
12
A Locking Protocol for MLS Databases

Providing Support For Long Transactions
Shankar PaP (pal@cse.psu.edu)

Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802.

ABSTRACT

This paper presents a locking protocol for multilevel secure databases which produces sched­
ules that are 1-copy serializable and satisfy the MLS property. It executes read downs on
an old database snapshot; transactions accessing objects at their own level manipulate the
most recently committed database, and are synchronized using weak and strong locks, some­
what like strict 2PL. At regular intervals, known as the version period, the old snapshot is
upgraded to the most recently committed database version.

The protocol supports long read-only transactions that perform their read downs during
a single version period but continue to execute same-level reads thereafter. The protocol
also supports long update transactions that perform a batch of read downs close to their
commit point, and commit during the same version period.

1 Introduction

A long transaction accesses a large number of objects in the database and executes for a long
period of time [9]. These transactions contain predominantly read operations, and many of
them are off-line. Examples of such transactions are generating monthly account statements
at a bank, browsing through a large file, and processing purchase orders [16].

The long duration of these transactions causes severe performance bottlenecks. This is
all the more serious in multilevel secure databases, as the prevention of signaling channels
limits the size of the transactions that can successfully complete.

Many concurrency control protocols have been proposed in the literature for multilevel
secure databases. These protocols use a variety of techniques and ensure read consistency
or one-copy serializability [5]. They are secure in the sense of the MLS property [7, 10].

Orange locking [1:3] and optimistic protocol [6] abort a transaction T which reads down
an object (i.e., reads a value at a strictly dominated level) that is subsequently overwritten
before T's completion. Although this strategy avoids signaling channels, the cost is the
possible starvation and the greater likelihood of aborting high level readers. Furthermore,
orange locking restricts all read downs to be executed at the beginning of a transaction.
Thus, these protocols allow a transaction to execute a few read downs within a very short
period of time.

Two single version timestamp ordering (TO) protocols have been proposed in [2], which
delay read downs or transaction commits by an arbitrary amount of time to synchronize
with low level writers. Such delays may cause later operations from high level transactions
to become tardy.

1 Current address: Microsoft Corp., One Microsoft Way, Redmond, WA 98052.

D. L. Spooner et al. (eds.), Database Security IX
© IFIP International Federation for Information Processing 1996

184 Part Five Concurrency Control

Multiversion TO based methods [11, 12] avoid high-reader-low-writer conflicts by exe­
cuting read downs on old versions of objects. Multiple versions have the overhead of extra
storage space and the extra cost of accessing the old versions.

In [1], a timestamp-oriented protocol has been proposed that uses two snapshots of the
database which are used by read downs. In addition, a working database is manipulated by
committed updates and same-level reads (i.e., read operations from transactions at the same
level as the accessed objects). In this protocol, transactions that read down must commit
within a deadline which grows exponentially shorter at higher security levels.

The above-mentioned protocols are not particularly suitable for the execution of long
transactions. For example, suppose a long transaction T needs to read an object x at a
strictly dominated level. Using a single-version TO based protocol, if xis updated frequently
during T's lifetime, then T's access to x may be tardy in every execution of T; as a result,
T may never be able to commit. The multiversion TO based methods potentially require an
unbounded number of versions in the presence of long transactions, which is infeasible.

In this paper, we propose a locking protocol for multilevel secure databases which requires
an old snapshot and the most recently committed version of the database. Implementation of
locking protocols is well understood and efficient for nonsecure databases; we expect similar
convenience and efficiency in secure databases. Having a limited number of versions requires
less storage and less access time, and is desirable.

Read downs are executed on the old snapshot, while transactions manipulating objects
at their own level execute on the most recently committed version and are synchronized
somewhat like strict 2PL [5] but using weak and strong locks. (We choose strict 2PL for the
convenience of our presentation, although we can very easily incorporate more sophisticated
algorithms, e.g., altruistic locking [16].) At regular intervals, known as the version per·iod,
the snapshot is upgraded to the most recently committed version, so that read downs can
observe the updates accumulated during the previous version period.

The protocol allows long read-only transactions to commit whenever their read downs are
executed during a single version period; the transactions may have any number of same-level
reads before and after the version period of their read downs. The protocol also supports
the execution of long update transactions that have a group of read downs just before their
commit point, or none at all.

In [:3], the authors have proposed an extension of their two-snapshot algorithm to support
the execution oflong read-only transactions. A long transaction Treads older snapshots even
at its own level; this sets a deadline by which T must complete, failing which T is aborted.
Furthermore, they assume that data accesses are executed within a kernel, although they do
not provide any details of how the implementation could be done. By contrast, the protocol
proposed in this paper allows a long read-only transaction to continue reading values from
its own level, under certain conditions, for as long as it needs to; this paper also presents an
untrusted snapshot maintenance scheme, based on which the concurrency control protocol
is designed. What we present in this paper are "core" ideas that can be easily extended to
algorithms utilizing multiple snapshots or variable snapshot lifetimes.

The locking protocol presented in this paper is an extension of the one proposed in [14].
The protocol in [14] requires a transaction T to complete all its reads, following its first
read down, within the same version period as T's first read down. In this paper, we discuss
techniques to overcome this limitation: the same-level reads can occur in arbitrarily later

A locking protocol for MLS databases 185

version periods as long as all ofT's read downs are performed during a single version period.
This improvement benefits read-only transactions in particular, especially the long ones.

