating function of the 
buffer occupancy is easily derived. Based on this result, for the single-server case, we 
propose an approximation for the boundary probabilities, that reduces all calculations to 
an absolute minimum. In addition, we show how accurate data for the distribution of the 
buffer occupancy can be obtained, by using multiple poles of V(z) in the geometric-tail 
approximation of the distribution. 
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1 INTRODUCTION 

As the basic information units to be transferred in A TM (asynchronous transfer mode) 
based communication networks are fixed-length cells (De Prycker (1991)), buffers in 
multiplexers and switches can in general be modeled as a discrete-time queueing system 
where new cells are generated by a superposition of individual traffic sources. The service 
time of a cell equals its transmission time, which is one slot. Analyzing such a queueing 
system is essential in the design and evaluation of ATM networks. However, this can be a 
difficult task, due to the fact that the traffic sources to be connected to the same buffer 
may have different traffic characteristics (like voice, data and video), and the 
time-correlated behavior that each of the individual sources might exhibit. . 

To facilitate the queueing analysis, a traffic source with variable bit rate (VBR) in 
ATM is usually modeled as a Markov-modulated arrival process (e.g., Markov­
modulated Bernoulli process, Markov-modulated Poisson process, etc ... ). The problem is 
then reduced to analyzing a queueing system with heterogeneous Markov-modulated 
arrival streams generating subsequent cell arrivals. Even so, the related queueing analysis 
is still complicated and requires solving a l11ulti-dimensional Markov chain. In this 
heterogeneous traffic environment, the matrix-geometric solution technique 
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(Neuts (1989)), which has been widely used in the performance analysis of various types of 
related problems, is only suitable for analyzing small systems because of the large state 
space (Blondia (1992)). 

A general solution technique, called the matrix spectral decomposition method, was 
developed in Li (1991b) (and extended in Zhang (1991)) to analyze the above queueing 
system. This solution technique is based on a generating-functions approach and uses the 
properties of Kronecker products to decompose the problem of solving a global system 
with multiple traffic types into the problem of solving subsystems, each of which 
consisting of one single traffic type. Thus, calculating the poles of the probability 
generating function of the buffer occupancy depends only on the traffic source parameters 
and is independent of the system size and the number of traffic types. The main 
computational limitation in this method is the memory size required to solve the set of 
linear equations for the boundary probabilities (Li (1991b)). Furthermore, in this general 
solution technique, the superposed arrival processes is expressed in a Kronecker products 
form. The whole derivation is quite complicated and the final results are not easy to 
apply. Another main solution technique is the fluid-flow approximation (Anick (1982), 
Stern (1991)), in which a traffic source is described by a Markov-modulated continuous 
flow process. It equally uses properties of Kronecker products and sums in the 
decomposition of the overall problem into smaller 'sub- problems'. Consequently, similar 
comments as above also hold for the fluid-flow method. 

The purpose of this paper is two fold : first to present an alternative solution 
technique, based on a generating-functions approach, for discrete-time queueing analysis 
in A TM, and secondly to give a good approximation for the tail distribution of the buffer 
occupancy, an important performance measure that allows an accurate estimate of the 
required buffer space, crucial for dimensioning purposes in practical engineering. 
Compared to the matrix spectral decomposition method, the solution technique to be 
presented below is relatively simple and has following properties: (1) it uses 
straightforward ana1ysis, again based on a generating-functions approach, instead of 
Kronecker products, to represent the superposition of arrival processes; (2) no 
sophisticated computational matrix manipulations are required and the whole derivation 
is easy to follow; (3) the final results are relatively easy to use. Furthermore, we found, 
via comparison of a large number of numerical examples, that the tail distribution of the 
buffer occupancy can be well approximated when only considering a few poles (i.e., the 
ones with the smallest modulus) of the probability generating function of the buffer 
occupancy. This paper is an extension of the work presented in Steyaert (1992). 

2 TRAFFIC SOURCE DESCRIPTION 
Consider a multiplexer model fed by several independent traffic sources, which, 

according to their traffic characteristics, are grouped together into K distinct classes or 
types, each class having Nk, 1 ~ k ~ K, identical and independent sources. A source 
belonging to class k is modeled as an Lk-state Markov Modulated arrival process, where 
the states will be labeled by Si,k, 1 ~ i ~ Lk, and where the LkXLk probability generating 
matrix (as in Sohraby (1992)) 

qll ,k(z) qI2,k(z) 

q21,k(z) q22,k(z) 

. . . 
qL 1 k(z) qL ') I (z) ... qL L k(z) 

k ' k-' ( k k' 

