
15

Providing different degrees of recency
options to transactions in multilevel
secure databases
V. Atlun-a, E. Bertinob and S. Jajodiac
aMS/CIS Department, Rutgers University, Newark, NJ 07102, U.S.A.

b Dipartimento di Scienze dell'Informazione, Universita degli Studi di Mi­
lano, Via Comelico 39/41, 20135 Milano, Italy

c Center for Secure Information Systems and Department of Information
and Software Systems Engi'fl,eering, George Mason University, Fairfax, VA
22030-4444, U.S.A.

Abstract

Although several secure multiversion concurrency protocols have been proposed by
researchers, only two protocols produce histories that are one-copy serializable - one
proposed by Keefe and Tsai and the other by Jajodia and Atluri. However, neither of
these are completely satisfactory. Keefe and Tsai protocol sacrifices recency for correct­
ness by providing a high transaction with very old versions of low data. Jajodia and
Atluri protocol, on the other hand, sacrifices performance for correctness by making high
transactions that read low data wait before they can commit. The first contribution of
this paper is to provide different recency options to transactions, where each transaction
can receive data with a desired degree of recency. These options are provided without
sacrificing one-copy serializability. In fact, we propose four types of degrees of recency and
present protocols for each type. The traditional timestamp-based protocols require that
transactions be assigned unique timestamps, which is necessary to ensure the correctness
of the protocols. The second contribution of this paper is to recognize that this require­
ment need not be met in a multilevel secure environment to guarantee correctness. The
protocols to determine the timestamps for providing different types of recency options are
based on this property.

Keywords

Security and Protection; Information Systems, General; Systems; Multilevel Security;
Recency, Concurrency Control; Serializability, One-copy serializability

D. L. Spooner et al. (eds.), Database Security IX
© IFIP International Federation for Information Processing 1996

232 Part Five Concurrency Control

1. INTRODUCTION

Although locking is one of the most popular techniques for providing concurrency control
in conventional (untrusted) database management systems (DBMSs), it has been found
to be unsuitable in multilevel secure (MLS) DBMSs. To overcome its shortcomings,
researchers have proposed several secure protocols (for example, [MG90, KT90, JA92])
that are timestamp-based and use multiple versions. In these protocols, timestamps
are used to give high transactions older versions of low data, thus eliminating both the
signaling channel and starvation problems.

Among all such protocols, two protocols stand out since only they produce histories
that are one-copy serializable. The first protocol has been proposed by Keefe and Tsai
[KT90) and the other by Jajodia and Atluri [JA92). The difference between the two
protocols is the way the scheduler assigns timestamps to the arriving transactions. In the
rest of this paper, the schedulers proposed by Keefe and Tsai and Jajodia and Atluri are
referred as scheduler K and scheduler J, respectively.

Scheduler K places a high transaction behind all active transactions executing at lower
levels by assigning the high transaction a timestamp that is smaller than those given to
all active transactions at lower levels. As a result, high transactions receive much older
versions of low data, older than those given by the traditional multiversion timestamp
ordering protocol (MVTO) [BHG87]). (Example 2 in section 4 provides further details
on how schedulers K and J assign timestamps to transactions.) By contrast, scheduler J
assigns transactions timestamps in the same order as they arrive; as a result high transac­
tions are given the same version of the low data as MVTO. However, if a high transaction
reads from a lower level, Scheduler J makes high transaction wait to commit until all
transactions that are at that lower level and have arrived earlier than this transactions
finish their execution.

Thus, these two solutions can be viewed at being at the two extremes; one gives the
transactions very old versions of data but does not require them to wait, and the other
gives the transactions most recent versions of data but makes them wait. In other words,
one solution sacrifices recency for correctness and the other performance for correctness.

The first contribution of this paper is to propose a solution to this dilemma by providing
different options to transactions with respect to the recency of data. According to our
approach, each transaction can choose a desired degree of recency for the low data, thereby
reducing the time of wait. Thus, a transaction does not have to wait for the completion of
all earlier active transactions, nor does it have to settle for very old versions of the data.
Thus, our approach provides more flexibility to transactions since they have the liberty
to choose an appropriate version without opting for one of the two extremes.

Our notion of providing varying degree of recency has some similarities to epsilon se­
rializability proposed by Pu et al. [P+93). However, their approach does not deal with
multilevel databases and, moreover, it sacrifices consistency for recency and allows only
read-only transactions to enjoy this flexibility. In addition to dealing with multilevel se­
curity, the distinguishing feature of our approach is that it provides different degree of
recency options to transactions without compromising one-copy serializability. Addition­
ally, our approach extends this option for both read-only as well as update transactions.

The idea behind our approach is to manipulate the timestamps that are assigned to

Providing recency options to transactions in multilevel secure databases 233

transactions as follows. We first model all active transactions as points on a recency
spectrum by assigning a recency value to each one of them. The timestamp of a new
transaction is selected in such way that this new transaction is placed at an appropriate
position on this recency spectrum based on the specified degree of recency. We propose
four different types of degrees of recency and present protocols that provide these types.

To ensure correctness of the protocols, the traditional timestamp-based protocols (for
example, MVTO [BHG87]) require that each transaction be assigned a unique times­
tamp. Another important contribution of this paper is to identify a property (see Section
3) which states that the preceding requirement need not be met in a multilevel secure
environment to guarantee correctness. The protocols to determine the timestamps for
providing different types of recency options are based on this property.

The remainder of this paper is organized as follows. In section 2, we present our
security model. Section 3 first makes two important observations related to timestamp
based protocols in multilevel secure systems and formalizes them as a property. Using this
property, we give an implementation for Scheduler K that uses single-level schedulers. In
section 4, we first present the notion of degree of recency and then propose four different
types of recency in which a transaction can specify its desired degree of recency. In
section 5, we first propose protocols to determine the timestamp of a transaction based
on the desired type and degree of recency. Then we give a multi version timestamp based
protocol. All the protocols proposed in this paper are single-level and therefore are secure.
Finally, section 6 presents the conclusions.