The proposed protocol can be implemented using an untrusted scheduler at each security
level. Transactions are assumed to predeclare their read sets at their own level (i.e., the
collection of objects they intend to read at their own level). The schedules produced are
one-copy serializable and strict, and satisfy the MLS property.

The rest of the paper is organized as follows. In Section 2, we introduce the theoretical
background and our terminology. In Section 3, we provide the motivation behind the design
of the proposed locking protocol. In Section 4, we present our locking protocol, describe its
features, and explain a snapshot maintenance scheme. We present the proof of serializability
and an informal proof of the MLS property in Section 5. We then conclude the paper with
a discussion in Section 6.

2 Basic Concepts

2.1 Multiversion Serializability

We introduce some concepts of multiversion serializability as discussed in [5]. We consider
only read and write operations on the objects in the database. A read operation from
transaction Tk on a version X; of an object x is denoted as r·k[x;], while a write operation
from Tk that creates the version Xk is denoted as wk[xk]·

Let S be any multiversion schedule. The committed projection of S, denoted C(S), is
the subsequence of operations in S from committed transactions. A transaction T; is said to
precede another transaction Tj in S if all operations of T; occur before the first operation of
Tj in S. If T; precedes Tj in S, then they do not execute concurrently in S.

A multi version schedule S is said to be serial if for every pair of transactions T; and Tj
inS', either T; precedes Tj, or vice versa. A serial multiversion scheduleS' is one-copy serial
if for every object x and for every transaction T; that reads x, either T; reads x from itself,
or T; reads x from the last transaction preceding T; in S which wrote into any version of x.
A multiversion schedule S is said to be one-copy scrializable if there exists a one--copy serial
schedule which is equivalent to (i.e., contains the same operations as) C(S).

We define a version orderfor a multi version scheduleS and each object x as a total order
on the committed versions of x. The initial version of each object is denoted with subscript
zero. We choose a particular version order in which version x; precedes version Xj, denoted
as x; -< Xj, if both T; and Tj are committed inS and x; is created before Xj. A version order
for· Sis the union of the version orders for S corresponding to all the objects.

A multiversion serialization graph MVSG(S, -<)corresponding to a multiversion schedule
S and the version order -<for S has a node for each committed transaction in S, and two
types of edges inserted as follows:

• A conflict edge exists in MVSG(S, -<) from transaction T; to Tj if C(S) contains the
operations w;[x;] and rj[x;], in that order, for some object x.

• If C(S) contains operations rk[xj] and w;[x;], where i, j and k are distinct and x is
some object, then a version order edge exists in MVSG(S, -<)from T; to Tj if x; -< Xj,
otherwise a version order edge from Tk toT; occurs in MVSG(S, -<).

186 Part Five Concurrency Control

Whether or not a multiversion schedule S is one-copy serializable can be determined by
inspecting MVSG(S, -<). This is stated in the following theorem found in [5].

Theorem 2.1: [Bernstein et a!.] A multi version schedule S is one-copy serializable if
and only if MVSG(S, -<)is acyclic.

In the protocol proposed in this paper, transactions may become deadlocked. If a trans­
action is blocked for a timeout period, it is aborted. This method of deadlock detection,
although imprecise, has the advantage of simplicity and efficiency. For accurate deadlock
detection, we maintain a waits-for graph at each security level to record transaction block­
ing resulting from concurrency control. The waits-for graph (WFG) for a schedule S is a
digraph containing a node for each active transaction in S and edges inserted as follows: an
edge from Ti to Tj in the graph indicates that Ti is waiting for a lock to be released by Tj.
A cycle in WFG indicates the presence of a deadlock; periodically, the WFG is tested for
cycles, and cycles are broken by aborting transactions.

2.2 Deferred Update

In the deferred update recovery mechanism [8], each transaction T has an intentions list
where it records its update operations. Tis started with an empty intentions list.

The shared database contains only committed values. When T executes w[x], the update
is appended toT's intentions list, instead of applying it immediately to the shared database.
If T executes r·[x] and x has been updated by T, then x's value is returned from T's intentions
list. Otherwise, the value of x is obtained directly from the shared database.

When T commits, its intentions list is replayed on the shared database. If T aborts
instead, then T's intentions list is simply discarded.

2.3 Security Model

We consider a security model containing n security levels L1, L2, ... , Ln forming a lattice,
in which the strictly dominates relation defines the partial order "<". A transaction belongs
to a single security class which is that of the subject issuing it. The objects in the database
are at the sensitivity levels L1, L2, ... , Ln. The security level of a transaction Tis denoted
by level(T). Similarly, the sensitivity level of an object xis denoted by level(x). Accesses to
objects are controlled by the mandatory security policies expressed as follows [4]:

• Simple Security Property: A transaction T at level Li is allowed to read the value of
an object x at level Lj if and only if Lj ::; L;.

• (Restricted) Star Property: A transaction T at level Li is allowed to write into an
object x at level Lj if and only if Lj = Li.