(1) 

characterizes the cell arrival process. It is assumed that transitions between states occur 
at slot boundaries, and let us denote by Pij ,k, 1 ~ i,j ~ Lk, the one-step transition 
probability that a source from the k-th traffic class transits from state Si,k to state Sj,k 
at the end of a slot during which it was in state Si,k. Then, the elements qij,k(Z) in the 
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above matrix are given by 

q .. k(z) ~ G .. k(z) p .. k ' ij, ij, ij, 
(2) 

where Gij ,k(Z), 1 ~ i,j ~ Lk, is the probability generating function describing the number 
of cells generated during a slot by a source from class k, given that the source is in state 
~i.,k during the tagged slot and was in state Si,k during the preceding slot. For the 
Markov Modulated Bernoulli Process (MMBP), the number of cell arrivals generated by a 
source during any slot is either zero or equal to one, which is reflected by the property 
that each of the probability generating functions Gij ,k(Z) is a linear function of z, 
meaning that they can be written as 

G .. k(z) = 1 - g .. k + zg .. k ' (3) 1J, 1J, 1J, 

for some parameters gij ,k satisfying 0 ~ gij ,k ~ 1. Although attention is focused on this 
specific arrival model, the theory developed here is far more general, and can also be 
applied when the Gij ,k(Z)'g have a more complex form than given by (3). 

The aggregate cell arrival process is fully determined, once the probability generating 
matrices Qk(Z), 1 ~ k ~ K, have been specified for each individual traffic class. Let us 
define ek(n) as the total number of cell arrivals generated by the Nk sources of class k 
during slot n, and ai'k(n), 1 ~ i ~ Lk, as the total number of sources of class k that are in 
state Si,k during slot n. Note that the latter random variables satisfy 

Lk 
i~1 ai,k(n) = Nk ' (4) 

for any value of n. We will denote by Zk the LkX1 vector with elements Xi,k, 1 ~ i ~ Lk. 
Let us also define the LkX1 vector Bk(Zk,Z) with elements Bi,k(Xk,z), as the matrix 
product Qk(z)Zk. Then, with the previous definitions, it is not difficult to show that the 
joint generating function of the random variables ek(n+l) and ai'k(n+l), 1 ~ i ~ Lk, can 
be written in terms of the joint generating function of the random variables ai'k(n) : 

E[ ek(n+1) Lk ai ,k(n+1)] E[ Lk ai,k(n)] 
Z II x. k = II B. k(Xk'Z) , 

i=1 1, i=1 1, 
(5) 

(where E[.] denotes the expected value of the argument) an important relation that des­
cribes the number of cells generated during consecutive slots by the Nk sources of class k. 

We define Ak(Zk) as the joint probability generating function of the number of sources 
of class k in state Si,k, 1 ~ i S Lk, during an arbitrary slot in the steady state, i.e., 

t;. [ Lk ai ken)] 
Ak(xk) = 11m E.II Xi k' = Ak(Qk(1)xk) , 

n->oo 1=1 ' 
(6) 

assuming that the cell arrival process indeed reaches a stochastic equilibrium, and the 
latter limit exists. It readily follows from (4,5) that Ak(Zk) indeed should satisfy the 
above property. Furthermore, if we define O'i,k as the steady-state probability that a 
source of class k is in state Si,k during a slot, and Uk as the LkX1 column vector with O'i,k 
as its i-th element, which is the solution of the matrix equations 

(7) 

(h is the LkX1 column vector with all elements equal to 1, and (.) T represents the matrix 
transposition operation), then Ak(Xk) equals 

Ak(Xk) = (0/ xk)Nk , (8) 

and with (7), it is easily verified that this generating function indeed satisfies (6). 
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3 THE BUFFER OCCUPANCY: A FUNCTIONAL EQUATION 

Due to the extremely low cell-loss ratios that will occur in B-ISDN communication 
networks, the multiplexer buffer could be considered having infinite storage--capacity, 
meaning that all arriving cells are accepted and temporarily stored to await their 
transmission. The multiplexer has c output lines via which cells are transmitted, thus 
allowing up to a maximum of c cells to leave the multiplexer buffer during each slot. Let 
us observe the s:ystem at the end of a slot (i.e., just after new arrivals, but before 
departures, if any), say slot n, and denote by the random variable Vn the buffer contents 
at that time instant; this is the number of cells in the multiplexer buffer, not including 
the cells that have been transmitted during slot n. From the previous, it is then clear 
that this quantity evolves according to the system equation 

K 
vn+ 1 = (vn--ct + ~ ek(n+l) , (9) 

k=1 

where (.)+ ~ max{.,O}. Since we consider an infinite storage--capacity buffer, the system 
reaches a stochastic equilibrium only if the equilibrium condition, requiring that the mean 
number of cell arrivals per slot must be less than c, is satisfied. If we denote by p the 
mean number of cells carried by each output link per time slot, then, in view of the cell 
arrival model described in the previous section, it follows that this quantity equals 

1 K Lk Lk 
P = - ~ Nk ~ (J. k ~ G!. k(l)p .. k ' (10) 

c k=1 i=1 I, j=1 Ij, Ij, 

(where primes denote derivatives with respect to the argument) and p<1 is the necessary 
requirement for reaching a steady state. 