2. THE SECURITY MODEL

In this section, we give a brief description of our security model. We refer the reader to [
Den82) for additional details related to multilevel security and to [BHG87) for details
relevant to multiversion serializability.

The secure systemS consists of a set D of data items (objects), a set T of transactions
(subjects) and a partially ordered setS of access classes (or security levels) with ordering
relation ::;. "A class s; is said to be dominated by another class s; if s; ::; s;. A class s;
is said to be strictly dominated by another class s; (denoted as s; < s;) if s; ::; s; and
i =f. j". There is a mapping L from D U T to S, i.e., for every xED, L(x) E S, and for
every T; E T, L(T;) E S. In other words, every data item as well as every transaction has
a security class associated with it.

The following two conditions are necessary for a system to be secure:

1. A transaction T; is allowed to read a data element x only if L(x)::; L(T;)
2. A transaction T; is allowed to write a data element x only if L(x) = L(T;).

In addition to these two restrictions, a secure system must guard against illegal in­
formation flows through signaling and covert channels. Notice that unlike [KT90), we
restrict transactions to write only at their levels. We believe that it is prudent to disallow
transactions that write to higher levels for integrity and security reasons [JK90).

Definition 1 Given two security classes s; and s; such that s; < s;, s; is said to be the
child of s; iff there exists no Sk such that s; < Sk < s;.

234 Part Five Concurrency Control

3. AN IMPLEMENTATION FOR SCHEDULER K

A good concurrency control protocol has the following four properties: (1) it is one-copy
serializable (serializable if single version is kept), (2) it is free of covert channels, (3) it is
starvation-free, and (4) it can be implemented with single level schedulers (i.e., they do
not require any trusted code.)

A difficulty with Scheduler K as described in [KT90] is that it does not specify how
timestamps are to be assigned to the high transactions that read low data, which is
crucial for the implementation of the protocol. To correct this, Maimone and Greenberg
[MG90] have proposed an implementation for scheduler K using single level schedulers.
Their implementation uses a three component timestamp (t.l.s), the first component (t)
represents the values of the system clock, the second component (l) the security level of
the transaction, and the third component (s) the sequence number. Every transaction is
assigned a timestamp as follows: If there are no active transactions at lower levels, then
the value oft is assigned by reading from the clock at system low. Otherwise, the value
oft is computed by scanning all the lower security levels. Two transactions may have the
same value oft. t.l1.s is considered smaller than t.l2.r if 12 < lt, irrespective of the third
component. Sitnilarly, t.l.s is smaller than t.l.r if s < r.

A litnitation of the Maimone and Greenberg's implementation is that it requires the
security levels to be hierarchically ordered. In addition, it requires a critical section,
meaning that certain operations involved in detertnining the timestamp must be executed
as an atotnic unit. This creates the potential for a covert channel. We suggest that
this protocol is complicated because besides placing transactions in a specific order in
accordance with their security level, it requires that every transaction be assigned a unique
timestamp.

In this section, we propose another implementation for scheduler K that requires single
level schedulers as in [MG90]; however, we use single component timestamps, and our
implementation does not require a critical section. Since our transaction model does not
allow write-ups, to distinguish it from [KT90] and [MG90], we call our implementation
secure MVTO (SMVTO). Our solution is based on the following two important observa­
tions. Suppose the multiversion scheduler wishes to employ a timestamp based protocol
in a secure system S.

Observation 1 Transactions at different security levels need not be assigned unique
timestamps.

Observation 2 Transactions at the same security level must be assigned unique times­
tamps.

The first observation says that, two transactions may have the same timestamp if they
belong to two different security levels. The following two reasons support our observation.
First, suppose there exist two transactions Ti and T; such that L(Ti) # L(T;). These two
transactions do not conflict if they both read data from another lower level since two read
operations never conflict. Second, Ti and T; may conflict with each other if they contain
conflicting operations, in which case the conflicting operations need to be ordered. A
conflict may occur as follows: Suppose L(T;) < L(Ti)· In this case, Ti and T; conflict if
Ti reads a data item x and Tj updates the same data item. The usual timestamp based
protocols serialize these two transactions in the order of their timestamps since they

Providing recency options to transactions in multilevel secure databases 235

assign unique timestamps to transactions. We will show that one can still order these
two transactions even though their timestamps are equal. However, we can no longer use
the conventional MVTO, but need to modify it. The modified MVTO (which we denote
by SMVTO) is presented in algorithm 3.2 later in this section.* A similar argument
can be made in the case where L(T;) < L(TJ)· It is easy to preserve the property in
the second observation. We can always assign progressively increasing timestamps by
serializing arriving transactions.

The above two observations lead to the following property, which is necessary for every
timestamp based secure concurrency control protocol to guarantee correctness.

Property 1 In a system S, for every pair of transactions T; and Ti such that L(T;) =
L(TJ), ts(1i) =f- ts(TJ).t

In the following, we present a protocol for generating timestamps. However, unlike
conventional timestamp based protocols, we do not determine the timestamp by reading
from a clock, but we compute it by scanning the timestamps of transactions at lower
levels. Another distinguishing feature of this protocol is that it may assign the same
timestamp to two different transactions, provided they belong to different security levels.

Algorithm 3.1 [An Algorithm to Determine the Timestamps]

1. Each transaction T; is assigned a time, time(T;) as soon as it arrives by reading from
a global clock at system low.

2. A timestamp ts(T;) is computed for every transaction T; as soon as it arrives. (The
exact details as how it is computed is explained in the following steps.) Only after
assigning a timestamp, it is allowed to execute any operations.

3. Each scheduler at level s maintains two values: min-ts, and max-ts., where min-ts,
=min {ts(7i): L(7i) = s} and max-ts, =max {ts(T;): L(T;) = s}

4. We assume there is an initial transaction T0 , which initializes min-ts, and max-ts,
as follows: min-ts, = max-ts, = ts(T0).

5. The scheduler updates min-ts, whenever a transaction completes its execution at
level s, and modifies max-ts, whenever a new timestamp at level s is computed.

