
Abstract

CHAPTER3

REAKTION: a system for
event independent reactive

scheduling
H. Henseler

Universitiit Oldenburg, Fachbereich Informatik, PF 2503,
D-26111 Oldenburg, Germany

This paper proposes a new concept for reactive scheduling in detailed schedules which
have become inconsistent due to events. The events can be of external type, e.g. short­
term acceptance of a high-priority order or delay of material delivery, or of internal type,
e.g. a machine breakdown. After formalizing the general scheduling problem and a
reactive scheduling model we will present an algorithm which efficiently "repairs" the
violated constraints by revising the last schedule. We will show that this repair process
can be divided into two parts: One is event-specific and the other is a method for "general
repair". A look at the implementation in Prolog closes the paper.

Keyword Codes: F.2.2; G.1.6; 1.2.1
Keywords: Sequencing and Scheduling; Optimization; Industrial Automation

1. SCHEDULING

Job-shop scheduling as a means of assigning resources in flexible manufacturing has
grown to a main tool in the logistic area of enterprises. In different steps, ranging from
master schedules, material requirements planning and production planning to resource
scheduling, plans are getting more and more detailed. Finally the time and resource
required for every step of every job is fixed. This final schedule is the frame for the
production in the plant. However, it is usually not respected that deviations from this
schedule and disturbances in the plant can and will occur. Insufficient ad-hoc solutions,
which put the results of the planning process in question, are used commonly. A pro­
duction planning and control system (PPC) creates a set of orders assigned with start
times and end times for every order. The purpose of scheduling is to create a detailed
schedule from this results which respects technical constraints and economical goals. Pro­
duction of an order is accomplished by using resources, usually machines and employees.
The production plan describes which operations have to be executed for how long and
on which machine(s). The schedule fixes the exact start time, duration and resource for
every operation of every order. The goal "economical" means to satisfy global goals of
the enterprise, mainly minimizing costs. A way to ensure this is e.g. to minimize the
work-in-process time without creating tardy orders. Such goals are conflicting in nature
and increase the difficulty of the scheduling problem [1].

R. Kerr et al. (eds.), Artificial Intelligence in Reactive Scheduling
© IFIP International Federation for Information Processing 1995

20 REAKTION: a system for event independent reactive scheduling

1.1. A model for the scheduling problem
The quadruple GSP = (M, T, P, 0) is called model for the general scheduling problem,

where M, T, P and 0 are defined as follows:

1. M = { M1 , ... , Mm} is a set of machines. These can be actual machines found on
the shop floor, workers or transport units.

2. T = {T~, ... , Tm} is a set of time axes, T; <::;; Z, where Z is the set of all time units of
a discrete time axis. A time axis T; E T represents which time units on a machine
M; are work times and which are down times. Work times for machine M; are those
time units which are element of the time axis T;. The real size of time units can be
selected application dependent, like minutes, hours or days.

3. P = { P1 , ... , Pp} is a set of products. Every product P; = { V;,, ... , V;.} is defined by
a set of production variants (different methods of producing the same type of order),
where every variant Vi, = ({ Op;, , ... , Op;3"}, <;,) consists of a set of operations and
a binary operation precedence relation on these operations. This relation defines
a successor- and predecessor-relation on the set of operations of a variant, i. e.
<;,: Op x Op. Every operation Op;3• is given a set of alternative machines and
corresponding execution times {(M;,. , a;) , ... , (M; , a;)} , with M; E M

kt)kt)kd Jkd)~

and a;,.z E N, 1 ::; x ::; d. The execution time of an operation is the number of time
units needed to execute the operation on this machine.

4. 0 = 0 11 ••• , On is a set of orders, Oj = (Pj, Sj, ei,Pi)· Pj E Pis the product which
has to be produced, Sj E Z the predefined start time, ei E Z the predefined end
time for production, and Pi E N a priority value. The start time is given as the
earliest material availability, the end time usually marks the delivery of the product
to the customer. The priority expresses the economical relevance of the order.

Note that there is no parameter which describes what amount of a product has to be
produced. This is expressed by different products with different execution times. Also
there is no modelling of cleaning times between operations on one machine. This is also
expressed in the product description and therefore does not depend on operation ordering.

