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Abstract 

In this paper we analyse a multiplexer handling a number of identical and inde­

pendent Worst Case Traffic (WCT) sources. Each WeT source produces a periodic 

stream of cells consisting of a constant number of back-to-back cells followed by a 

silent period of constant duration. The WeT can model the traffic produced by a 

"malicious" user who sends an ON/OFF traffic where a burst of back-to-back cells 

whose length is the largest compatible with the tolerance introduced in the control 

function alternates with an idle period whose length is the smallest compatible with 

the policed peak cell rate. WeT can also model, for example, the traffic produced 

by some ATM Adaptation Layer multiplexing schemes in the Terminal Equipment. 

Exact results are obtained, both for the discrete and the fluid-flow model. The 

numerical examples show the dramatic impact that WeT can have on the multi­

plexer buffer requeriments. The model presented can be useful to assess the conve­

nience of using a traffic shaping device at the entry point of the ATM network. 
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1 INTRODUCTION 

The B-ISDN which will be based on the ATM technique, is designed to transport a wide 

variety of traffic classes with different transfer capacity needs and Network Performance 

objectives. The traffic flow present in such networks will be subject to unpredictable 

statistical fluctuations which will cause congestion. During a congestion state, the network 

will not be· able to meet the negociated Network Performance objectives for the already 

established connections. 

It is generally assumed that for real time services Traffic Control for ATM networks 

will be done in three steps: 

• The user requests the set up of a connection characterized by a declared Traffic 

Descriptor. 

• The network determines by means of a Connection Admission Contr·ol (CAC) func­

tion whether this connection can be accepted while maintaining the agreed Quality 

of Service (QoS). If the connection can be accepted, the network allocates the nec-

essary resources. 

• The network controls the established connection by means of a User Parameter 

Control (UPC) algorithm to verify that the negociated parameters of the Traffic 

Contract are not violated. 

The Traffic Contract at the Public UNI consists of a Connection Traffic Descriptor, a 

requested QoS class and the definition of a compliant connection The ATMForum, 1993. 

The Connection Traffic Descriptor consists of: 

• The Source Traffic Descriptor which can include parameters like Peak Cell Rate, 

Sustainable Cell Rate, Burst Tolerance and/or source type. 

• The Cell Delay Variation (CDV) Tolerance. CDV refers to the random perturbation 

on the interarrival time of consecutive cells of a given connection produced by cell 

multiplexing and other functions of the ATM Layer. CDV Tolerance represents a 

bound on the cell clumping phenomenon due to CDV and it is defined according to 

the UPC algorithm used. 

• The Conformance Definition based on one or more applications of the Ceneric 

Cell Rate Algorithm (CCRA). The CCRA is a Virtual Scheduling Algorithm or 
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a Continuous-state Leaky Bucket Algorithm which is used to specify the confor­

mance at the public or private UNI to declared values of CDV tolerance and of 

traffic parameters Peak Cell Rate, Sustainable Cell Rate and Burst Tolerance. 

An important consequence of the introduction of a CDV Tolerance is that the UPC 

algorithm will allow that a certain number of cells violate the Peak Cell Rate declared at 

connection set up. In fact this tolerance makes possible that a burst of a certain number 

of back-to-back cells (i.e. emitted at link rate) are viewed as conforming cells by the UPC 

algorithm. 

As an example, let us assume that at connection set up a user declares a Constant 

Bit Rate (CBR) connection with a certain Peak Cell Rate and a certain CDV Tolerance. 

The UPC algorithm will declare as conforming a maximum of N back-to-back cells if this 

burst of cells is preceded by a silence state long enough. In fact the user could send a 

periodic flow of cells consisting of N back-to-back cells followed by a silence state and the 

UPC will declare this flow of cells as conforming. We will call this kind of periodic traffic 

Worst Case Traffic (WCT). This name comes from the fact that the multiplexing of this 

kind of traffic requires by far more resources than the required by a periodic connection. 