The theory of noninterference [7] can be used to analyze and reveal covert channels in a
deterministic system. A subject 5 1 is said to be noninterfering with another subject 5 2 if
the execution of 5 2 does not depend upon that of 5 1 . The MLS property [7] states that if
subject 51 is at a higher security level than subject 52, then 51 does not interfere with the

A locking protocol for MLS databases 187

execution of S 2 • Therefore, a concurrency control protocol satisfies the MLS property if in
every execution allowed by the protocol, S 2 executes the same way as when all events of S 1

are removed from the execution.

3 Motivation of the Protocol

In this section, we motivate the design of the proposed locking protocol. We assume the
following. The database consists of an old snapshot, on which read downs are executed,
and the most recently committed version, which is manipulated by committed updates and
same-level reads. The latter version accumulates all updates during a version period.

The version period is advanced at regular intervals to make recent updates available to
the strictly dominating levels. At the beginning of a new version period, the most recently
committed database is copied into the old snapshot.

Each security level has a scheduler that implements a locking based concurrency control
protocol; the scheduler is aware of the concurrency control only at its own level.

3.1 Read Downs

In such systems, all read downs from a transaction must complete in a single version period
[1, 14], as the next example shows.

Example 3.1: Consider a database containing two objects, x andy, both at the sensitivity
level £1 . These objects are accessed by transactions T1 and T2 at security levels £ 1 and £2

respectively, where £1 < £22 . Furthermore, T2 reads both x and y while T1 updates them
both. Consider the schedule 8 1 below (we do not show commit operations in schedules for
convenience).

T1 : w![x] w![y] c1
T2 : r2[x] r2[y] c2
81 7'2[xo] w![x1] Wt[Yt]ll r2[Yt]

In S'1 , T2 reads x 0 from the old snapshot during the initial version period. In the same
version period, T1 updates the most recently committed versions of x and y, and commits.
The updated values become available to the strictly dominating levels during the next version
period. After the version period advance (denoted by the double vertical bars "II" in S'!), T2

reads down the value y1 and commits.
The schedule S'1 is not one-copy serializable since MVSG(S~, --<)contains a cycle. There

is a version order edge from T2 to T1 on x and a conflict edge from T1 to T2 on y. D

In the schedule 81 , the Lrlevel scheduler is unaware of the conflict and version order
dependencies due to data access at lower security levels. Although the scheduler at each level
guarantees the serializability of the local schedule, the overall schedule is nonserializable.

2 Although we assume a linear lattice in the examples, the protocol proposed in this paper holds for a
general lattice.

188 Part Five Concurrency Control

Nonserializable executions of the type S1 can be prevented by ensuring that all read
downs of a transaction are performed during a single version period, so that read downs
execute on the same database snapshot. In this example, transaction T2 should be restricted
to reading either the initial snapshot or the snapshot in the new version period, but not
both.

3.2 Same-Level Reads Following Read Down

The same-level reads of a transaction T, following T's first read down, should also complete
in the same version period as T's first read down [14]. However, we can eliminate this
restriction as discussed below, giving a transaction a larger window for the execution of its
same-level reads.

Example 3.2: Two objects, x and z, are at sensitivity levels L1 and L2 respectively, where
L1 < Lz. These objects are manipulated by four transactions, T1, Tz, T., and T4. Tz and T4
are at the security level L2 , T1 is at level £1 , while T.1 is at level L3 , where L1 < L2 < L3 .

Consider the schedule Sz shown below.

T1: w1[x]c1
Tz : rz[x] rz[z] Cz

T:l : r·3[x] r3[z] c3
T4: w4[z] c4
Sz : r·z[xo] wi[xi]II r3[x1]r·3[zo] w4[z4] rz[z4]

In the first version period, T2 reads the value x 0 from the old snapshot, while T1 updates
the most recently committed version of x and commits. After the version period advance
(indicated by the double vertical bars "II"), the old snapshot contains {x1, zo}. T3 (at level
L3) then reads down x 1 and z0 , and commits. T4 (at level L2) now updates z and commits.
Thereafter, Tz reads the value z4 and commits.

Schedule 5'2 is not one-copy serializable since MVSG(S'2 , -<) contains a cycle. There is
a version order edge from T2 to T1 on x, a conflict edge from T1 to T3 on x, a version order
edge from T3 to T4 on z, and a conflict edge from T4 to T2 on z. D

Schedule 5'2 is a very troublesome case. The £ 2-level scheduler is unaware of the conflict
and version order edges due to the highest level transaction T3 • Furthermore, it finds T4 's
update innocuous, since w4 [z] comes in before T2 has submitted its request r·2[z]. When
T4 commits, its effect becomes immediately visible to T2 . The Lrlevel scheduler cannot
recognize T/s conflict with T4 on z.

Schedules of type 5'2 must be prevented before a transaction can be allowed to perform
same-level reads in a later version period than its read downs. The proposed protocol
uses weak and strong locks to detect the conflict between T4 and T2 ; it blocks T4 until T2

completes.
Long read--only transactions in particular benefit from executing same-level reads in

arbitrarily later version periods than their read downs. To derive the maximum benefit, a
read-only transaction should execute all its read downs in a batch during a single version
period (batched read downs). Then the read-only transaction can have a large number of
same-level reads both befor<e and after its hatched read downs, and still complet<e successfully.

A locking protocol for MLS databases 189

3.3 Commit of Update Transactions

At the beginning of a new version period, the most recently committed database should be
copied into the old snapshot. Even when this copying can be done atomically and instantly,
there are certain serialization problems, as the example below illustrates [1, 14].