The evolution of the (L+ I)-th dimensional Markov chain {ak(n) I l~kSK} U {vn} 
(where ak(n), 1 ~ k ~ K, represents the set of random variables {ai'k(n) 11~i~Ld, and L 
is the sum of all Lk'S) throughout consecutive slots completely determines the buffer 
behavior of the discrete-time queueing system previously described. Let us therefore 
define their joint generating function as 

!J. [Vn K L k ai k(n)] Pn(Zt'~' ... ,xK,z) = E z 11.11 Xi k ' . 
k=II=1 ' 

Combining this definition with system equation (9), together with (5), it follows that 

Pn+l(Xl'~' ... ,~,z) = E[z(Vn--C)+ ~ [.~k Bi k(Xk,zti,k(n)]] . 
k=1 1=1 ' 

Again, we assume that the system reaches a steady-state after a sufficiently long period 
of time (implying that the equilibrium condition p<1 must be satisfied), and that P o(.) 

has a steady-state limit, which will be denoted by P(.). Then, with the definition of 
Bk(Xk,Z), and using some standard probabilistic techniques, we find that this generating 
function must satisfy 

P(Zt,:£./, ... ,xK,z) = Z--C{P(Ql(Z)Zt,Q2(Z)~, ... ,QK(z)~,z) 
+ R(Ql(z)Xl,(Mz)~, ... ,QK(z)~,z)} , 

where R(Zt,~, ... ,~,z) is given by 

R(Zt,~, ... ,xK,z) ~ ~(zC-zj)E[ ~ [.~k Xi kai,k] I v=j]prOb[v=jj 
!-JO k=1 1=1 ' 
J= 

(ll.a) 

(ll.b) 
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In the right-hand side of this equation, the random variable v denotes the buffer contents 
at the end of an arbitrary slot, while aj,k, I S k S K, lSi S Lk, is the number of sources 
of traffic class k that are in state Sj,k during this slot. Equations (Il.a,b) define a 
functional equation for P(.), (the joint probability generating function of these random 
variables), which contains all information concerning the buffer behavior of the queueing 
model with heterogeneous traffic under study. In the next section, we will describe a 
technique for solving this functional equation. Also note that the function R(.) contains a 
number of unknown probabilities, still to be determined. Throughout the following 
sections, it will also become clear how these unknowns can be computed. 

4 SOLVING THE FUNCTIONAL EQUATION 

4.1 Homogeneous Traffic 

Let us first focus attention on the case where the cell arrival process is homogeneous, i.e., 
the N traffic sources generating cell arrivals all have the same traffic characteristics, and 
can be modeled as an L-state MMBP. In the following, the subscript k, 1 S k S K, that 
reflected the traffic class type in the previous sections, will be omitted. The functional 
equation (l1.a,b) then becomes 

P(x,z) = z-c{P(Q(z)x,z) + R(Q(z)x,z)} , (12.a) 

where, Q(z) is the LxL probability &enerating matrix describing the arrival process per 
traffic source, given by (1), and R(x,z) now becomes 

R(x,z) g E (zc-zJ)E II x· 1 v=j Prob[v=j] = E (zc-zJ) E II x. 1 p(l,j), (12.b) 
c-l . [L a.,] c--l. [ L e.] 
j=O i=1 1 j=O l i=1 1 

where a g {aj lIS i S L}, is the set of ramdom variables representing the number of 
input sources in state Sj during an arbitrary slot, and where 

p(l,j) ~ Prob[a= i,v=j] = Prob[a1=e1, ... ,aL=eL,v=j] . (12.c) 

In (12.b,c), l is the set of positive integers {ej 11 SiS Land ej ~ O} that satisfies 

L 
E £. = N , (12.d) 

i=1 1 

and the sum for l includes all possible sets {£j I 1 SiSL and ej~O}. 
The matrix Q(z) will be diagonizable under quite general circumstances, and let Aj(Z) 

be the i-th eigenvalue of Q(z), and Wj(z) (Uj(z)) the left row (right column) eigenvector of 
Q(z) with respect to ,\j(z). Define the diagonal eigenvalue matrix 