In fact WCT is not the "worst" traffic that can be declared as conforming by the UPC 

algorithm (see Aarstad, 1993). However WCT as defined above is more tractable and the 

results obtained are not far from the "worst" case. 

The study of the effect of WCT in ATM multiplexers is important for several reasons: 

A misbehaving customer can try to take advantage of the UPC function tolerance to send 

traffic with different parameters than the negociated during the Connection set up phase. 

In our example the network cannot relay on the assumption that the user is actually 

sending CBR traffic as declared because it does not have means of checking that this is 

really happening. Therefore in order to ensure a certain QoS the CAC has to assume 

WCT to decide whether a connection can be accepted or not. 

Besides the "tricky user" some AAL schemes may generate WCT in a natural way. As 

an example (Boyer, 1992), let us assume that a multimedia workstation involves several 

AALs each of them generating CBR traffic at different peak bit rates. Each AAL accu­

mulates data in a private queue. The queues are periodically emptied at a rate of 150 

Mbps with scanning period set to the lowest involved peak emission period. 

A possible solution to the problem caused by clumps of cells is to use a Traffic Shaping 

function together with the UPCjNPC in order to retrieve as far as possible the negociated 

Peak Cell Rate of the connection. A device which performs this shaping function (together 

with a UPC function) known as Spacer/Controller has been proposed (see Boyer, 1992, 

Wallmeier, 1992). The model presented in the paper can be used to study the trade-off 

between the cost of introducing a shaping device such as the Spacer/Controller and the 
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low utilization or large buffers needed to cope with WeT. 

In this paper we present an exact model for the multiplexing of N identical and 

independent WeT sources. In Garda an approximate model for the multiplexing of 

WeT together with geometric or VBR traffic is developed. Approximate solutions of 

the model presented here are found in Roberts, 1993 (fluid approach) and in Kvols, 1992 

(discrete time). In both cases the authors use what is known as the Benes bound which 

gives an upper bound for the queue length distribution. The problem of obtaining the 

queue length distribution using the Benes approach which can be reduced to computing 

the ith-fold convolution of a pulse, is solved approximately in Roberts, 1993 by using the 

saddle-point method and in K vols, 1992 by means of an FFT for the discrete time case. 

In appendix A and B we give closed formulas for these convolutions for both the discrete 

and fluid case. In Ramamurthy, 1991 an exact formula for the mean queue length is given 

and they suggest an approximation for the queue length distribution. 

The model developed is used to demonstrate the decrease of network utilization when 

considering WeT or, alternatively, the increase of buffer length needed to maintain a 

certain QoS. Roughly, allowing clumps of length b in the network means to increase the 

required buffer capacity by a factor of b if no traffic shaping is used. 

The paper is structured as follows: In section 2 we present a discrete time model of the 

multiplexing of N identical and independent WeT sources in a slotted queue. In section 

3 we see how to extend the model for a fluid approach. In section 5 we compare the 

exact results we obtain with some approximation suggested in the literature. In section 

5 we use the model developed to study the impact of WeT in the dimensioning of ATM 

networks. Finally conclusions are drawn in section 6 . 

2 MULTIPLEXING WORST CASE TRAFFIC SOURCES IN A SLOT­
TED QUEUE 

In this section we consider a multiplexer of capacity one cell per time slot loaded with 

N identical and independent Worst Case Traffic (WCT) sources. Each WeT source 

produces a periodic stream of cells, of period T, with the following pattern: It emits a 

constant number, b, of back-to-back cells and then it remains silent during a constant 

time T - b (Figure 1). The time slots where each source becomes active are uniformly and 

independently distributed within the period. In order to have a stable queue we assume 

that ~b < 1. We consider that arrivals take precedence on departures (i.e. first we have 

cell arrivals (if any), then the service (if any), and finally we observe the system). 