6. The timestamp, ts(T;) of each transaction T; at level s is determined as follows:
ts(T;) < min{min-ts of all the children of levels, time(T;)} and> max-ts,. If s has
no children, i.e., s itself is the lowest security level, then ts(T;) = time(T;).

Since this algorithm determines the timestamp of a transaction only by examining the
children of its security level, it may sometimes give excessively old versions of data to a
transaction if all the children of the transaction's level have no active transactions. We
suggest two solutions to alleviate this problem. First, a dummy transaction can be sent
to each scheduler at a certain interval. The exact frequency of these dummy transactions
can be determined based on the specific application. Second, all security levels can be
examined while determining the timestamp, and if there are no active transactions at all
the lower security levels, timestamp can be assigned by reading from the clock at system
low.
*Note that we cannot allow two transactions to have the same timestamp if we allow write-ups since two
such transactions at different levels may create two new versions with the same version number when
both of them update a data item.
fit also means for every pair of transactions T; and T; such that L(T;) # L(T;), ts(T;) may equal ts(T;).

236 Part Five Concurrency Control

Example 1 We explain with an example how the above protocol assigns timestamps
to transactions. Consider the security lattice as shown in figure 1 with four elements.
Suppose the first transaction to arrive is T1 at level low. Since this level does not have
any children, timestamp of T1 is determined by reading from a real-time clock at system
low. In other words, ts(Ti) = time(T1). Suppose time(Tl) = 8. Since T1 is the only
transaction at low, min-tsrow = 8. While T1 is still active, assume two transactions T2 and
T3 arrive at levels mid1 and mid2, respectively. They receive timestamps that are less
than 8. Let ts(T2) = ts(T3) = 7. All later transactions at these two levels may receive
timestamps between 7 and 8 (excluding these two values), for example, 7.1, 7.2, and so
on. It is important to note that the dot "." in the timestamp is the decimal point but
does not represent the separator used to separate the two components of timestamp as in
[AJ92] or [MG90]. Accordingly, min-tsmid, = min-tsmid:. = 7.

Suppose, at this point of time, another new transaction T4 arrives at high. It receives
a timestamp whicli is less than both min-tSm;d, and min-tsmid2 • Let ts(T4) = 6.

A new transaction T5 at level low arriving after the completion of T1 receives its times­
tamp from the clock. Suppose ts(T5) = 9. At this point, another new transaction, T6
arriving at either mid1 or mid2 may be assigned 8, which is same as the timestamp of
the low transaction T1 • According to property 1, even though T1 and T6 are assigned the
same timestamp, it does not cause any harm to the correctness. 0

Figure 1. A Security Lattice

The following theorem shows the necessity of choosing > in step 6 of algorithm 3.1.

Theorem 1 Algorithm 3.1 satisfies property 1.

Proof: Consider two transactions T; and Ti such that L(T;) = L(T;) = s. Without
loss of generality, assume T; has arrived earlier than Ti. From step 3 of algorithm 3.1,
min-ts. :::; ts(T.) and max-ts. ~ ts(T;). From step 6, ts(T1) > max-ts. ~ ts(T;). Thus,
ts(T;) > ts(T.). In case where T; arrives earlier than T., ts(T.) > ts(Tj)· But ts(Tj) is
never equal to ts(T;). 0

In step 6 of algorithm 3.1, <has been chosen instead of:::; because, by using:::;, it may
not be possible to assign distinct timestamps to two transactions at the same security
level.

Algorithm 3.2 [Secure MVTO (SMVTO)]

1. There is a separate scheduler at each security level.
2. Every transaction T; is assigned a timestamp ts(T;) using algorithm 3.1.

Providing recency options to transactions in multilevel secure databases 237

3. The database maintains multiple versions of data. Each version x; of a data item x
has a read timestamp rts(x;) and a write timestamp wts(x;) associated with it. We
assume there is an initial transaction T0 , whose timestamp ts(To) = 0, that writes
into the database, and for each version x0 of an item x, rts(xo) = wts(xo) = ts(To).

4. If a transaction T; wishes to read a data item x such that L(x) < L(T;), then it
selects a latest version Xk such that wts(xk) < ts(T;).

5. If a transaction T; wants to read a data item x such that L(T;) = L(x), then the
scheduler selects a version Xk with the largest wts(xk) such that wts(xk) ~ ts(T;),
processes r;[xk], and modifies rts(xk) as rts(xk) = max{ts(T;), rts(xk)}.

6. When a transaction T; wants to write a data item x, scheduler selects a version Xk
with the largest wts(xk) such that wts(xk) < ts(T;). It rejects w;[x;] if rts(xk) >
ts(T;); otherwise, it processes w;[x;] and modifies the timestamps of the new version
x; as rts(x;) = wts(x;) = ts(T;).

The only difference between MVTO and SMVTO lies in step 4. Notice that according
to SMVTO, a transaction is allowed to read a version x; of x only if wts(x;) < ts(T;). (In
the original MVTO, this condition is wts(x;) ~ ts(T;).) This slight modification allows
us to place T; before T; in the serialization order even though their timestamps happen
to be equal.
Theorem 2 Suppose the scheduler in a system S uses SMVTO and the timestamps
assigned to all transactions in a history H satisfy property 1. Then H is one-copy serial­
izable. 0

We prove this theorem using the following three lemmas. We assume the version order
as follows: x; ~ x; iff wts(x;) < wts(x;).
Lemma 1 If there is an edge T; ~ T; in MVSG(H) such that L(T;) < L(T;), then
ts(T;) < ts(T;).
Proof: If there is an edge T; ~ T; in MVSG(H) such that L(T;) < L(T;), there
must exist a data item x such that L(x) = L(T;) and r;(x;] E H. From step 4 of
the above algorithm, it follows that wts(x;) < ts(T;). From step 6 of this algorithm,
wts(x;) = ts(T;). These two expressions can be combined and thus, ts(T;) < ts(T;). 0

Lemma 2 If there is an edge T; ~ T; in MVSG(H) such that L(T;) = L(T;), then
ts(T;) < ts(T;).
Proof: Let L(T;) = s. Since T; and T; are transactions of the same level, there must
exist a data item x such that at least one of the following three cases is true.
Case 1. r;[x;] E H
Case 2. r;(xn], w;(x;] E H with Xn ~. Xj

Case 3. rk[x;], w;[x;] E H with x; ~. x;
Consider case 1. Since x; is the version created by T;, according to step 5 of algorithm

3.2, wts(x;) ~ ts(T;). From step 6, wts(x;) = ts(1i). From property 1, ts(T;) # ts(T;).
Combining these three expressions, we get ts(1i) < ts(T;).