A(z) g diag[A I (z), '\2(z), ... ,,\(z)] 

and eigenvector matrices 

From this definition, we have 

A(z) W(z) = W(z) Q(z) , U(z) A(z) = Q(z) U(z) (13.b) 

For each value of i, 1 SiS L, equation (13.b) determine the left row eigenvector and the 
right column eigenvector of Q(z) corresponding to Aj(Z) upon some constant factor, which 
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is uniquely determined when requiring that 

U(z) 1 = 1 and W(z) U(z) = I ~ W(z) 1 = 1 , (13.c) 

where I is the LxL identity matrix, and as defined before, 1 is the LxI column vector with 
all elements equal to 1. Equation (13.c) implies that Q(z) can be written as 

L 
Q(z) = U(z) A(z) W(z) = E .)..(z) u.(z) w.(z) . (13.d) 

i=1 I I I 

Let us now go back to equation (12.a), from which we can derive that 

H 
P(x,z) = z-Hcp(Q(z)Hx,z) + E z-hcR(Q(z)hx,z) , (14) 

h=1 

From (13.c,d), it is clear that Q(z)hx = U(z)A(z)hW(z)x. Then, letting H approach 
infinity, in a similar way as was explained in Steyaert (1992), the right hand side of the 
above equation can be further worked out, leading to an expression for P(x,z), the joint 
generating function of the buffer occupancy at the end of an arbitrary slot, and a, the set 
of random variables describing the L-state MMBP arrival process 

L { }m. 
II A.( z )w.(z) X I c-l . 1 I I . 

P(x,z) E 1= L m. El Flm(z). Eo(zC-zJ)p(l,j) (15) 
m Z c _ II A.(Z) I J= 

i=1 I 

The functions F lm(z) are defined by the relation 

~ [~ u .. (z) x.]li £ E Fl (z) [~x.mi] , 
i=l j=l IJ J m m i=1 I 

(16) 

where, similarly to i, m represents a set of positive integers {mi I 1 ~ i ~ Land mi ~ O} 
that satisfy (12.d)), and where Uij(Z) is the i-th element of the column vector Uj(z). 
These functions can be calculated IJl terms of the Uij(Z)'S by identifying the appropriate 
coefficients in both hand sides of the above equation. It is worth noting that, in Section 
5.2, we propose an approximation for the boundary probabilities, which in the mean time 
avoids the calculation of these functions. As in most applications, we are mainly interested 
in the distribution of the buffer occupancy, or, equivalently, the probability generating 
function V(z) of the buffer occupancy. Since V(z) equals P(l,z), we find 

L m· 
.11 \(z) I c-l. 

V(z) E 1=\ m. EFlm(z) E (zc-zJ)p(l,j) (17) 
mzc_ IIA.(z) Il j=O 

i=1 I 

where we have used the property wi(z)l = 1, which follows from (13.c). This expression 
for the probability generating function of the buffer occupancy at the end of an arbitrary 
slot still contains the unknown probabilities p( i,j). These can be calculated by exploiting 
the property that V(z) is analytic inside the complex unit disk, which implies that the 
zeros inside the unit disk of the denominators in the right-hand side of (17) must also be 
zeros of the numerators. It can be shown that each denominator in (17) has c zeros inside 
the unit disk, and we thus find a total of J = c.(N+L-l)i!j(N!(L-1)!) zeros inside the 
unit disk (including z=l, which leads to no additional equation for the unknowns). 
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Together with the normalization condition V(1 )=1, in general, this is the number of linear 
equations we obtain for the same number of unknown probabilities, and this set of linear 
equations has a unique solution. 

Once these unknowns have been calculated, all major characteristics concerning the 
buffer occupancy, such as mean value, variance, and tail distribution, can be calculated 
from (17). In this paper, we concentrate our efforts mainly on the tail distribution, which 
plays an important role in buffer dimensioning. However, as one observes from the value 
of J, the number of unknown probabilities can become quite large, as Nand L increase, 
thus requiring solving a large set of linear equations. In order to avoid this, in Section 5, 
we discuss some techniques for approximating these unknown probabilities, that lead to 
accurate estimates of the tail probabilities, as will be shown by various numerical 
examples. 