Example 3.3: Consider a database containing two objects, x and z, at sensitivity levels L1

and £2 respectively, where £1 < £2. Three transactions, T1 , T2 and T3 execute in the system
yielding the schedule S3 shown below. T1 , Tz and T3 are at security levels £1, Lz and La
respectively, where L1 < Lz < L3.

T1 : w1[x] c1

T2 : 1'z[x] wz[z] Cz
T.1 : r3[z] r3[x] Cz
83 : wi[x1] rz[xo]ll r3[zo] r3[x1] Wz[z2]

T1 updates the most recently committed version of x and commits. During the same version
period, T2 reads down the value xo from the old snapshot. Thereafter, a version period
advance takes place (indicated by the double vertical bars "II" in S3), and the old snapshot
for the new version period becomes {x1 , z0 }. In the new version period, T3 reads both z and
x from the old snapshot and commits. Finally, T2 updates z and commits.

There is a version order edge from T2 to T1 on x, a conflict edge from T1 to T3 on x,
and a version order edge from T3 to T2 on z. Thus, MVSG(S3, -<) contains a cycle, and the
schedule S3 is not one-copy serializable. 0

The problem with schedule S3 is that T2 reads an earlier snapshot than T3 but creates a
later version of an object than the one that T3 reads. This sets up conflict and version order
dependencies that the L2-level scheduler is unable to detect.

Such nonserializable executions can be avoided by restricting an update transaction to
commit during the same version period as its first read down. However, if a transaction does
not read any lower level data, then there is no restriction on its commit.

Our assumption - that all updates of a transaction T are installed in the database
instantly - is impossible to realize. During T's commit, especially near the beginning of
the next version period, there may be a version period advance when some but not all of
T's updates have been installed in the most recently committed database. A transaction at
a strictly dominating level may observe the partial effects ofT in the new version period, as
the following example shows, with the result that the schedule may not be 1-copy serializable
[14].

Example 3.4: Consider two objects, x and y, both at sensitivity level £ 1 , and the schedule
84 shown below. Transactions T1 and Tz are at security levels L1 and L2 respectively, where
L1 < £ 2 . Transaction T1 updates both x andy, while T2 reads them both.

T1 : wi[x] wi[y] c1

T2 : r·z[Y] r2[x] Cz
84: wi[xi]II r2[Yo] wi[yi] r2[x1]

190 Part Five Concurrency Control

During the commit of T1 , there is a version period advance (denoted by the double vertical
bars "II" in S4) after installing w1 [x1] but before installing wl[y1] in the most recently com­
mitted database; the database snapshot for the new version period therefore becomes { x1,

y0 }. Both the read downs from T2 execute on this snapshot in the new version period.
In MVSG(S4,-<), there is a conflict edge from T1 to T2 on x, and a version order edge

from T2 to T1 on y. Owing to this cycle, the schedule S4 is not 1-copy serializable. o

Clearly, the problem illustrated in 5'4 can be avoided if T1 's updates are all installed
in the database during the same version period. In that case, T2 would observe either the
initial values x0 and Yo, or all the updates made by T1 , but not the partial effects of T1.
This principle can be encapsulated as an atomic commitment protocol which ensures that a
transaction commit is performed atomically despite version period advances.

The atomic commitment protocol must guarantee that when the commit of a transac­
tion T crosses a version period boundary, the objects updated by T are unavailable to the
strictly dominating levels for the duration of the commit. The details of one such protocol
is presented as part of the locking protocol in Section 4.

4 The Two-Version Locking Protocol

4.1 Data Structures

A version period number generator maintains a counter VN which is initialized to zero to
reflect the initial version period. To indicate a version period advance, the generator incre­
ments the value of VN, so that successive version period numbers are 0, 1, 2, 3,

The scheduler at level Li is assumed to be untrusted and is denoted as Sch(i), 1 :::; i:::; n.
The data structures maintained by Sch(i) are also indicated with the same index. Thus, the
waits-for graph at level Li is written as WFG(i), 1 :::; i :::; n.

Sch(i), 1 :::; i :::; n, is allowed to read the existing value of VN but cannot update VN.
Therefore, accesses to VN obey the simple security and the restricted star properties, with
the version period number generator at the minimum level in the security lattice.

4.2 Versioning

We maintain two committed versions of each object in the database. A version directory
contains an entry for each object x; this entry consists of two records, ECV(x) ("earlier
committed version") and MRCV(x) ("most recently committed version"). Each of these
records contains a pointer field and a version period number field. The directory entries may
be stored in a single table or may be partitioned among the various security levels.

The pointer field within MRCV(x), denoted by MRCV(x).ptr, points to the latest com­
mitted version of x in the database. The pointer field within ECV(x), written ECV(x).ptr,
points to an earlier committed version of x, which ideally belongs to the old snapshot appro­
priate for the existing version period. The respective version period number fields, indicated
by MRCV(x).vn and ECV(x).vn, are described below.

A locking protocol for MLS databases

Request

Weak Lock
Strong Read
Strong Write

II Weak Lock I Strong Read I Strong Write
y y y
y y N
C N N

191

Figure 1: The compatibility matrix for weak and strong locks. "Y" indicates compatibility;
"N," incompatibility. The condition "C" is- incompatible ifthe weak lock holder has read
down during an earlier version period, otherwise compatible.