1.2. A model for the schedule
Given a scheduling problem GSP = (M, T, P, 0). A scheduling problem solution

(short: schedule) SPS = (o11 ••• ,on) relative to GSP is a set of scheduled orders. For
every element 0; E 0 we assign an o; with the property: o; = (o;,, ... , 0;0) is a set of
scheduled operations. Every o;3 = (M;i, s;,, e;3) is a triple consisting of a machine M;3 E M,
a start time s;3 E Z and an end time e;3 E Z. As a result, a schedule assigns every order a
sequence of operations with exact start- and end times on a particular machine. Schedules
are visually represented with so called gantt-charts (see fig. 5).

1.3. Constraints between the scheduling problem and a schedule
There are two kinds of constraints between a scheduling problem and the schedule: On

one hand those which must be respected by a schedule (Strong constraints), on the other
hand those which should be respected by a schedule (soft constraints). The first guarantee
the technical correctness and completeness of a schedule, the latter the economical quality.

REAKTION: a system for event independent reactive scheduling 21

Strong constraints are

All operations must be produced on correct machines (defined by the correspon-ing
product). All alternative machines are equivalent in terms of exchangeability. Note
that the execution times may differ.

All orders are assigned to the correct operations, corresponding to one variant.

Every order is manufactured by executing one variant of the corresponding product.

All orders have to be executed.

The start time of an operation must not be smaller than the start time of its order.

Non-working time units on machines do not count for the execution time of opera­
tions.

The execution time of an operation Op;. on a machine M;. corresponds to the
JJ; Jkl

time fixed by a;. . Every operation has to be executed without interruption. An ,.,
operation may cross non-working time units of a machine.

For every time unit there is only one operation on every machine.

Orders have to respect the operation precedence relation of their variant.

Soft constraints are

Ce The end time of an operation should not be greater than the end time of its order.

Co The plan should be optimal in respect to some evaluation function.

A schedule SPS is called a solution of a scheduling problem GSP if it respects all
strong constraints.

It is important to note that soft constraints can not be expressed by a simple formula.
They are one source for "knowledge" which has to be taken into account. The person
who creates a schedule by hand often has only a vague idea of the rules which guide his
scheduling decisions. Terms like "low tardiness", "short work-in-process times", or "good
utility of critical machines" may be used to express his knowledge [2].

2. REPLANNING

The reality in the factory is characterized by many short-term changes of the schedule.
This may happen due to a variety of reasons. Since the execution times of operations
are often based on assumptions or data of former experience or are simply guessed, the
real execution time will certainly deviate from the scheduled execution time. Moreover,
technical problems, e.g. machine breakdowns or staff shortage can make a schedule cor­
rection necessary. Such disturbances, which are based in the production process are called
internal disturbances.

The other form is called external disturbances and covers all changes of the frame for
a schedule. For example an order cancellation may change the number of orders, or an
additiona high-priority order arrives and must be scheduled within strong time bounds.
The simplest way is to throw away the old schedule and create a totally new one. But
this solution is not satisfactory due to the following reasons:

22 REAKTION: a system for event independent reactive scheduling

• disturbances and derivations tend to appear very often

• the effort to create a new schedule is usually very high

• preparations of operations (material orders, material transport, tool changes, clea­
ning, etc.) may become invalid although the disturbance has nothing to do with
them.

First, devising an initial schedule does not take into account the actual floor shop
situation. Instead, the schedule will be created for a fixed period of time, e.g. one week and
after this period all leftover work and work for the next week is used to generate the next
schedule. This aproach is insensitive to greater disturbances like a machine breakdown.
Second, observations of production processes have shown that many disturbances can be
repaired with small changes to the schedule. Small deviations from start times or end
times are normal. In fact, although the production may differ slightly from the schedule,
it is not updated because the difference seems to be so minimal. On the other hand there
is no guarantee that these deviations do not accumulate or create conflicting situations.
Both problems are solved by using large buffers between individual operations of orders.
This acts against these problems, but it increases. work-in-process time whereas small
buffers increase the need of reactive scheduling. Moreover, scheduling very rarely starts
at zero, i.e. without any preconditions of machine load, disposition of material, etc., which
adds an even greater demand for a reactive method.

The following actions are suitable to face disturbances:

• time adjustment (e.g. short-time work or overtime hours)

• intensity adjustment (e.g. higher or lower running speed of machines)

• quantitative adjustment (shut down machines or starting formerly used machines)

• lot size adjustment (splitting or combining) orders

• outward manufacturing of operations or orders

• time adjustments of orders.