4.2 Heterogeneous Traffic 

The derivation of the probability generating function in the case of heterogeneous traffic 
evolves along similar lines as in the case of homogeneous traffic, and adds no particularly 
new insights to the analysis. The final result for V(z), the probability generating function 
of the buffer occupancy at the end of an arbitrary slot, can be written as 

K Lk m· k 
II II A. .(z) I,' 

k-l '-1 I ,k { K } c-l c j 
V(z)=E .. E -l(l-Lk m. E •• E IIFl .m (z).E(z-z)p(4 .. lK,j) 

m1 mK i- II II A. k(z) I,k II lK k=1 k k j=O 
k=1 i =1 I, (18) 

As before, lk (mk), 1 ~ k ~ K, represents the set of positive integers {ii'k!1 ~ i ~ Lk and 
ii,k ~ O} ({mi,k!1 ~ i ~ Lk and mi,k ~ O}) and the sums in (18) for lk, (mk) include all 
such sets that, as a consequence of (4), satisfy 

Lk Lk 
E f. k = Nk , E m. k = Nk . (19.a) 

i=1 I, i=l 1, 

Similarly to the homogeneous cell-arrivals case, {Ai,k(Z) ! 1 ~ i ~ Ld is the set of 
eigenvalues of Qk(Z) (defined in (1)), and Ak(Z) is the LkxLk diagonal matrix with Ai,k(Z) 
on the intersection of the i-th row and the i-th column. In addition, Ui,k(Z), 1 ~ i ~ Lk, 
represent the right column eigenvectors corresponding to Ai,k(Z), which is the i-th 
column of Uk(Z), the LkxLk matrix that can be calculated from 

Uk(Z) Ak(z) = Qk(z) Uk(z) and Uk(z)lk = lk . (19.b) 

Finally, extending (16), the Fl (z)'s that occur in (18) are implicitly defined by 
kmk 

~k [~k U .. k x.]ii,k ~ E Fl (z) [~k x.mi,k] , 
i=1 j=1 Ij, J mk kmk i=l 1 

(19.c) 

(with Uij ,k(Z) the j-th element of ~ij ,k(Z)) and can be obtained in terms of the Uij,k(Z)'S 
by identifying the appropriate coefticients in both hand sides of this expression. The 
unknown probabilities 

(19.d) 

{where ak represents the set of random variables {ai'k !1 ~ i ~ Lk}, ai,k being the number 
of traffic sources of class k in state Si, k during an arbitrary slot) that occur in the 
right-hand side of (18), can be calculated by expressing that the zeros inside the unit disk 
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of the denominators must also be zeros of the numerators. In general, this will involve 
solving a set of 

K 
J ~ c II [Nk+Lk-1] (20) 

k=1 L k-l 

linear equations for the same number of unknowns. 

5. TAIL DISTRIBUTION OF THE BUFFER OCCUPANCY 

In this section, we consider the tail distribution of the buffer occupancy, a performance 
measure of considerable interest for dimensioning purposes. We try to establish an 
approximation for the tail distribution of the buffer occupancy, that is both accurate, and 
easy to calculate, from a comput.ational point-of-view. 

5.1 The Multiple Poles Approximation 

It has been observed in many cases that approximating the tail distribution of the buffer 
contents by a geometric form is quite accurate, if the poles of V(z) have a different 
modulus and multiplicity equal to one, which is, in general, the case. As in Steyaert 
(1992), we improve this kind of approach by considering a mixture of geometric terms in 
the approximation for the tail distribution of the buffer contents. In particular, in order 
to obtain accurate results, we claim that, in a first approximation, it is sufficient to 
merely consider multiple real and positive poles of V(z) in the series expansion of this 
function. Approximating the distribution of the buffer contents by a mixture of 
geometric terms (say M) corresponds to approximating V(z) by 

MOM 00 [ ]S V(z) ~ E m = - E z -1 0 E _z_ 
- z-z om m Z ' m=1 o,m m=I' s=O o,m 

(21.a) 

where we are particularly interested in sufficiently large values of s. In all cases 
considered further on, Zo,m, 1 ~ m ~ M, are the M real and positive poles of V(z) with 
smallest modulus (which, of course, lay outside the unit disk). 

The poles of V(z) correspond to the zeros outside the unit disk of the denominators in 
the right-hand side of expression (18) for V(z). Depending on the arrival model, the 
exact number of zeros outside the unit disk of each of the denominators varies, and 
calculating all the zeros can become a complicated numerical task. Nevertheless, for a 
wide variety of arrival models (among which those considered in Section 5.3), in all cases 
it has been observed that, the denominators which occur in the right-hand side of (18), in 
general, have a real and positive zero outside the unit disk, which, of course is a pole of 
V(z). The above expression for V(z) leads to the following approximation for the tail 
distribution of the system contents: 

M 
Prob[v>s] ~ - E 

m=1 

-s -1 
Om zo,m 

Zo ,m - 1 
(21.b) 

and this approximation improves for increasing values of sand M. Furthermore, using 
the residue theorem, the quantity O{ m} in (21.a,b) can be shown to be equal to 