4.3 Version Period Numbers in Directory Entries

When a version period advance takes place, it is imprudent to copy the entire most recently
committed database into the earlier committed version. Lazy update of the earlier committed
version of each object x is clearly more efficient.

The earlier committed version of x should be updated when the most recently committed
version of x is about to be overwritten for the first time in a new version period. At other
times, ECV(x).ptr may lag behind the snapshot of x appropriate for the new version period.

To indicate when ECV(x).ptr should be updated, the version period numbers in the
directory entry for x bear a certain relationship with VN. The field MRCV(x).vn contains the
value VN + 1 (i.e., one greater than the value of the counter maintained by the version period
number generator) whenever ECV(x).ptr points to the old snapshot of x appropriate for the
version period VN. If MRCV(x).vn is less than or equal to VN at the time of overwriting
the most recently committed version of x, then the value being overwritten is copied into
the earlier committed version of x by saving MRCV(x).ptr in ECV(x).ptr, storing VN in
ECV(x).vn, and updating MRCV(x).vn to ECV(x).vn+l.

Similarly, the field ECV(x).vn contains the value VN whenever ECV(x).ptr points to
the old snapshot of x appropriate for the version period VN. Otherwise, ECV(x).vn has a
smaller value than VN. Thus, for a read down on x, whenever ECV(x).vn is equal to VN, the
earlier committed version of x should be retrieved; otherwise, the most recently committed
version of x belongs to the old snapshot for the version period VN, and should be retrieved.

In this scheme, a read down retrieves the values of ECV(x).vn and either ECV(x).ptr
or MRCV(x).ptr, while a transaction commit updates them. This high reader-low writer
synchronization can be easily achieved using eventcounts and sequencers [15].

4.4 Weak and Strong Locks

Each object in the database supports two types of locks, weak and strong. Strong locks allow
two lock modes, read and write. The lock compatibility matrix is shown in Figure 1.

When a transaction T starts, it acquires a weak lock on each object x at level(T) it
intends to read; no locks are acquired at the lower security levels at any time. This does
not preclude other transactions from obtaining weak or strong locks on those objects: weak
locks are merely used to specify T's intention to read the objects sometime in the future.

When T reads x, its weak lock is converted to a strong read lock provided there is no

192 Part Five Concurrency Control

• To schedule r[x] from transaction T,
where level(T) = level(x) = L;:
WL=strong write lock holders on x besides T

If (WL is empty)
Convert T's weak lock on x to strong read lock;
If (T has updated x)

Return x's value from T's intentions list;
Else

Return *MRCV(x).ptr;
Else I* block the transaction *I

Insert waits-for edge in WFG(i) from T to
every transaction in WL;

• To schedule w[x] from transaction T,
where level(T) = level(x) = L;:
RDL = transactions other than T that hold a
weak lock on x and have read down during an
earlier version period than VN
RWL=strong lock holders on x other than T

If (RDL u RWL is empty)
Insert strong write lock on x for T;
Append w[x] toT's intentions list;

Else I* block the transaction *I
Insert waits-for edge in WFG(i) from T to
every transaction in RDL U RWL;

• To schedule r[x] from transaction T,
where level(T) = L; > level(x), and
FVNr is the version period ofT's first
read down (FVNr = oo ifT has not read
down):

While (ECV(x).vn < VN and xis latched)
Skip;

If (ECV(x).vn < VN)
p = MRCV(x).ptr;

Else
p = ECV(x).ptr;

If (FVNr < VN)
Abort T;

Else {

}

FVNr = VN;
Return *Pi

• To abort a transaction T at level L;:

Discard T's intentions list;
Release locks held by T;
Garbage collect T and all incident edges
from WFG(i);
Schedule transactions blocked by T;

Figure 2: The locking protocol for each security level L;. All transactions at level Li submit
their operations to Sch(i). An explanation of the protocol is given in Section 4.

lock conflict at x according to the matrix of Figure 1. Otherwise, T is blocked until the lock
conversion is allowed.

Transaction Tis also blocked when it tries to acquire a strong write lock on x but another
transaction T' holds a strong lock on x, or T' holds a weak lock on x and has executed a read
down during an earlier version period. This avoids the serializability problem illustrated in
Example 3.2; T remains blocked until T' completes and releases its lock on x.

4.5 The Locking Protocol

The locking protocol for each level L; is presented in Figure 2, while an atomic commitment
protocol [14] is shown in Figure :3. An explanation of these protocols is given below.

Each transaction T is started with an empty intentions list and a weak lock on each
object x in T's read set at level(T). All L;-level transactions submit their concurrency
control requests to Sch(i). The read downs are performed on the old snapshot appropriate
for the version period of execution. The accesses to objects at level L; are synchronized

A locking protocol for MLS databases 193

somewhat like strict 2PL on the most recently committed version, but using weak and strong
locks; the recovery mechanism employed is deferred update. When a transaction commits,
its intentions list is replayed on the most recently committed database.

4.5.1 Data Access at Same Level

When a transaction T tries to read the value of an object x at its own level Li, Sch(i) checks
whether or not T's weak lock can be converted to a strong read lock on x. If a different
transaction T' holds a strong write lock on x, then T is blocked. Furthermore, a waits-for
edge is inserted in WFG(i) from T to every such T'.