Solving disturbances by picking one action without adjusting the schedule does not
consider existing dependencies expressed by constraints. But this is the focus problem
when dealing with reactive scheduling [3].

In the following we will define the replanning problem as finding a new Solution SPS'
for a slightly changed scheduling problem GSP' which is derived from the problem GSP
with an already existing solution S P S.

When the schedule SPS is set into reality and an event occurs, part of the schedule
already has become reality and can not be changed. The distinction between irreversible
and changeable parts of a solution will be made with a special time unit N (= now-unit)
which represents the time unit where the event occurs on the time axis Z. The state of
a machine in a time unit smaller N is history and therefore unchangeable, whereas states
in time units bigger or equal to N are future and therefore changeable.

The machine-state of a machine M; EM in a solution SPS of the scheduling problem
GSP = (M, T, P, 0) at a time unit z E Z is

REAKTION: a system for event independent reactive scheduling 23

• Ok, when machine M; produces an operation for the order Ok E 0 in time unit z

• "empty", when z E T; and no operation is scheduled for M; in z

• "non-working", when z tf. T;.

2.1. A model for the reactive scheduling problem
A model for the reactive scheduling problem is given by RSP = (GSP, SPS, D) where:

1. GSP = (M, T, P, 0) is a scheduling problem.

2. SPS is a solution for GSP.

3. D = (E, N) is a disturbance, E an event and N E Z is a time unit at which E
occurs.

An event E is a change of a scheduling problem. As a result, not only external and
internal disturbances are events, but also actions.

Table 1
Overview events and possible inconsistencies

event change N 1 2 3 4 5 6 7 8 9 e 0

concerning order:
1 new order 0 X

2 cancellation of order 0 X X

3 change of start time s; X X

4 change of end time e; X X

5 change of amount P; X X X

6 change of priority Pi X

7 change of product P;/V; X X X X X

8 order splitting O,P; X X X X

concerning machine:
9 disturbance / repair T; X X

10 regular repair period 0 X

11 machine intensity P; X X X

12 change of shifts T; X X X

13 number of machines T; X X X

concerning operation:
14 new shop floor data P; X X

15 outward production P; X X X X

The set E = {Et, ... , E1s} is a set of event types, defined as follows (see table 1): The
column "change" shows which values or sets in GSP and GSP' will become different due
to the event. The column "N" to "o" show which constraints can be violated (marked
with "x").

To express the irreversibility of machine states in the past we define a strong constraint
for two solutions SPS and SPS' and a time unit N:

24 REAKTION: a system for event independent reactive scheduling

eN The machine-states of all machines for all time units z E Z, z < N in SPS and SPS'
are identical.

2.2. Solution of a reactive scheduling problem
Given a reactive scheduling problem RSP = (GSP,SPS,D) with disturbance D =

(E,N) and a scheduling problem GSP = (M,T,P,O). The tuple (GPS',SPS') is the
called solution of the reactive scheduling problem RS P, when the following holds:

1. GSP' = (M, T', P, 0') is a scheduling problem which results from applying the event
Eto P.

2. SPS' is a solution for GSP'.

3. SPS and SPS' are consistent relative to eN for time unit N.

If we look at the tuples (GSP, SPS) and (GSP', SPS') as consistent states, an event
E which changes SPS can be considered as a beginning of a transaction. Then we have
to find a series of reactions Ro, ... , Rn which, beginning with the event E, transform
(GSP, SPS) into the consistent state (GSP', SPS'). The next problem is to find out how
such reactions might work and how to find an SPS' for a given RSP.

3. AN ALGORITHM FOR REACTIVE SCHEDULING

We now present an algorithm which solves the reactive scheduling problem.
A reaction is a (maybe empty) series of basic operations which transpose a tuple

(GSP',SPS;) into a tuple (GSP',SPSi+d· Basic operations are creating and deleting
operations and changing of operation data (machine, start time, end time).

