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Abstract 
We study one-phase Stefan problems for semilinear parabolic equations with Dirichlet 
boundary conditions in one-dimensional space. We show behavior of free boundaries of 
blow-up solutions at finite blow-up time and numerical experiments for our problem. 
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1 INTRODUCTION 

Let us consider the following one-phase Stefan problem DP (resp. N P) with homogeneous 
Dirichlet (resp. Neumann) boundary condition in one-dimensional space: The problem is 
to find a curve x = C(t) > 0 on [O,T], (0 < T < oo), and a function u = u(t,x) on 
Qg(T) := {(t,x);O < t < T,O < x < C(t)} satisfying that 

Ut = Uxx + u1+" in Qt(T), (1) 

u(O,x)=u0 (x) for OSxSfo, (2) 

u(t, 0) = 0 for 0 < t < T, (3) 
a 

(resp. ax u(t,O) = 0 for 0 < t < T,) (4) 

u(t,C(t)) = 0 for 0 < t < T, (5) 
d 
d/(t) = -u.,(t,C(t)) for 0 < t < T, (6) 

£(0) = £0 (7) 
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where a and £0 are given positive constants and u0 is a given initial function on [0, £0]. 

In Fasano-Primicerio(1979) they established the local existence in time and the unique­
ness for solutions to the above D P and N P in the classical formulation (which means that 
u1 and Uxx are continuous functions). Besides, for solutions of D P and N P in the distribu­
tion sense (which means that u1 and Uxx belong to L2-class) the existence, the comparison 
and the behavior were studied by Aiki(1990), Kenmochi(1990) and Aiki-Kenmochi(1991). 

It is well known that there are blow-up solutions of the usual initial boundary value 
problem for semilinear equation (1) in a bounded domain (cf. Tsutsumi(1972)). Accord­
ingly, by using comparison principle it is clear that DP(N P) has a blow-up solution for a 
sufficiently large initial data. Here, we note the the following global existence result of a 
solution: Let [0, T*) be the maximal interval of existence of the solution to D P and N P, 
we see (cf. Aiki-Kenmochi(1991)) that the following cases (a) or (b) must occur: 

(a) T* = +oo; 
(b) T* < +oo and luiLoo(Q,(t))---> +oo as tiT*. 

However, from the above result we can get no information for the behavior of free boundary 
£ at blow-up time. In the present paper we shall show the behavior of blow-up solutions 
to DP and N P at finite blow-up time (see Theorems 2 and 3). Our proofs to Theorems 
2 and 3 are essentially due to Friedman-McLeod(1985). Also, we get an estimates for the 
time-derivative of free boundary,£' (see Theorem 4). 

In the final section we shall show numerical experiments to D P. For the investigation 
of the influence of a free boundary, numerical results are compared with those of the nor­
mal blow-up problem with the fixed boundary and the homogeneous Dirichlet boundary 
conditions. 

We begin with the precise definition of a solution to DP and NP. In this paper we 
consider classical solutions to our problems since we shall apply the strong maximum 
principle for the proofs to our theorems. Let C 1•0(Qg(T)) be the set of functions which 
are continuous on Qg(T) with their x-derivatives. 

Definition 1 A couple { u, £} of functions u = u(t, x) and x = £(t) is said to be a solution 
of DP (resp. NP) on a compact interval [O,T], 0 < T < +oo, if the following conditions 
{Sl} and {S2} are satisfied: 

(S1) £ E C1([0, T]), and u E C1 •0(Qg(T)), Uxx and u1 are continuous in Qg(T); 
(S2) (1) ~ (3) and (5) ~ (7) (resp. (1) ~ (2) and (4) ~ (7)) hold in the classical sense. 

Also, we call a couple { u, £} is a solution of D P (resp. N P) on an interval [0, T'), 0 < T' :':: 
oo, if it is a solution of DP {resp. N P} on [0, T] in the above sense for any 0 < T < T'. 

First, we recall the theorem concerned with local existence of solutions to the above 
DP and NP. 

Theorem 1 (cf. Fasano-Primicerio{1979}} We assume that u0 E C1([0,£0]), uo ~ 0 on 
[0,£0], u0 (£0 ) = 0 and u0(0) = O{resp. (uo,x(O) = 0}. Then there exists a positive number 
To depending only on Ju0Jci([O,lo])> £0 and a such that problem DP {resp. N P} has a unique 
solution { u, £} on [0, To]. 
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For the problems DP and N P, we say that [0, T), 0 < T ~ +oo, is the maximal interval 
of existence of the solution, if the problem has a solution on time-interval [0, T'], for every 
T' with 0 < T' < T and the solution can not be extended in time beyond T. 

2 MAIN RESULTS 

In order to establish results concerned with the behavior of blow-up solutions we give 
assumptions (H1) ~ (H4) for initial data £0 and u0 • 

(H1) £0 > 0 and u0 E C2((0,f0 )) n C1([0,f0]) and u0 (x) > 0 for x E (0,£0 ), 

(H2) Uo,xx(x) + u~+"(x) 2: 0 for x E (O,fo), 
(H3) uo(fo) = 0, uo,x < 0 for x E (0, fo) and uo,x(O) = 0, 
(H4) uo(O) = uo(fo) = 0, uo,x > 0 on [0, xo) and uo,x < 0 on (xo.fo] for some Xo E (0, £0). 