We use the following definitions: N(t) is the number of arrivals at slots -(t -1), ... , OJ 

¢;(t) = N(t) -t, Bt is the number of sources which become active at slots -(t -1), ... ,0; 
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o b-I T- I 

Figure 1: Traffic offered by a WeT source 

It is the number of sources which were active at -t, and Lt is the queue length at -t. 
Following the Benes approach for the analysis of a slotted statistical multiplexer with 

a periodic input of period T (see Roberts, 1991) we express p{ Lo > x} as: 

T 

p{Lo > x} = LP{.p(t) = x}p{.p(u) < x,t < u S; TI.p(t) = x}. 
t=1 

Introducing It and Bt, (1) can be written as: 

p{Lo > x} = 
T N 

(1) 

LLP{.p(t) = X"t = O,Bt = i}p{.p(u) < x,t < u S; TI.p(t) = X"t = O,Bt = i}. 
t=li=l 

2.1 The term p{.p(t) = X"t = O,Bt = i}. 

The term p{ .p(t) = x, It = a, Bt = i} can be expressed as 

p{ .p(t) = x, It = 0, Bt = i} = p{ .p(t) = xlit = 0, Bt = i}pbt = 0, Bt = i}. (2) 

To derive an expression for these probabilities, we distinguish between three cases de­

pending on the values of t: 

• Case (I): t = 1, . .. , b - 1 

We have: 

. (N) t'(T-b-t)N-' 
pbt = 0, B t = l} = i TN (3) 

and: 

(4) 

where qt( x) is a discrete-time unitary pulse in [I , t] and qlil( x) is its i-th discrete-time 

convolution. A simple expression for qji}(x) is derived in Appendix A. 
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• Case (II):t=b, ... ,T-b 

pbt = 0, Bt = i} has the same expression as in case (I) (equation (3)). For the 

other term we get: 

. i (i)(t-b+1)j (i-j) . 
p{¢>(t)=xl!t=O,Bt=z}=L. ti qb-l (t+x-bJ). 

J=O J 

• Case (III): t = T - b + 1, ... , T 

For i = 1, ... , N - 1 this term vanishes. For i = N we have: 

and 

t N 
pbt = 0, Bt = N} = (-1;) . 

N(N)(t-b+1)j(N_n . 
p{¢>(t) = xl,t = O,Bt = N} = L. N qb-l (t +x - bJ). 

j=O J t 

(5) 

(6) 

(7) 

2.2 The term p{ ¢>(u) < x, t < u ~ TI¢>(t) = x, It = 0, Bt = i}. 

This term can be written as: 

p{¢>(u) < x,t < u ~ TI¢(t) = X"t = O,Bt = i} = 
p{¢(u) < x,i < u ~ TI¢>(t) = x,Bt = i} 

pbt = 0l¢>(t) = x, Bt = i} 

A simple expression for the numerator can be derived by means of a similar argument as 

in section III of Roberts, 1991: 

We note that the event {¢(u) < x,i < u ~ TI¢(t) = x,Bt = i} corresponds to the 

arrival patterns that would result in an auxiliar queue loaded with periodic arrivals of 

period T - t being empty at time -to 

The periodic arrivals at this auxiliar queue belong to two classes (Figure 2): 

• A batch arrival at time -(T -1) consisting of ib - t - x cells. These cells correspond 

to the ones that were emitted in the original system by the i sources that had become 

active at slots -(t - 1 - T), ... , -T. 

• N - i independent WeT sources of period T -- t emitting b back-to-back cells. 
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If the original system is stable, the same will occur with the auxiliar queue (Nb < T 

implies ib - t - x + (N - i )b < T - t) . Therefore we do not need to take into account 

the contribution of the first batch arrival, obtaining: 

(N - i)b 
p{ <f!(u) < x, t<u:S;TI <f!(t)=x , Bt=i}=l- T-t' 

The denominator is: pht = Ol <f!(t) = x, Bt = i} = ( Ti~~bt-i. 