The algorithm will proceed as follows: The event E transposes the scheduling problem
GSP into GSP'. Since SPS will be no longer a solution for GSP', a reaction Ro is
necessary which tries to repair the inconsistency. Usually, applying only one reaction
will not solve the inconsistency because the inconsistency is not fully repaired or new
inconsistencies will be introduced by Ro. Therefore subsequent reactions R1 , R2 , ••• are
necessary. The following scheme demonstrates the flow of this process (X- Y-+ Z means
"X becomes transposed into Z with event or reaction Y")
(GSP,SPS)- E-+ (GSP',SPS)

= (GSP',SPSo) -Ro-+ (GSP',SPS1)
(GSP',SPS1) -R1 -+ (GSP',SPS2)

(GSP',SPSn) -Rn-+ (GSP',SPSn+l) =
(GSP',SPS').

The result is a process shown in fig. 1. Scheduling problem and solution are "chained"
together by constraints. While E changes the problem (and breaks the chain) the reactions
change the solution to fix the chain.

A reaction R; results from the previous changes E,Ro, ... ,R;_1 and (GPS,SPS),
i.e. it is not derived from the tuple (GSP', SPS;). Because of this reactions are always

REAKTION: a system for event independent reactive scheduling 25

event
E

Figure 1. How to achieve consistency

reactions
Ro····· Rn

initial reaction
Ro

• successor reactions
R1····· Rn

•
solution

SPS'

postulated. That means when the tuple is changed, care is taken to new inconsistencies.
These inconsistencies are postulated as reactions which have to be executed in one of
the next steps. This is more efficient than always searching for all inconsistencies in
the current tuple. Since a change can result in many necessary reactions, these have to
be collected. Lets call the set of collected reactions PR ("postulated reactions"). As a
result, reactions have a dual nature: On the one hand they are procedures which repair
an inconsistency, on the other hand they represent an inconsistency.

Formally this means: ViE No, 0 :=; i :::;; n + 1 : P R; = {R;, R;2 , ••• , R;m}.
Conditions for postulated reactions are:

1. PRo only depends on E.

2. Every postulated reaction in P R; is being executed: Vi E N0 , 0 :::;; i :=; n, V R E
PR;,::Jk,i::; k::; n: (GSP',SPSk)- R--+ (GSP',SPSk+d and R ~ PRk+1 .

3. PRn+l = 0.

The sets P R; represent the inconsistencies in the tuple (GS P', S P S;) which still have
to be repaired. They consist of the postulated but not yet executed reactions. The
algorithm will execute reactions from P R; until the set P R; becomes empty for one i.
Then the tuple (GS P', S P S;) will be consistent and a solution of the reactive scheduling
problem.

26 REAKTION: a system for event independent reactive scheduling

_.Jfr

heuristics
-.......

Figure 2. Basic algorithm

(GSP, SPS) -E-> (GSP', SPS0)

PR := initial_reactions(E)

i:= 0

(GSP', SPS;) -R-> (GSP', SPSi+1)

add successor
reactions to PR

i := i + 1

Figure 2 shows the flowchart of the frame of the reactive scheduling algorithm (compare
[4, 5]). There are two points where the algorithm needs the help of specific knowledge to
reach results of good quality (and to reach a result at all):

• determine which reaction in P R has to be executed next

• how should the reactions proceed.

This knowledge may be adopted from a human scheduler. By learning his method
of rescheduling one may find good tactics for this two questions. For example, he might
prefer to solve inconsistencies which belong to bottleneck machines first. Or he might
look at operations on other machines before he resolves inconsistencies concerning ope­
ration order. We benchmarked different approaches of reaction ordering and found that
a strategy which tries to repair the schedule in increasing order of time, beginning with
time unit N produced the best results both for rescheduling time used and for producing
the best schedules.

According to table 1 an event can break many constraints. We will now classify
constraints in terms of their reactive scheduling behaviour. The goal is to get hints on
how reactions should proceed. What consistencies should they break in order to repair
the inconsistency which lead to their own postulation? Here we use a "trick": operations

REAKTION: a system for event independent reactive scheduling 27

which will overlap with other operations due to their addition or change of length will
be temporarily removed from the "real" machine and placed on a virtual buffer machine.
Operations on buffer machines will not break any ofthe constraints C1 to C8 . However, to
reach an overall consistent plan such operations must be brought back to the real machine
during the reactive scheduling process, perhaps by moving other operations to the buffer
machine. Therefore a new constraint has to be defined:

C8 No operation is placed on a buffer machine.