Consider case 2. The read operation r;(xn] and the write operation w;(x;] can occur in
any order, i.e. either the read operation precedes the write operation, or vice versa.

1. Consider the case where r;[xn] precedes w;[x;].

According to step 5 of algorithm 3.2, rts(xn) = ts(T;). From step 6, wts(x;) =
ts(T;). Again from step 6, rts(xn) ~ ts(T;). From property 1, ts(T;) # ts(T;).
Combining the above, we get ts(T;) < ts(T;).

238 Part Five Concurrency Control

2. Consider the other case where r;(xn] succeeds w;[x;]. Then, wts(xn) < wts(x;),
wts(xn) $ ts(T;). Thus, wts(x3) 1: ts(T;). Otherwise, T; would have selected
the version x; of x instead of Xn. In other words, wts(x;) > ts(1i). Therefore,
ts(1i) < ts(T;).

Now, consider case 3. Since X;~ Xj, wts(x;) < wts(x3). From step 6, wts(x;) = ts(T;),
and wts(x;) = ts(T;). Since L(T;) = L(Tj), from step 2, ts(1i) =/= ts(T3). Therefore,
ts(1i) < ts(T3). 0

Lemma 3 If there is an edge T; -+ T3 in MVSG(H) such that L(T3) < L(1i), then
ts(1i) $ ts(T3).
Proof: Let L(T3) = s. If there is an edge T; -+ Tj in MVSG(H) such that L(T3) <
L(T;), this edge implies that there must exist a data item x such that L(x) = s and
r;[xn], Wj[Xj] E H with Xn ~. Xj since Xn ~. Xj, wts(xn) < wts(x3). From step 4,
wts(xn) < ts(T;).

Now we must consider the following two cases:

1. r;[xn] precedes w3[x;]. In this case, since Ti is still an active transaction, from
algorithm 3.1, ts(T;) $min-ts, and min-ts, $ ts(T3). Therefore, ts(T;) $ ts(T3).

2. Wj[Xj] precedes r;[xn]· Now we need to consider the following three cases.

(a) ts(7i) < ts(T;). In this case, the proof trivially follows.
(b) ts{1i) = ts(T;) In this case, the proof trivially follows.
(c) ts{T;) > ts(T3). Since wts(x3) = ts(T3) < ts(T;), according to step 4 of the

algorithm, 1i selects the version Xj of x instead of Xn· Therefore, the edge
1i -+ Ti no longer exists.

0

Proof of Theorem 2: Suppose there exists a cycle in MVSG(H). We must consider
the following two cases of cycles in MVSG(H).

Suppose all the transactions in the cycle belong to the same security level. We denote
this cycle by a single level cycle. From lemma 2, for every edge T; -+ Tj such that
L(1i) = L(T3), ts(T;) < ts(T3). In other words, all edges in this cycle follow the timestamp
order, and therefore, this cycle cannot exist.

Suppose that in the cycle at least one pair of transactions belong to different security
levels. We denote such a cycle by a multiple level cycle. Let this cycle be T1 -+ T2 -+

T3 ... Tn -+ T1 . For every edge 11 -+ 11+1, from lemmas 1, 2 and 3, we get ts{11) $
ts(T,+I)· However, every multiple level cycle must contain an edge Tk -+ Tk+l such that
L(T~:) < L(Tk+t)· For such an edge ts(T~:) < ts(Tk+1). Therefore, if we combine all the
results, we arrive at a relation ts{T1) $ ts(T2) ••• ts(T~:) < ts(Tk+1) •• . ts(Tn) $ ts(TI),
which is impossible. Thus there cannot be a multiple level cycle in MVSG(H). 0

4. DEGREE OF RECENCY

In this section, we begin with an overview of our approach with the help of examples and
then formally present our notion of degree of recency. As described in the introduction,
neither scheduler K nor scheduler J provide a completely satisfactory solution to the
problem of secure concurrency control. We explain these two extreme solutions with the
following example.

Providing recency options to transactions in multilevel secure databases 239

Example 2 Suppose a transaction T, wishes to read a data item x from a lower level s.
Assume that there are 100 transactions currently executing at levels. These transactions
arranged in the increasing order of their timestamps are shown in figure 2, denoted by
T1, T2, ... , T10o· Scheduler K places 1i ahead of all these 100 transactions by assigning a
timestamp to T, that is smaller than the timestamps of all the 100 transactions. That
is, T, is placed at position "a" in figure 2. If there are any active transactions at levels
between L(T;) and s whose timestamps are smaller than T11 scheduler K may place T;
much ahead than shown here even though T, does not read data from those levels.

On the other hand, scheduler J serializes T, after all the 100 transactions by assigning
a timestamp to T; that is larger than the timestamps of all the 100 transactions. That
is, T, is positioned at "c" in figure 2. In this case, T, has to wait for its comlnit for the
completion of all100 transactions.

Notice that the version of data given to a transaction T, by scheduler K is affected
by transactions at all lower levels although T, does not read from all lower levels. On
the other hand, the version given by scheduler J depends only on the transactions at the
level from which T; reads data. In case of scheduler J, it is possible that these lower
level transactions may themselves been waiting for the completion of transactions from
yet another lower level. 0

In summary, a transaction need not wait if it is willing to accept a very old version
of the data. If it wishes to obtain the most recent version of the data, then it has to
wait; the duration of the wait is dependent on the duration of active transactions at s.
Neither of these extreme solutions are desirable even though they both preserve one-copy
serializability.