If no transaction blocks T, then T's weak lock is converted to a strong read lock. The
value of xis retrieved from T's intentions list if T has updated x, otherwise the most recently
committed version of x is read.

If T tries to update x, Sch(i) blocks T under the following conditions: (a) another
transaction T' holds a strong read or write lock on x, or (b) T' holds a weak lock on x and
has read down during an earlier version period than VN (see also subsection 4.5.:3). In both
cases, a waits-for edge is inserted in WFG(i) from T to every transaction T' that blocks
T. Otherwise, Sch(i) grants T a strong write lock on x. Also, the w[x] operation ofT is
appended to T's intentions list. This update is installed in the most recently committed
version of x when T commits.

The code for w[x] is sensitive to the value of VN, which may change; this critical section
can be implemented in a straightforward way using eventcounts and sequencers [15].

4.5.2 Transaction Commit

When an update transaction T at level L; commits, its intentions list is replayed on the most
recently committed database using an atomic commitment protocol (Figure 3).

Let FVNr ("first version number ofT") be the version period ofT's first read down. For
each object x in the intentions list ofT, Sch(i) acquires a latch (i.e., a short duration lock)
on x for the duration of T's commit. If Sch(i) can successfully latch all the objects in T's
intentions list during FVNr, then T is allowed to commit. Sch(i) then visits each latched
object, installing T's update and unlatching the object. However, if not all the latches can
be acquired during FVNr, then Sch(i) releases the latches it acquired for T, aborts T, and
discards T's intentions list. In both cases, the locks held by T (on objects at its own security
level) are released, and the node forT, together with all incident edges, are reclaimed from
WFG(i). This enables the operations waiting for T's completion to be scheduled. Since at
most one transaction can update an object at a time, there is no contention for latches.

This scheme lets a transaction T commit if all its latches are acquired during the version
period of T's first read down; there is no need to actually install T's updates during FVNr.
A version period advance in between acquiring the latches and installing the updates requires
synchronization with read downs, and is explained in subsection 4.5.:3.

Before overwriting the most recently committed version of an object x, Sch(i) checks
whether MRCV(x).vn is less than or equal to VN. If this condition is true, then the version
being overwritten belongs to the old snapshot. Consequently, Sch(i) updates the earlier

194 Part Five Concurrency Control

To commit a transaction T at level L; by replaying T's intentions list (IL) on the most recently
committed database, FVNr being the version period number ofT's read downs (FVNr = oo if T
did not read down)

If (IL is not empty) {
For each object x E IL

If (MRCV(x).vn ::; VN) { I* Update earlier committed version of x if necessary *I
ECV(x).ptr = MRCV(x).ptr; ECV(x).vn = VN; MRCV(x).vn = ECV(x).vn + 1;

}
For each object x E IL

Latch x;
If (FVNr ?: VN)

For each object x E IL {
MRCV(x).ptr =pointer to version of x created by T; Unlatch x;

Else I* Commit cannot be permitted, so T must be aborted *I
For each object x E 11: Unlatch x;

} Discard T's intentions list;
Release locks held by T;
Garbage collect T and all incident edges from WFG(i);
Schedule transactions blocked by T;

Figure :3: Atomic commitment protocol for each security level L; used in the locking protocol.
All transactions at level L; are committed by Sch(i). An explanation is given in Section4.5.2.

committed version of x by copying MRCV(x).ptr into ECV(x).ptr, storing VN in ECV(x).vn,
and updating MRCV(x).vn to ECV(x).vn+l.

In spite of version period advances, when there are no updates of x, ECV(x) is not
updated. This contributes to the efficiency of the proposed version maintenance scheme.

4.5.3 Read Downs

A transaction T at level L; submits its read down requests to the scheduler at its own level.
Sch(i) should access the old snapshot appropriate for the current version period.

Suppose T requests read access to an object x at level Lj, where Lj < L;. Sch(i) checks
whether ECV(x).vn is equal to VN. If it is, then the earlier committed version of x is
retrieved. Otherwise, the most recently committed version of x belongs to the old snapshot
appropriate for the version period VN, and is retrieved. No lock is set on x for a read down.

If T has read down during an earlier version period, i.e., FVNr < VN, then Tis aborted,
as it has read down during two different version periods. Otherwise, FVNr is set to VN,
and the retrieved value of xis returned toT.

If Sch(j) is simultaneously installing a new value of x and there is a version period advance
while x is latched, then the read down should retrieve the value being installed by Sch(j).
Consequently, the read down spin locks until x is unlatched or a later update of x makes
ECV(x).ptr point to the snapshot version of x appropriate for the existing version period.

A locking protocol for MLS databases 195

This technique is effective since the spin lock lasts only for the duration of the commit.
The spin lock synchronizes read downs with transaction commits, but does not result

in the starvation of high transactions. Suppose a read down spin locks on the condition
(ECV(x).vn < VN and xis latched). When xis unlatched, the read down can proceed with
reading the object's value. However, another transaction may try to commit at x before the
read down can proceed any further. In that case, the atomic commitment protocol would
copy the most recently committed version of x into the earlier committed version, since there
has been a version period advance in the meantime. It would also store the current version
period number VN in ECV(x).vn, so that the spin lock is broken, and the read down can
execute.