Table 2
Classes of consistency
consistency concerned
class constraints

reactive scheduling
behaviour

simple (one initial reaction)
difficult (many successor reactions)

caused by

never
event
event,
reaction

The classification scheme is outlined in table 2. We can now divide the process of
reactive scheduling into processing an initial reaction and some successor reactions. The
initial reaction depends only on the event and simply places all operations which violate
any constraint to a buffer machine. The successor reactions depend only on the content of
the set P R. This distinction allows to add new events to the algorithm only by providing
a new initial reaction. Additionally, it allows to view reactive scheduling independent
of the occurred events. Now one part of the algorithm contains handling of events, the
other part contains the algorithmic effort to reach consistency. The latter also contains
all reactive scheduling knowledge.

Now a reaction is reduced to deciding what change must be made to repair the incon­
sistency which caused its postulation. The following global conditions have to be taken
into account for this decision:

1. Only constraints from class CCui should be violated.

2. The algorithm must terminate.

3. The algorithm should find a "good" solution considered to Co and Ce.

Condition 1 is guaranteed by using the buffer plan whenever overlapping of operations
is unavoidable. The conflicting operation is simply moved to the buffer plan and violates
CB. How the termination problem is treated is shown in fig. 3. The diagram outli­
nes what constraints can be violated when another constraint is repaired by a reaction.
There are three cases which are of special interest for the termination problem because of
"postulation-loops":

• between C9 and CB: A precedence conflict is solved by moving the successor ope­
ration to the buffer plan. When moving this operation back to the real plan a
new precedence conflict can occur. This case will not harm the termination of the
algorithm because of the linear order on the set of operations.

28 REAKTION: a system for event independent reactive scheduling

consistency
unbreakable
("hardwired­
consistency")

consistency by
initial reactions,
"shifting down"
to next level

consistency by
violating
Co and c.,
successor reactions

Achieving
consistency ...

- past can not be manipulated
- no disappearing of operations
- no overlapping operations

impossible

Figure 3. Levels of achieving consistency

• between CB and CB: Moving an operation back to the plan may cause an other
operation to move to the buffer plan. One solution to the problem is to use a
precedence relation on the operations. For example an operation may only replace
operations from an order with higher priority. Another solution is to use time stamps
which inhibits operations to fall back again to the buffer plan once they are back in
the real plan.

• between Co and C0 : We understand repairing Co as filling gaps which are caused by
moving operations. For this purpose we shift operations left to fill out the gap. This
may produce other gaps, but they concern time units which are bigger than those
from the original gap. Repairing Co can be considered as a "shift left" of operations.

Note that there are situations where the algorithm is not able to find a solution
although it may exist. Whenever a machine breaks down completely and alternative
machines are filled with operations of higher priority, the algorithm has no chance to
select the right strategy. Luckily, this scenario is very artificial and usually does not
occur.

There is still one question left: How should the reactions proceed in order to produce
good schedules? Once again, the algorithm needs some sort of knowledge, which depends
on the factory floor, the number and type of typical events and on the current goal: Fast
or good rescheduling. Interestingly, only two reactions really need this knowledge: First,
the reaction to solve CB must know where to put the operation from the buffer machine
back to the schedule. Should it push other operations to the buffer plan or try to find a
fitting gap? And second, the reaction for Co must know how to fill gaps. Which operations
should be pushed left?

REAKTION: a system for event independent reactive scheduling 29

We gathered obvious rescheduling knowledge concerning priority, gaps and bottleneck
machine handling and made it available to the algorithm in form of heuristics and rules.

Examples:

• "If an operation is moved to a bottleneck machine, try to fill the first possible gap"

• "If an operation is moved to a non-bottleneck machine and the priority of the order
is low, try to find a best fitting gap".

Tests with different shop floors showed that balancing heuristics is difficult and that
there is no general rescheduling strategy which produces good results in all shop floors.

I I Gantt-chart I I Event input I User
Interface

' ~I
Reactions I

' Reactive R J Heuristics I

'
Scheduling

I Basic Operations I

' I I Database I I Time I Basic
Functions

Figure 4. Architecture of REAKTION

4. THE SYSTEM REAKTION

The proposed algorithm is implemented in a system called REAKTION (acronym
for a German description). It contains the automatic and manual support of restoring
consistency of schedules. The system was implemented in Quintus Prolog on a Sun
SparcStation. A special focus was aimed at integrating a graphical user interface for
manual reactive scheduling.