[IT] 
[IT] 

·(T- ,) 

ITJJ 
ern 

(a) Original system (Period = T) 

ITJJ 
ern 

o 

OIl 
[IT] 

§ 

(b) Equiv. system with batch arrival at first slot (Period = T-t) 

ITJJ 
[IT] 

(c) Equiv. system without batch arrival at first slot (Period = T-t) 

Figure 2: 

3 THE FLUID WeT MODEL 

(8) 

A similar study can be done for a system using a fluid-flow approximation. In this case 

the WeT is defined as a periodic source which produces h information units per time slot 

during a constant time b and which remains silent during a constant time T - b. The 
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multiplexer is able to serve at rate c. We asume h 2: c. The analogous to (1) in the fluid 

case is (see Roberts, 1993): 

p{Lo > x} = cloT p(7jJ(t) = x)p(7jJ(u) < x, t < u:::: TI7jJ(t) = x}dt, (9) 

where W(t) is the work arriving in the interval (-t, 0), and 7jJ(t) = W(t) - ct. 

The derivation of the final formula in the case of WCT fluid sources follows the same 

steps as in the discrete-time case: We also have to distinguish between three cases de­

pending on the values of t. (Namely: case (I): t < b; case (II): b < t < T-b and case 

(III): T-b < t). The formula for the i-th convolution of a continuous-time pulse is derived 

in appendix B. The resulting integrals can be evaluated, for example, by means of the 

Gauss method. 

4 ERRORS AND BOUNDS 

It is well known that the queue length distribution of a nD / D /1 queueing system can 

be approximated by the queue length distribution of an M/D/l queueing system when 

the period of the sources is large (see Roberts, 1991). In Figure 3 we make a comparison 

between the n WeT / D /1 system and a slotted queue loaded with Poisson batch arrivals 

(curve with the points). The batchs have a deterministic distribution of b = 2 cells. We 

observe that when the period becomes large, the two systems have a similar distribu­

tion. The queue with Poisson batch arrivals gives an upper bound of the buffer length 

distribution of the n WeT / D /1 system. 

In Ramamurthy, 1991 the following approximation is suggested: Let L(b) be the queue 

length of a multiplexer loaded with N WCT sources of period T' = bT for a given T. 

Then 

p{L(b) > x} ~ p{L(I) > ~}. (10) 

Figure 4 compares this approximation (curves with the points) with the results ob­

tained from the exact model. As expected, the differences with the exact model are more 

important for larger values of b. 

5 RESULTS 

In this section we present some results obtained for the discrete-time case. 
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Figure 5 shows, for different values of b, the complementary queue length distribution 

of a multiplexer handling 12 WCT traffic. The ratio ~ = is is maintained constant. Even 

for b = 2 and b = 3 we observe a dramatic impact on the queue length distribution: For 

example, if we have CBR connections (b = 1) the probability of having more than 10 cells 

in the multiplexer is 3.277 x 10-11 . In the case of WCT with b = 2 the probability of 

this event is incremented about 6 orders of magnitude (7.823 x 10-4 ) while with b = 3 we 

obtain a value of 1.737 x 10-2 • On the other hand, to have a quantile of the buffer length 

probability lower than 1 x 10-10 we need for b = 1 a buffer length L = 10, for b = 2 we 

need L = 20 while for b = 3, L = 28. 

Figure 6 shows the admissible load to have a quantile of the buffer queue length 

probability lower than 1 x 10-10 . The traffic parameters are the same as above. We can 

again observe the impact of the value of b: For b = 1 the admissible load is 0_80 while for 

b = 2 it decreases to 0.33 and for b = 3 to 0.27. 

A similar experiment is performed when ~ = 1~0' We observe again the strong impact 

of b on the complementary buffer length distribution for a multiplexer loaded up to 0_8 

(figure 7) and on the admissible load when the buffer has a capacity of 24 cells (figure 8). 