4.5.4 Deadlocks

A transaction T at security level L; is blocked if (a) T cannot acquire a strong write lock
on an object x because another L; level transaction T' holds a weak lock on x and has read
down during an earlier version period, or (b) T has a strong lock conflict at an object at
level L;. In both cases, the blocking transaction is at the same security level as T. Thus,
WFG(i) contains nodes only for the active transactions at level L;, which may be deadlocked.
Periodically, Sch(i) checks WFG(i) for cycles, and breaks them by aborting transactions.

5 Proofs of Serializability and Security

5.1 Serializability

Theorem 5.1: All schedules produced by the locking protocol of Section 4 are one-copy
serializable.

Proof: We show by contradiction that for any schedule S produced by the locking protocol,
MVSG(S, --<) is acyclic.

If possible, let MVSG(S, --<) contain a cycle of the form T1 ---+ T2 ---+ T3 ---+ • · • ---+ Tn ---+

T1, where n 2: 2 and the symbol ---> stands for a conflict or a version order edge. The nodes
in MVSG(S, --<) correspond to the committed transactions in S.

A version order edge exists in MVSG(S, --<) from T; to Ti+l if (a) 1';[xk] and w;+J[x;+1]

occur in C(S) and Xk--< Xi+h or (b) w;[x;] and rk[xi+1] occur in C(S) since x;--< Xi+l·
If in addition level(T;) < level(T;H), then there is at least one version period advance

between w;[x;] and rk[x;H] in case (b) (case (a) is not allowed by our security model).
If level(T;) > level(T;+1), then 1';[xk] occurs in an earlier or the same version period as
w;+1[xi+I] in case (a) (case (b) is not permitted by our security model). However, if levei(T;)
= level(T;+1), both (a) and (b) are possible; moreover, Tis access to x must occur in an
earlier or the same version period as those by T;+1 in case (a) and by Tk in case (b).

A conflict edge is inserted in MVSG(S, --<) from T; to Ti+ 1 if w;[x;] is followed by a
same-level read or a read down ~'i+ 1 [x;] in C(S). In the former case, the read can occur in
the same or a later version period than the write, while in the latter case, the read down
certainly occurs in a later version period.

196 Part Five Concurrency Control

The edge-tin the cycle is consistent with the version order, i.e., the edge T; -t Tj, if' j,
is inserted in the cycle when T; manipulates an earlier or the same version of an object as
Tj. Without loss of generality, we assume that T1 -t T2 is the first edge inserted in the cycle
in the earliest version period.

If level(T;) = level(T;+1), 1 ::; i ::; n- 1, then none of T1 , T2 , T3, ... ,Tn read any values
from lower security levels. In this case, the scheduler actions at each level are just like strict
2PL. Therefore, the committed projection of the schedule at each level is conflict serializable,
and hence the overall schedule is one-copy serializable.

Now suppose that transactions do read down, so that not all the transactions in the cycle
are at the same security level. In the cycle T1 -t T2 -t T3 -t · · · -t Tn -t T1, for every
edge T; -t Ti+I such that level(T;) < level(T;+1), there is at least one version period advance.
Therefore, T1 is active during at least two version periods.

T1 -t T2 must be a version order edge with level(T1) > level(T2), since T1 is active in a
later version period. Thus, T1 executes a read down in the earliest version period.

If level(T!) < level(Tn), then T1 would have to update an object and commit in a later
version period than its first read down. This is prohibited by the proposed locking protocol.

If level(T1) = level(Tn) then either T1 would have to update an object and commit in a
later version period than its first read down, or Tn would have to acquire a strong write lock
on any object x in spite of T1 holding a weak lock on x and having read down during an
earlier version period. Neither of these cases are permitted by the proposed locking protocol.

Finally, if level(Tn) < level(T!), then T1 would have to perform read downs in different
version periods, which is not allowed by our concurrency control protocol.

Therefore, there cannot be an edge from Tn to T1 , and MVSG(S, co<) cannot contain a
cycle. Hence, the schedules produced by the locking protocol are one-copy serializable. D

5.2 Security

We informally argue that the proposed locking protocol satisfies the MLS property (7].
The lock table at level L;, the waits-for graph WFG(i), and FVNr for an L;-level trans­

action T are all internal to Sch(i), as they are used for synchronizing only the transactions
at level L;. Since these data structures are not shared by multiple levels, there cannot be
any covert channels resulting from accesses to them.

The version directory accesses in response to a read down or the commit of a transaction
are noninterfering. Consider an object x at sensitivity level L;. Sch(i) is allowed to read
and write MRCV(x), and write but not read ECV(x). Sch(k) at a strictly dominating level
is allowed to read ECV(x) and MRCV(x), but cannot update either of them. Furthermore,
Sch(i) can latch and unlatch x, while Sch(k) can only examine whether or not the latch is
set, but cannot latch or unlatch x.

For a same-level read, Sch(i) inspects MRCV(x) and sets a strong read lock on x. On
the other hand, for a read down on x issued from level Lk, Sch(k) inspects both ECV(x)
and MRCV(x) in the worst case. Neither of these operations update the version directory
entry for x, while the strong read lock is internal to Sch(i). Therefore, a read down and a
same-level read do not give rise to any covert channels.

Two concurrent read downs are noninterfering as well. The corresponding schedulers
access the same data, and neither update any fields or set latches.