The structure of REAKTION is depicted in fig. 4: The system is divided into three
modules: basic functions, reactive scheduling and user interface. The module basic func­
tions contains the database and maintenance of time axes. The module reactive scheduling
manages the heuristics to guide the reactive scheduling process, the set P R, reactions and
events. The user interface interactively shows the schedule in form of a gantt-chart and
reacts to user input. The human scheduler has the opportunity to move operations via
a mouse. These movements are also treated as events which influence the schedule. Re­
sults of starting the algorithm for automatic reactive scheduling are directly visible on the
screen. The user has direct influence on the set P R which is visible in an extra window.
A screendump is shown in fig. 5.

30 REAKTION: a system for event independent reactive scheduling

!I"" llllt• n 1a "\

.. T'l 1• 1• 1• I! i '""" cll4 1l IU

~ ~--
~ li~

C\1 .. ~- '

~
1=: 1 r; lji

J ~~= r ·-E ,.e:.-.

~ 11 t)~~ ~ ~=.-4 .. ~ IN •
....,~ a: l~G)Cl).-4

l ~ t) '

"' g ""' S:::C\1

~.6 ~e
IIi • .~ I(® I§ g~~ ~
t N

~r: ~ II I ...
! I~
~

f :::

!i:l:i: 1'12

t = AI:
'13

~ j I<
I~

~ II ~ 0
~

If~ ~

11·
lEI I ~

~ ~
~9 I= :. i'l

! !;;

fl-..
1- 1- 1- ~ AI: .__

llll4 l4.tl t.•

~
..:l ~
=i """ N M .., .-4 N M ..,

""" """ N M .., ~ l§ tU tU tU tU .Q .Q .Q .Q t) "tS "tS "tS "tS

Figure 5. Screendump of REAKTION

REAKTION: a system for event independent reactive scheduling 31

A connection to the system PSY [6], developed as a scheduling tool for metal working
industry, demonstrated the utility of REAKTION for an existing plant.

5. CONCLUSION

In this paper we presented an algorithm for reactive scheduling. Highlights of this
algorithm are the ability to handle all possible events which may happen in a shop floor
and incorporation of arbitrary heuristics. It is expandable in a way that new events can be
added at any time without need to change the algorithm itself. The distinction between
reacting and repairing seems promising for future research. As the buffer machine concept
seems to be a natural way of resolving constraint conflicts the integration of the user in the
rescheduling cycle is very elegant. The human scheduler may act on critical decisions by
himself and let the algorithm do the rest of the work. It is possible to stop the algorithm
at any time to make adjustments by hand or to integrate new events. The algorithm uses
an opportunistic search, i.e. it does not explore the whole search tree but focuses on only
one, carefully choosen path. This makes the rescheduling cycle very fast.

There are nevertheless disadvantages which have to be taken care of. After finding a
new schedule the algorithm stops and therefore misses a chance to improve schedule qua­
lity further. And as the result of the opportunistic search, the algorithm is not symmetric
in that deleting the effect of a previous event does not lead back to the previous schedule.

We are currently addressing new methods of rescheduling, namely distibuting the
schedule. Some of our new ideas can be found in [7].

REFERENCES

1. H. Parunak. Characterizing the Manufacturing Scheduling Problem. Journal of Ma­
nufacturing Systems. Vol. 10, No. 3, 1991.

2. M. Fox. Constraint Directed Search: A Case Study of Job-Shop Scheduling. Pitman
Publishers, London, 1987.

3. K. G. Kempf. Manufacturing Planning and Scheduling: Where We Are and Where
We Need To Be. Proceedings CAIA-89, Miami, FL, 1989.

4. P. S. Ow, S. F. Smith, A. Thiriez. Reactive Plan Revision. AAAI 88.

5. F. S. Smith, P. S. Ow, D. C. Matthys, J. Y. Potvin. OPIS: An Opportunistic Factory
Scheduling System. Carnegie-Mellon University. Pittsburgh, U.S. A., 1989.

6. J. Sauer, R. Bruns. Knowledge-Based Scheduling Systems in Prolog. International
Conference on The Practical Application of PROLOG, 1994.

7. H. Henseler. From Reactive to Active Scheduling. In this book.