In this paper, we propose a solution where a transaction can choose an appropriate
version of a data item from among a number of versions. If it does not choose the
most recent version of a data item, it need not wait for the completion of all the active
transactions at lower levels for its comlnit. According to our approach, a transaction
chooses its desired version of data item by specifying it in terms of degree of recency.
Our notion of degree of recency is explained below.

Example 3 Consider once again example 2. Suppose T; wishes to read 60% recent data
of :c. Then T, has to specify its degree of recency as 0.6. We serialize T, just after the
first 60 active transactions but before the 61st transaction. In other words, although T,
arrives after T100, it is executed as if it has arrived after T60• Our approach is simple and
is based on manipulating the timestamps so as to meet the specified degree of recency
needs. We assign a timestamp to T, whose value is larger than the timestamp of the first
60 transactions but still smaller than the 61st transaction, i.e., at position "b" in figure 2.
As a result, 1i need to wait for the completion of only 60 transactions instead of 100. The
distinguishing feature of our approach is that we provide these different degrees of recency
options to transactions without compromising one-copy serializability. It is important to
note that T, is guaranteed to be given at least 60% recent data but will never be given
less recent data. However, T, may be given more than 60% recency since all the 100
transactions may not modify the same data item that T; has read. 0

Strictly speaking, in the above example, while computing the timestamp of a transaction
T, according to the specified degree of recency, it is more appropriate to consider only those
active transactions at s that update :c. However, such a specification requires transactions
to predeclare their write-sets since at the time of computation of the timestamp ofT; all

240 Part Five Concurrency Control

'll(Scheduler Kl 1l(60% Recency) J (SchedulerJ)

I ~ a 1m) I I I C
ts,.i ts(J6J ts(T6Il ts(Twol

Figure 2. The Recency Sequence

active transactions at s can potentially update x. To avoid this requirement, we assume
that all active transactions at s will update x.

In the remainder of this section, we formalize the notion of degree of recency and
propose four different types of degree of recency. Below, we use T denote the set of active
transactions.

Definition 2 Given a set of transactions T, a recency sequence P(T) is a linearly ordered
sequence of transactions in T such that for every T; preceding T; in the sequence, ts(1i) :S
ts(T;).

Definition 3 Given a recency sequence P(T), the sequence number of a transaction 1i
in T (sn(1i)) is defined as n; + 1 where n; is the number oftransactions preceding T; in
P(T).

Definition 4 The recency value of a transaction T; in P(T) (rv(T;)) is defined as follows:
rv(T;) = sn(T;)/N, where N is the total number of transactions in P(T).

Definition 5 Given a set of transactions T, a recency spectrum Q(T) is defined as follows:
Q(T) = (rvmin(T), rvmaz(T)) where rVmin(T) = min{rv(T;) : T; E T} and rvma.,(T) =
max{rv(T;) : 1i E T}.

Definition 6 A transaction Tk is given at least degree r recency with respect to spectrum
Q(T), if ts(Tk) > ts(T;) where T; is a transaction in T such that rv(T;) = r.

Note that Tk in the above definition is not an element in T. It is a new transaction
whose timestamp is computed based on its desired degree of recency using the currently
executing active transactions in T. If Tk is the first transaction to arrive, then T would
be an empty set.

Suppose a transaction T; is running at degree 0 recency, then it does not mean that
rv(T;) = 0. In fact, rv(T;) is actually decided by its position in the recency sequence.
Suppose another new transaction 1i wishes to receive degree 1 recency and T; is the only
transaction in T. In such a case, rv(T;) = 1 and 1i is assigned a timestamp that is larger
than ts(T;).

The recency sequence of transactions in example 2 is shown in figure 2 as T1 , T2, ••. T100 ,

where 1, 2, ... 100 denote the sequence numbers of the transactions. Figure 3 depicts the
recency values of these transactions. A transaction may specify the degree of recency
ranging from 0 to 1. This range, in fact, reflects the range of the timestamps of all the
active transactions at levels lower than that of the transaction. If transaction T; specifies
its degree of recency as 1, then it is serialized according to scheduler J, and therefore is
placed at the extreme right of the recency spectrum, i.e., at position "c" in figure 3. On
the other hand, if it chooses its degree of recency as 0, it is placed according to scheduler
K, and thus is placed at the extreme left end of the spectrum, i.e., at position "a" in

Providing recency options to transactions in multilevel secure databases 241

yscbeduler K) 'll (0.6 Recency) 1 (Scheduler n

a I I 11 I C

Figure 3. The Recency Spectrum

figure 3. If T, specifies its degree of recency as 0.6, then it is placed at position b in figure
3. How would a transaction determine its desired degree of recency is beyond the scope
of this paper.

We propose the following four different types of degree of recency. A transaction may
specify its desired degree of recency according to one of these four types.

• Degree ofrecency by level (R.)
• Degree of recency by data item (R..)
• Degree of recency in general (R9)

• Degree ofrecency by transaction (Rt)

In the first three types, the specified degree of recency should range from 0 to 1. How­
ever, in the fourth type it should be specified with respect to a particular transaction that
is currently being executed, executed in the past, or going to be executed in near future.

4.1. Degree of recency by level (R.):
With this type of recency, a transaction is allowed to specify its degree of recency with
respect to a security level. By specifying a certain value of R., a transaction T, is specifying
that it wishes to wait for the completion of R. fraction of all active transactions from the
security level s. For example, a very high* transaction T, may specify its Rmgh = 0.5,
meaning that it wishes to read only 50% recent values of the data from the security level
high. According to our approach, T, need not wait for the completion of all the earlier
transactions at high, but needs to wait only for half as many. This type of recency can
be defined as follows:

Definition 7 A transaction T, is given degree r recency by level (R.(T;) = r) if it is given
at least degree r recency with respect to spectrum Q(T.) where T. = {T; E T: L(T;) = s }.