Om = lim (z-zo,m) V(z) . (21.c) 
Z-lZ 

o,m 
From expression (18) for V(z) and using de f'H6pitals rule, these quantities can be easily 
calculated. The accuracy of the approximation for the buffer contents distribution 
presented here will be confirmed in Section 5.3 through comparison with the exact 
dist.ribut.ion. 
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5.2 Boundary Probabilities Approximation 

As became clear in Section 4, a drawback of the technique presented here is the 
potentially huge number of boundary probabilities that must be calculated. Therefore, it 
is essential to find good approximations for these quantities. One possible approach for 
this problem in the single-server case is presented in this section. Denote by e the 
random variable describing the number of cell arrivals during a slot, whereas v, as before, 
indicates the buffer contents at the end of this slot. Using similar notations as in (19.d), 
let us also define the joint probability 

q(4· .lK'O) ~ Prob[al=ll' .. ,aK=~ , e=O] . 

Obviously, v=O implies that there have been no cell arrivals during the tagged slot, Le., 
v=Q ~ e=O. Consequently, it is clear that the following inequality between the latter 
quantities and the unknown probabilities p(l,O) holds: 

In the next section, we will show through some numerical examples that approximating 
the conditional unknown probabilities by 

(22) 

when calculating the tail probabilities of the buffer contents, yields an exceIlent upper 
bound for the latter quantities. 

The values of the q(.,O)'s could be calculated from the traffic parameters. Indeed, 
combining the steady-state limit of (5) with (S), and using the statistical independence of 
different sources, we obtain that 

{ K Lk fik} K T Nk 
E .. E n n x. k' q(4· .~,O) = n (Uk Qk(O) Xl,.) , 
II lK k=1 i=l I, k=l 

(23.a) 

and where Prob~~=O] which occurs in (22) obviously satisfies 

Prob[e=O] = n (UkT Qk(O) h)Nk . 
k=l 

(23.b) 

An additional advantage of the approximation proposed in this section, is that it 
avoids the explicit calculation of the q(.l)'s, as well as the calculation of the functions 
Flkmk(z) from (16) that occur in expression (IS) for V(z) (which will be reflected in the 

calculation of the constants Om in (21.c)). From definition (19.c), it is not difficult to 
show, with the q(.,O)'s satisfying (23.a), that 

{ K} K N L k T m. k 
E .. E n FlJ m (z) q(4· .~,O) = n Cmk n (Uk Qk(O)'1 k(z)) I, , 
II lK k=l k k k=l k i=l ' 

(24.a) 

where Uj,k(Z), as already mentioned, is the right column eigenvector with respect to 
Aj,k(Z), which is obtained from solving (19.b), and where 

CNk ~ ,Nk ,. 
mk m1,k·· .. mL,k· 

(24.b) 

It is clear that (24.a) considerably reduces the numerical calculations, when using 
approximation (22) for the boundary probabilities in the evaluation of (21.c). 
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5.3 Nwnerical Examples 

In this subsection, we compare the tail approximations derived above with the exact 
buffer contents distribution. The numerical examples to be shown below are based on the 
MMBP traffic model, especially the well-studied 2-state MMBP. The exact buffer 
contents distribution is obtained by just using the simple repeated substitution algorithm. 

The homogeneous MMBP traffic model with L states and one-step transition 
probabilities Pij, 1 ~ i,j ~ L, has been described in Section 2. When a source is in state Sj, 
it will generate either one or no cell, with probabilities gij and I-giL respectively. It IS 

thus clear that the sojourn time (in slots) of a source in state ~ij is geometrically 
distributed, with mean value Ti = I!(I-Pi), 1 ~ i ~ L. 

For Simplicity, we consider the (ollowing special case in our numerical examples: (1) 
upon leaving state Si, the source will transit to the other states with equal probability, 
i.e., Pij = (I-Pii)/(L-l), if jii; (2) the number of cells sent by the source during a slot 
only depends on the source state in this slot and is independent of the source state in the 
preyiollS slot, i.~ . .' gij =: gj. It is further agsumed without loss of generality that gj ~ gi if 
J ~ I, for all 1 ~ I,J ~ L. 

SO the MMBP traffic model we are going to use can be completely described by the 
mean sojourn time Ti and the average cell arrival rate gi in state Si (1 ~ i ~ L). In this 
case the steady-state probability of a traffic source being in state Si is equal to 

L 

(Ji = T/[i~ITi] 
From (10), the average traffic load on each outgoing link can be written as 

p = Xi [~ (J.g.] 
c i=1 1 I 

Note that in the following examples, we always take gl=O, which implies that no cells are 
sent during the state 1 period. For the 2-state MMBP with gl=O, g2 is usually called the 
"mean peak rate" and T2 is the "average burst length". 