Now we study an example in which the user produces WCT_ Let us assume that we 

scan each 480 time slots the AAL buffers of a multimedia workstation with different CBR 

connections. The user generates traffic at a total rate of 10 Mbps, and the physical link 

rate is 150 Mbps. This means that clumps of 32 back-to-back cells will enter the ATM 

network. Figure 9 shows the complementary buffer queue length distribution of a multi­

plexer handling such traffic sources (load 0.80). To have a quantile of the buffer length 
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probability lower than 1 x 10-10 we need a value of L = 288. Using L = 128 means to 

reduce the load to 0.33 while for L = 64 the admissible load is 0.13. 

6 CONCLUSIONS 

In this paper we have developed an exact model for a multiplexer loaded with a number 

of identical and independent Worst Case Traffic (WCT) sources. 

The model can be used to demonstrate the decrease of network utilization when con­

sidering WeT or, alternatively, the increase of buffer length needed to maintain a certain 

QoS. This analysis is important to assess the convenience of using traffic shaping devices 

at the ATM entry points. 
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APPENDIX A : 1-TH CONVOLUTION OF A PULSE IN DISCRETE 
TIME 

Let qm(t) be a discrete-time pulse of amplitude 1 in [1, m] and let q;;'(z) be the z-transform 

of such pulse. We are interested in finding a simple expression for the i-th discrete-time 

convollltion of qm(t). This is equivalent to find a simple expression for the coefficients of 
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(11) 

(12) 

We can easily derive (from example, using the convolution algorithm, Buzen, 1973 

that: 

(13) 
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Hence, we obtain (i > 0): 
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n=O 8=0 n - 3m s 

40 

From that we deerive a formula for q~)(t) (i > 0 and t = i, ... , im): 

q~)(t)= 2:(-1), z t-S~-1. [';;;'] ( . ) ( ) 
8=0 s z 1 

and q~)(t) = 0 for other values of t. 

For i = 0 we define 

(14) 

(15) 

(16) 
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APPENDIX B : I-TH CONVOLUTION IN CONTINUOUS TIME 

15 

Let py(x) be a pulse with unitary amplitude in (O,y)_ In order to get an explicit formula 

for its i-th convolution, we obtain first the Fourier transform of py(x): 

(17) 

Hence, the transform of p~i) (x) is: 

(IS) 

and p~i)(x) can be expressed as (i > 0): 

p1i)(x) = - ejwx P;(w)dw = L L Z (_l)i-k e i dw_ 
1 J+oo "i i ( " ) J+oo -jw(ky-x) 

21f -00 21f k=O k -00 w 
(19) 

We now consider the integral: 

J+OO ejw(x-ky) _ J+oo cos(w(x - ky)) -J+oo sin(w(x - ky)) 
---:-i-dw - i dw + J i dw_ 

-00 W -00 W -00 W 
(20) 

If i is even the imaginary part of the rigth hand side of equation (20) vanishes_ For 

the real part we have Papoulis, 1962, Prudnikov): 
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(x - ky)i-l (. 7r) J+oo sin(w(x - ky) )d 
cos z- w = 

(i - I)! 2 -00 w 

Ix-kyl'-1 .7r 

7r (i-I)! C08(Z2") 

If i is odd the real part vanishes while for the imaginary part we have: 

(X_ky)i-l ((._ )~)J+oosin(w(x-kY))d _ 
. )' cos z I w-(z - 1 . 2 -00 W 

(x_ky)i-l 7r 

7r C )' cos((i - 1)-)sgn(x - ky). 
1 -1 . 2 

Finally we obtain the following expression for pVl (x) (i > 0): 

(il(x) = ~ ~ ( i ) (_I)k (x - ky)i-l sgn(X- ky). 
Py 2t:o k (i-I)! 

(21) 

For i = 0 we define: 

(22) 

where 8(x) denotes the Dirac delta in continuous-time. 
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