If a transaction specifies the degree of recency with respect to a level but also reads
data from another lower level, then it may have to wait longer than required by the
specified R.. For example, consider once again the very high transaction T; mentioned
above. Suppose T,, in addition to the data at high also has read data from low. Then it
needs to wait for the completion of all active transactions at low whose timestamps are
smaller than Tt.

4.2. Degree of recency by data item (R..):
With this type, a transaction can choose to read a desired recent version on one or more
data items. For example, if a transaction specifies its R.. = 0.5 means that it wishes to
read at least 50% recent value of that specific data item z. This type of recency can be
defined a.s fo!IQWil·
I We often use very high., high and low in our examples and discussions. They refer to three hierarchically
ordered· security levels in S such that low < high < very high.

242 Part Five Concurrency Control

Definition 8 A transaction T; is given degree r recency by data item (R.,(T;) == r) if it
is given at least degree r recency with respect to spectrum Q(T.,) where T., == {Tj E T :
L(Ti) == L(x)}.

A transaction may even specify different degrees of recency on more than one data item.
For example, a transaction T; may specify its R.,(T;) == 0.5, .Rv(7i) == 0.3 and R,(T;) == 0.2.
In such a case, if all the data items are of the same level, then T; will be given 0.5 recency
for all the three data items. This is because 1i needs to wait for a specified amount of
time to read 50% recent value of x, and therefore, it can read a more recent versions of y
and z as well.

On the other hand, if x, y and z belong to different security levels, then all these levels
need to be considered to determine the timestamp of T;. The computation of T; will
be carried out in two stages. In the first stage, a temporary timestamp is computed
by examining each security level L(x),L(y) and L(z). In the second stage, the actual
timestamp of 1i is computed, which is the largest of all the three temporary timestamps
computed above. It is important to note that 0.5 recency at one level does not necessarily
mean more recent than 0.3 at another level. We elaborate it with an example.

Example 4 Consider a system with three hierarchical security levels - very high, high
and low. Suppose a transaction 1i at very high level wishes to read data items x and y
where L(x) =high and L(y) =low with the degree of recency as follows: R.,(T;) = 0.5
and .Rv(7i) = 0.3. Suppose there are 10 active transactions at high where ts(T5) = 58
and ts(T6) == 62. Similarly, assume that there are 100 active transactions at low where
ts(T30) == 85 and ts(T31) == 88. R.,(T;) may result in a temporary timestamp of T; = 60,
while .Rv(7i) = 0.3 result in a temporary timestamp ofT; = 87. As can clearly be seen,
.Rv(T;) == 0.3 selects more recent versions of data than R.,(T;) = 0.5, although R.,(T;) is
larger than .Rv(T;). Therefore, in order to satisfy both the recency specifications, ts(T;)
should lie between 85 and 88 rather than 58 and 62, as shown in figure 4. D

very high------+-----

high

low

ts(T 5)= 58 ts('l(; ~ 62
l

Figure 4. Computing ts(T;) in example 4

Notice that opting for R., is same as opting for R, if a transaction specifies a single item
or number of items from the same level. But it differs from R, if a transaction specifies
R., on number of items from different security levels.

4.3. Degree of recency in general (R9):

In this case, a transaction may specify its degree of recency in general, that is without
specifying either with respect to a level or with respect to a data item. It means that it
does not wish to wait for the completion of all the active transactions. Degree of recency
in general can be defined as follows:

Providing recency options to transactions in multilevel secure databases 243

Definition 9 A transaction T; is given degree r recency in general (Rg(T;) = r) if it
is given at least degree r recency with respect to spectrum Q(Tg) where Tg = {Tj E T :
L(Ti) < L(1i) }.

If a transaction specifies Rg = 0 and reads data from just one lower level, it may receive
a version much older than the version it receives by specifying its degree of recency either
as R, or R.,. However, if a transaction specifies Rg = 1, then it needs to wait only for
the completion of all active transactions at the level from which it has read, as opposed
to waiting for all the earlier active transactions at all lower levels.

4.4. Degree of recency by transaction (Rt):
A transaction specifies its degree of recency such that it can choose to execute after a
specified transaction. For example, suppose a transaction T1 computes the salaries of
every employee in an organization. This type of recency allows T1 to choose to execute
only after the completion of another transaction T2 that updates the number of hours
accumulated by each employee. This type of recency can be defined as follows.

Definition 10 A transaction T; is given degree of recency by transaction with respect to
a transaction Ti (Rt(T;) = T;) ifts(T;) > ts(Tj)·

To specify such a degree of recency, a transaction is required to have some semantic
knowledge of other transactions in the system. In other words, a transaction must have
the knowledge of the purpose of the transactions that it is interested in. Notice that while
the other three types of degrees of recency range between 0 and 1, there is no such range
involved with this type of recency. However, by specifying Rt(T;) = Tj, the degree of
recency of data read by T; depends on the degree of recency specified by Ti.

5. PROTOCOLS TO PROVIDE DIFFERENT DEGREES OF RECENCY

In this section, first we give protocols that determine the timestamp of a transaction
based on the type and degree of recency specified by the transaction. Then we propose a
single-level scheduler that provides concurrency control.

Algorithm 5.1 [Protocol to compute ts(T;), given R,(T;)]

1. There is a separate timestamp generator for each security level.

2. The timestamp generator at level L(T;) computes ts(T;) as follows:

(a) Counts the total number of active transactions at levels. Let this value beN,.
(b) Forms a sequence P of these transactions by sorting them in the ascending order

of their timestamps. Assigns a sequence number sn(Tj) to each transaction Tj
in the sequence as follows: sn(Tj) = number of transactions preceding Ti in
the sequence + 1.

(c) Finds transactions Tk and T1 from P such that sn(Tk) = f R, (T;) * N,l and
sn(TI) = sn(Tk) + 1.§

(d) Computes the timestamp ofT; as follows: ts(T;) > ts(Tk), ts(T;) 'S ts(1!) and
ts(7i) # ts(Tm) where Tm is any transaction at level L(T;).

lit may not always be possible to find both Tk and 71 when R,(T;) is either 0 or 1. In such a case, some
of the conditions in step d have to be ignored.