A locking protocol for MLS databases 197

From the events discussed above, it follows that Sch{ i) is unaware of the events occurring
in the system owing to the activities at the dominating levels. Therefore, it executes the
same way regardless of the events occurring at the higher levels. Hence, the proposed locking
protocol satisfies the MLS property.

6 Discussion

The locking protocol proposed in this paper allows an update transaction T to commit as
long as T's commit occurs in the same version period as T's first read down. The resulting
execution is one--copy serializable and satisfies the MLS property. Thus, the protocol sup­
ports the execution of those long update transactions which perform a batch of read downs
close to their commit points, and commit during the same version period.

The restriction on a read-only transaction is that it must complete all its read downs
during a single version period. Provided a long read-only transaction satisfies this condition,
it can continue to read data from the its own security level for as long as it needs to, either
before or after the version period of its read downs.

The version maintenance scheme discussed in this paper requires between 1 and 2 times
the storage of the most recently committed version of the database. The actual factor
depends upon the workload: if uvdates are uniformly distributed across the database and
the update rate is high, then the factor is closer to 2; when updates are infrequent or restricted
to a small part of the database, the factor is closer to 1. During a read down, if the earlier
committed version of the accessed object is found to be out of date, then it can be garbage
collected, reducing the storage overhead for version maintenance. Of course, some care must
be exercised to ensure that garbage collection does not give rise to a signaling channel.

The version period is an important parameter which determines the window during which
a transaction can commit. A long version period gives the transactions a large window for
completing read downs and committing. On the other hand, a short version period gives
transactions a small window in which they can commit, but read downs retrieve more recent
values. The version period is therefore a tunable parameter that determines the number and
the type of long transactions that can commit in the system.

The length of the version period depends upon both the enterprise and the applications.
lf objects in the database are updated infrequently, the version period can be relatively large.
Furthermore, in the example of generating monthly bank statements, the old snapshot needs
to be updated only at the end of each day. A full day serves as a natural choice for the
version period for this application, although account updates may take place any time.

References

[1] P. Ammann, F. Jaeckle, and S. Jajodia. A Two-Snapshot Algorithm for Concurrency Control
In Multi-Level Secure Databases. In Pmceedings of 1992 IEEE Symposium on Research in
Secm·ity and Privacy, pages 204-215, Oakland, CA, May 1992.

[2] P. Ammann and S. Jajodia. A Timestamp Ordering Algorithm for Secure, Single-Version
Multilevel Databases. In C. E. Landwehr and S. Jajodia, editors, Database Secm·ity V: Status
and Prospects, pages 191-202. North-Holland, Amsterdam, 1992.

198 Part Five Concurrency Control

[3] P. Ammann and S. Jajodia. An Efficient Multi version Algorithm for Secure Servicing of Trans­
action Reads. In Proceedings of Second ACM Conference on Computer and Communications
Secur·ity, pages 118-125, November 1994.

[4] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Exposition and Multics
Interpretations. Technical Report MTR-2997, MITRE Corporation, March 1976.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[6] A. R. Downing, I. B. Greenberg, and T. F. Lunt. Issues in Distributed Database Security.
In Proceedings of Fifth Annual Computer Security Applications Conference, pages 196-203,
Tucson, AZ, December 1989.

[7] .J. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings of IEEE
Symposium on Security and Privacy, pages 11-22, 1982.

[8] J. Gray. Operating Systems- An Advanced Course, volume 60 of Lecture Notes on Computer
Science, chapter Notes on Data Base Operating Systems. Springer-Verlag, 1978. R. Bayer,
R. Graham and G. Seegmuller (eels.).

[9] J. N. Gray. The Transaction Concept: Virtues and Limitations. In Proceedings of the 7th
International Confer·ence on Very Large Data Bases, pages 144-154, Cannes, France, August
1981.

[10] J. T. Haigh and W. D. Young. Extending the Noninterference Version ofMLS for SAT. IEEE
Transactions on Softwar·e Engineering, SE-13(2):141-150, February 1987.

[11] T. F. Keefe and W. T. Tsai. A Multiversion Transaction Scheduler for Centralized Multilevel
Secure Database Systems. Computer Science and Engineering Department Tech. Report CSE-
94-001, The Pennsylvania State University, June 1994.

[12] W. T. Maimone and I. B. Greenberg. Single-Level Multiversion Schedulers for Multilevel
Secure Database Systems. In Proceedings of Sixth Annual Computer Secur·ity Applications
Conference, pages 137-147, Tucson, AZ, December 1990.

[13] J. McDermott and S. Jajodia. Orange Locking: Channel-Free Database Concurrency Control
Via Locking. In Pmceedings of IFIP Sixth Working Conference on Database Security, pages
271-288, Vancouver, British Columbia, August 1992.

[14] S. Pal. A Locking Protocol for Multilevel Secure Databases Using Two Committed Versions. In
Pmceedings of the Tenth Annual Conference on Computer Assurance, pages 197-210, Gaithers­
burg, MD, June 1995.

[1.5] D. P. Reed and R. K. Kanodia. Synchronization with Eventcounts and Sequencers. Commu­
nications of the ACM, 22(2):11.5-12:l, February 1979.

[16] K. Salem, H. Garcia-Molina, and J. Shands. Altruistic Locking. ACM Transactions on
Database Systems, 19(1):117-16.5, March 1994.