Now consider a queueing system fed by N identical MMBP traffic sources as described 
above. It is clear that when the number of states of each source L=2, the queueing 
performance is determined by the parameter set (N, p, C, g2, T2), as gl=O. Let us first 
concentrate on the single-server case (c=l) and look at the impact of different parameters 
on the tail approximations. Fig. 1 compares the exact buffer contents distribution with 
its tail approximations for the traffic load p=O.4 and O.S. The tail approximations are 
calculated using (21.b,c), where the boundary probabilities can be derived by solving the 
set of linear equations, obtained when expressing that the zeros of the denominators in the 
right hand side of (17) inside the unit disk are also zeros of the numerators. For this 
arrival model, we found that there are in total N-l positive poles of V(z), the probability 
generating function of the buffer contents. One can observe from Fig. 1 that for high 
traffic load, the tail distribution can be well approximated by the geometric term of the 
smallest pole of V(z) (i.e., M=I), which will be referred to as the asymptotic queueing 
behavior. However, for low traffic loads, it is necessary to add more geometric terms 
corresponding to larger poles of V(z) in order to approximate the tail distribution more 
accurately. Fig. 1 illustrates that M=5 geometric terms are sufficient in approximating 
the tail distribution in the region of low probabilities (e.g., <10E-6) of interest. Of 
course, increasing the number of geometric terms M will eventually lead to better 
approximation in the high probability region (see M=10). In general, we found that the 
whole distribution of the buffer contents, except for sma.lI buffer contents (e.g., < 10 
cells), can be accurately approximated by taking into account all the positive poles of 
V(z) (in this case M=19). 
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Fig. 4 : Impact of the mean peak rate on the 
tail approximations. 

Similar results can also be observed when changing the values of the parameters. 
Fig. 2 shows an example where the average burst length T2=100 and 400 slots, 
respectively. Fig. 3 gives another example in which the number of traffic sources N=20 
and 80. It is interesting to see from the latter figure that although the total number of 
positive poles of V(z) (= N-l) increases linearly with N, the number of sources, the tail 
distribution of the buffer contents seems be dominated by a few geometric terms related 
to the smallest positive poles of V (z). The impact of the mean peak rates g2 on the tail 
approximations is illustrated in Fig. 4. This figure reveals tha.t for rather low source peak 
rate, more geometric terms might be required to get accurate approximations for the tail 
distribution. From Figs. 1-4, we a.lso see that the tail distribution of the buffer contents 
cannot always be well approximated by only taking into account its asymptotic behavior. 

The above results based on the 2-state Ml\IBP's and single server case (c=l) also 
hold for an L-state MMBP's (L>2) and the multiple servers case (c> 1). Fig. 5 shows an 
example when multiplexing of N=10 identical 3--state MMBP traffic sources. The 
buffer-mntents distribution of a multi server (c=4) queueing system with 2-state MMBP 
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distribution and its approximations 
for PI = 0.1 and 0.5. 

traffic sources is compared with its tail approximations in Fig. 6. Note that this 
multi server queueing system can be used to model an output port of an ATM switching 
element, which has been used as a building block to construct a large ATM switching 
network (Henrion (1990, 1993)). 

The above traffic descriptors for the homogeneous traffic case, are also well suited for 
describing heterogeneous traffic. Focusing attention on the case of a single-server queue 
fed by 2-state MMBP heterogeneous arrivals, the parameter set (Nk, Pk, g2(k), T2(k)), 
1 ~ k ~ K, can then be used for characterizing each of the K traffic classes. Setting K=2, 
we have plotted some results in Figs. 7-8 for changing values of the average burst length 
(Fig. 7) and the offered load (Fig. 8) of the first traffic class, while keeping the traffic 
parameters of the other class constant. The conclusions that can be drawn here are 
basically identical to the case of homogeneous traffic: (1) considering even a relatively 
small number of terms (for instance M=5 or 10) in the geometric-tail a.pproximation 
already leads to very accurate results as far as the tail behavior of the buffer contents 



176 Part Four Queueing Models 

1.0E·07 -1--
20 40 60 80 

s (cells) 

Fig. 9 : Upper-bound tail approxima.tions 
for different traffic loads. 