244 Pan Five Concurrency Control

It is always possible to find a timestamp that satisfies all the conditions in step 2 (d) of
the above algorithm since timestamps assigned to transactions that belong to the same
level are unique. Therefore, it is always possible to find a timestamp that lies between two
timestamps. The following example clearly explains the process of assigning timestamps.

Example 5 Suppose a transaction T; specifies its R,(T;) = 0.6. The timestamp generator
at level L(T.) first computes N., the total number of all active transactions at level s,
and arranges them in the order of their timestamps. Let N, be 101. Then it assigns a
sequence number to each of these 101 transactions. Let this sequence of transactions be:
T1 , T2 ... T101. Then the timestamp generator at L(T.) computes the timestamp of T; as
follows: First it computes fR,(T;) * N,l = f0.6 *lOll = 61. Then ts(T;) is selected such
that ts(T61) < ts(T;) :=:; ts(T62). Suppose ts(T6!) = 893 and ts(T62) = 897. Then, ts(T;)
may be assigned as 895. D

Algorithm 5.2 (Protocol to compute ts(T;), given R.:, (7i), R.,2 (7i) ... R.:n (T;)]
1. There is a separate timestamp generator for each security level.

2. The timestamp generator at level L(T;) computes ts(T.) as follows:

(a) Groups x1 , x 2 ••• Xn according to their security levels. Let these groups be
GI,G2···Gm.11

(b) F~r each group G; the timestamjl generator performs the following steps.
1. Computes Rai(T;) = max{.R.,,(T;): x,. E G;}.

ii. Assigns s; = L(x,.) such that x,. E G;.
iii. Counts the total number of active transactions at level s;. Let this value

beN;.
iv. Forms a sequence P; by sorting all the active transactions at level s; in

the ascending order of their timestamps.
v. Assigns a sequence number sn(Tm) to each transaction Tm in P; as follows:

sn(Tm) =number of transactions preceding Tm in the sequence+ 1.

VI. Finds transactions T,.j and nj from pi such that sn(T,.J = r Raj (1i) *Nil
and sn(1ii) = sn(T,.J + 1.

vii. Computes a temporary timestamp ts;(T;) as follows: ts;(T;) > ts(T,.J,
ts;(T;) :=:; ts(1i).

(c) The timestamp ge:rierator computes ts(T;) = max{ts;(T;), where j = 1, ... m}
and ts(T;) # ts(T,) where T1 is any transaction at level L(T;).

Algorithm 5.3 (Protocol to compute ts(T;), given R9 (T;)]

1. There is a separate timestamp generator for each security level.

2. The timestamp generator at level L(T;) computes ts(T;) as follows:

(a) Counts the total number of active transactions from all levels lower than L(T;).
Let this value be N.

(b) Forms a sequence P of these transactions by sorting them in the ascending order
of their timestamps. Assigns a sequence number sn(T;) to each transaction Ti
in the sequence as follows: sn(T;) = number of transactions preceding T; in
the sequence + 1.

fNote that m = n if x1, x2 ••• Xn belong to different security levels. Otherwise m < n.

Providing recency options to transactions in multilevel secure databases 245

(c) Finds transactions Tk and T1 from P such that sn(Tk) = IR9 (Ti) * Nl and
sn(Tz) = sn(Tk) + 1.

(d) Computes the timestamp of Ti as follows: ts(Ti) > ts(Tk), ts(Ti) :::; ts(Tt) and
ts(Ji) "/= ts(Tm) where Tm is any transaction at level L(Ti).

Algorithm 5.4 [Protocol to compute ts(Tt), given Rtm) = Tk]
1. There is a separate timestamp generator for each security level.
2. The timestamp generator at L(Ti) computes ts(Ti) as follows: ts(Ti) > ts(Tk) and

ts(Ti) "/= ts(Tj) where Tj is any transaction at level L(Ti)·

Having assigned the timestamps to transactions by using one of the above four protocols
based on the desired type and degree of recency, the following algorithm can be used for
providing concurrency control. Notice that the protocols to compute timestamps are
developed based on property 1 stated in section 3.

Algorithm 5.5 (The Scheduler]

1. Each transaction is given a timestamp as soon as it arrives using one of the four
protocols depending on the type of recency specified by the transaction.

2. Each data item x of version j has a read timestamp rts(xi) and a write timestamp
wts(xi) associated with it. We assume there is an initial transaction T0 that writes
into the database, such that rts(x0) = wts(x0) = ts(T0).

3. When a transaction Ti wants to read a data item x, and if L(x) < L(Ti), then it
selects a version Xk with the largest wts(xk) such that, wts(xk) < ts(Ti)· However,
Ti cannot commit until all active transactions whose timestamps are smaller than
that of Ti finish their execution. If there is a Wj[xj] such that ts(Tj) < ts(Ti), then
Ti is reexecuted starting from ri[xil·

4. When a transaction Ti wants to read a data item x such that L(Ti) = L(x), then the
scheduler selects a version Xk with the largest wts(xk) such that wts(xk) < ts(Ti),
processes ri[xk] and modifies rts(xk) as rts(xk) = max{ts(Ti), rts(xk)}.

5. When Ti wants to write a data item x, the scheduler selects Xk as above. It rejects
Wi[xi] if rts(xk) > ts(Ti); otherwise it processes wi[xi] and modifies the timestamps
of the new version Xi as rts(xi) = wts(xi) = ts(Ti)·

5.1. Proof of correctness
Theorem 3 Any schedule produced by the above algorithm is one-copy serializable. 0

We prove this theorem using the following three lemmas. In the following proofs, we
will use the following version order: Xi~ Xj iff wts(xi) < wts(xi)·

Lemma 4 If there is an edge Ti ---> Tj in MVSG(H) such that L(Ti) < L(Tj), then
ts(Ti) < ts(Ti)·

Proof: The proof is similar to the proof of lemma 1. 0

Lemma 5 If there is an edge Ti ---> Tj in MVSG(H) such that L(Ti) = L(Tj), then
ts(Tt) < ts(Ti)·
Proof: The proof is similar to the proof of lemma 2. 0

246 Part Five Concurrency Control

Lemma 6 If there is an edge T; --+ T; in MVSG(H) such that L(T;) > L(T;), then
ts(T;) ~ ts(T;).
Proof: Let L(T;) = s. If there is an edge T;--+ T; in MVSG(H) such that L(T;) > L(T;),
then this edge implies that there must exist a data item :z: such that L(:z:) = s and
r;[:z:n], w;[:z:;] E H with :Z:n ~. :z:;. Now, the following two cases must be considered.
Case 1: Suppose ts(T;) ~ ts(T;). This does not require any proof.
Case 2: Suppose ts(T;) > ts(T;). In such a case, from step 2 of the above algorithm, T;
has to be reexecuted. Therefore, T; reads a version :Z:n of :z: such that either :Z:n = :z:; or
:Z:n ~. :z:;. In either case, there cannot be an edge T; --+ T; (in the former case this edge
would be a reads-from edge T;--+ T;.). 0

Proof of Theorem 3: The proof is similar to the proof of theorem 2. 0

6. CONCLUSION

There are two multiversion concurrency control protocols that meet all the multilevel
security requirements. The first solution, proposed by Keefe and Tsai [KT90] places
transactions behind all active transactions at levels lower than its level and, as a result,
transactions receive much older versions of data. The second solution, proposed by J ajodia
and Atluri [JA92] gives high transactions the most recent version of data; however, it
makes a high transaction that reads from a lower level wait for its commit until the
completion of all earlier active transactions at that lower level. Since both solutions
are not entirely satisfactory, we have proposed in this paper an approach in which each
transaction can receive data having the degree of recency it desires. We have introduced
four types of degrees of recency and have presented protocols for each type. As part of our
future work, we plan to implement the proposed protocols and study the improvement in
performance and recency of data with respect to schedulers J and K, respectively.

ACKNOWLEDGMENTS

The work of S. Jajodia was partially supported by National Science Foundation grants
IRl-9303416 and INT-9412507 and by National Security Agency contract MDA904-94-C-
6118.

REFERENCES

[AJ92] Paul Ammann and Sushil Jajodia. A timestamp ordering algorithm for secure,
single-version, multi-level databases. In C. E. Landwehr and S.Jajodia, editors,
Database Security, II: Status and Prospects, pages 23-5. North Holland, 1992.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, Reading, MA,
1987.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Read­
ing, MA., 1982.

[JA92] Sushil Jajodia and Vijayalakshmi Atluri. Alternative correctness criteria for
concurrent execution of transactions in multilevel secure databases. In Proc.
IEEE Symposium on Security and Privacy, pages 216-24, Oakland, California,
May 1992.

Providing recency options to transactions in multilevel secure databases 247

[JK90] Sushil Jajodia and Boris Kogan. Transaction processing in multilevel-secure
databases using replicated architecture. In Proc. IEEE Symposium on Security
and Privacy, pages 360-8, Oakland, California, May 1990.

[KT90] T. F. Keefe and W. T. Tsai. Multiversion concurrency control for multilevel
secure database systems. In Proc. IEEE Symposium on Security and Privacy,
pages 369-83, Oakland, California, May 1990.

[MG90] William T. Maimone and Ira B. Greenberg. Single-levelmultiversion schedulers
for multilevel secure database systems. In Proc. 6th Annual Computer Security
Applications Conf, pages 137-47, Tucson, Arizona, December 1990.

[P+93] Calton Pu et al. Distributed divergence control for epsilon serializability. In
Proc. IEEE International Conf on Distributed Computing Systems, pages 449-
56, 1993.

Vijayalakshmi Atluri is an Assistant Professor of Computer Information Systems in the
MS/CIS Department at Rutgers University. She received her B.Tech. in Electronics and
Communications Engineering from Jawaharlal Nehru Technological University, Kakinada,
India, in 1977, M.Tech. in Electronics and Communications Engineering from Indian In­
stitute of Technology, Kharagpur, India, in 1979, and Ph.D. in Information Technology
from George Mason University, USA, in 1994. Her research interests include Information
Systems Security, Database Management Systems, and Distributed Systems.

Elisa Bertino is professor of computer science at the Department of Computer Science of
the University of Milan where she heads the Database Systems Group. She has also been
professor in the University of Genova, Italy. Until1990, she was a researcher for the Italian
National Research Council in Pisa, Italy. She has been a visiting researcher at the IBM
Research Laboratory (now Almaden) in San Jose, at the Microelectronics and Computer
Technology Corporation in Austin, Texas, at George Mason University. Her research
interests include object-oriented databases, deductive databases, multimedia databases,
database security. Prof. Bertino is a co-author of the book "Object-Oriented Database
Systems- Concepts and Architectures" 1993 (Addison-Wesley). She is currently s.erving
as program chair of the 1996 European Symposium on Research in Computer Security
(ESORICS'96). She is on the editorial board of the IEEE Transactions on Knowledge
and Data Engineering, and the International Journal of Theory and Practice of Object
Systems.

Sushil J ajodia is Professor of Information and Software Systems Engineering and Direc­
tor of Center for Secure Information Systems at the George Mason University. His research
interests include information security, temporal databases, and replicated databases. He
has published more than 125 technical papers in the refereed journals and conference pro­
ceedings and has edited or coedited nine books, including Information Security: An Inte­
grated Collection of Essays, IEEE Computer Soc. Press (1995), Multimedia Database Sys­
tems: Issues and Research Directions, Springer-Verlag (1995), and Temporal Databases:
Theory, Design, and Implementation, Benjamin/Cummings (1993). He is a coauthor of
the forthcoming book Principles of Database Security, Benjamin/Cummings.