100 

1.0E+00 ~:rOb[~~ffer c:~t:::~: :~.3' 9~1)=0.1l 
" l.DE-Ol ~ "'" N2=8, p2=O.3, 92(2)=0.15 I 

'I \ '" T2(2)=33.33 
1.0E-02 ~ "" "-

1.0E·03 ~" T2(1) 200 

1.0E.04l' "" '~""'" " , ," ", "ll 
1.OE-05 , 

----,,---

I Exact 

1.0E-Qe § 'I Approximate \. I 

1 (M=78) I 

1.0E·07 +I-~-~-~-~~---.,""-~--" 
10 20 30 40 50 60 70 80 

S (cells) 

Fig. 11 : Heterogeneous tra.ffic : upper-bound 
tail approximation. 

1.OE+OO Prob[buffer contents .~~ _____ -----, 

, , 

:::j \\ '. 
,.0E.031 ' 

1.DE-C4 

~ 

l.DE-OS , 
_ _ Approximate 

N=10, c=1, p=0.6 

g2=0.05, T2=200 

g3=0.15, T3=60 

1.0E.05l

l 
_ Exact -'.1 

(M=60) " : 

-_--r~~ 

10 20 30 40 50 

s (cells) 

Fig. 10 : Upper-bound tail approximation 
for 3-state MMBP traffic sources. 

1.0E+oo "l.:-'===-=-==:.:.c==-=-=---

1.0E-ol 

1.0E-03 

1.0E-04 _ 

l.DE-oe 

1 

, , , , , , , , , , 
, , 

p1=O.1 \ 

N1=8, g2(1)=0.1, T2(1)=50 

N2=8, p2=0.3, g2(2)=0.15 

T2(2)=33.33 

p1=0.5 

, , r-=- Exact 
\ \. \. _ _ _ Approximate 

60 

l.DE-07 +I-~-_ 

\\L______ (~=78) 
'\-'-__ ~--__, _--.J 

10 20 30 40 50 60 70 80 

s (cells) 

Fig. 12 : Heterogeneous traffic: upper-bound 
tail approximation. 

distribution is concerned; (2) it is advisable to consider mUltiple terms in the above 
mentioned tail approximation, especially when the offered load is low. 

As we discussed before, for large real systems with heterogeneous traffic, it is 
infeasible to obtain the unknown boundary probabilities due to the huge memory space 
requirement. Finding good approximations for the boundary probabilities is thus very 
important in ATM queueing analysis. In Section 5.2, we proposed a simple 
approximation for the boundary probabilities, from which all the geometric terms can be 
easily calculated. We found via numerous numerical results that this approximation leads 
to a good upper bound for the ta.il distribution of the buffer contents. Examples for 
homogeneous 2-state and 3-state MMBP's a.re shown in Figs 9 and 10, which use the 
same parameters as in Figs. 1 and 5 respectively; the heterogeneous arrivals case is 
illustrated in Figs. 11 and 12, with parameter sets that are identical as in Figs 7 and 8. In 
these figures, all the geometric terms related to the positive poles of V(z) are taken into 
account. An important property one observes from these curves is that the slopes of the 
tail distribution and its upper-bound approximation are identical. This is because they 
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both contain the same positive poles of V(z), and merely differ in the value of the Om's (see 
(21.a-c)). Furthermore, the observed differences between exact and approximate results 
are small, thus leading to the conclusion that the approximation method proposed in 
Section 5.2 yields sufficiently accurate results. 

6 CONCLUDING REMARKS 

In this paper, we have presented an alternative solution technique for analyzing 
discrete-time queueing systems with general heterogeneous Markov-modulated arrival 
processes, which is relatively simple and easy to use compared to the matrix spectral 
decomposition method. We found via numerous numerical results that the tail 
distribution of the buffer contents can be well approximated by using only a few geometric 
terms related to the smallest positive poles of V(z), the probability generating function of 
the buffer contents. Moreover, an approximation for the boundary probabilities is given 
in the single server case, from which a good upper bound for the tail distribution is 
obtained, which is one of the main contributions of the paper. This upper bound is 
certainly quite useful in practical engineering (e.g., buffer dimensioning), and the 
calculation of this result is not limited by the system size and/or the number of traffic 
types. 

Regarding the tail approximations, the main difficulty in this solution technique (as 
well as in the other methods) is the calculation of the poles of V(z) when the number of 
states L of each multiplexed source gets large (e.g., L>3). Finding an efficient way to 
calculate the poles of V(z) is one of the issues currently under study. As an initial result, 
we found a simple algorithm to calculate the smallest pole of V(z) for large value of L 
(Xiong (1994)). This smallest pole determines the asymptotic behavior of the tail 
distribution. Another issue that needs further investigation is finding efficient 
approximations for the boundary probabilities, in particular in the multiple servers case. 
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