Theorem 2 {cf. Aiki(to appear)) Assume that {Hl} ~ (H3} hold. Let {u,f} be a solution 
of NP. IfT* < oo, then f(t) j L < +oo as t j T*, u(t,O)-+ +oo as t j T*, and for any 
x E (0, L) there exists a positive number M(x) such that 

lu(t,x)l ~ M(x) for any t with (t,x) E Qt(T). 

In Fujita and Chen(1988) they studied the following initial boundary value problem. 

Ut = u.,., + u1+" in (0, T) X (0, 1 ), 
u.,(t, 0) = 0 fort E (0, T], 

u(t,1)=0 fortE(O,Tj, 

u(O,x) = u0(x) for x E [0, 1]. 

(8) 
(9) 

(10) 

(11) 

They showed that under the similar assumptions for u0 to (Hl) ~ (H3) if the solution u 
blows up then blow-up point is one and only one point x = 0. In the proof of Theorem 2 
we done with help of the idea in Fujita-Chen(1988). 

In case the homogeneous Neumann boundary condition the maximum point is always 
the point x = 0 for some initial data, so we get Theorem 2. However, in case Dirichlet 
boundary condition the maximum point may move so that we can not estimate the blow­
up point. Hence, we conclude the following theorem. 

Theorem 3 (cf. Aiki-Imai{submitted)} Assume that {Hl}, {H2} and (H4) hold. Let [0, T*) 
be the maximal interval of existence of the solution { u, £} to DP. IfT* is finite, then either 
the following cases {A) or (B} always happens: 
(A) f(t)-+ foo as t j T* where £00 is some positive number, there exists one and only one 
point x* E (0, foo) such that u(t, x) -+ +oo as t j T* and for x E (0, foo) with x =/= x* there 
is a positive constant M1(x) such that iu(t, x )I ~ M1(x) fort with (t, x) E Qt(T*); 
(B) f(t) -+ +oo as t j T* and for any x > 0 there is a positive number M2(x) satisfying 
that ju(t,~)i ~ M2(x) for (t,~) E Qt(T*) n {~ < x}. 

The proof of Theorem 3 is done in the following way. We assume that (B) does not 
hold, that is, the following cases (A1) or (A2) is valid: 
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(AI) There is a number XI E (0, 00) satisfying that for some sequence { tm en} c Qt(T*), 
tn j T* and u(tn,en)-+ oo as n -+; 

(A2) there is a positive constant L0 such that f(t) ::; L0 for any t E [0, T*). 
Next, by using the similar argument to those of Friedman-McLeod(I985) we conclude 

that (AI) is a sufficient condition for (A). Similarly, we can prove that (A2) implies (A). 

Remark 1 By the numerical experiments it seems that the case (B) in the statement of 
Theorem 3 does not occur, however, we can not prove it, theoretically. 

Theorem 4 Under the same assumptions as in Theorem 3 we assume that the case(A) 
in the statement of Theorem 3 occurs. Then, there is a positive constant C such that 

l.e'(t)l :S C fort E [0, T*). 

Proof. First, from Lemma 5.5 in Aiki-Imai(submitted) we observe that there are x• < 
a < £00 and t0 E [0, T*) such that a < f(to) and 

iu(t,x)l :S M1(a) := M -I for (t,x) E Q 

where Q = {(t,x) E Qt(T*);x > a,t >to} 
Here, we denote by v a solution of the following initial boundary value problem in 

non-cylindrical domain Q; 

Vt- v.,., = M 1+"' in Q, 
v(t0 ,x) = vo(x) for x E (a,f(to)), 

v(t,a) = M fortE (t 0 ,T*), 
v(t,f(t)) = 0 fortE (t0 ,T*) 

where v0 E C1([a,f(to)] with u(to, ·)::; v(to, ·)::; M on [a,f(to)], vo(a) = M and vo(f(to)) = 
0. 

By using comparison principle we see that u::; von Q and v.,(t,f(t))::; u.,(t,f(t))::; 0 
for t E [to, T*). 

Next, let w be a solution to the following problem: 

Wt- w.,., = 0 in (to,T*) X (a,f(to)) := Q, 
w(t0 ,x) = w0 (x) for x E (a,f(to)), 

w(t,a) = M fortE (t0 ,T*), 
w(t,f(to)) = 0 fortE (to, T*) 

where w0 E C1([a,£(t0 )]) with 0::; Wo::; Vo on [a,f(to)], wo(a) = M and wo(f(to)) = 0. 
It is clear that lw.,(t, X )I ::; cl on Q for some positive constant cb w ::; v on Q and 
w.,(t, a)::; v.,(t, a) fortE [to, T*) so that 

v.,(t,a);:::: -C1 fortE [to,T*). 

Putting z(t,x) = v(t,x) + Kexp(x- f(t)) where K = (M1+"' + lv.,(to)IL""(a,t(to)) + 
C1)exp(foo), z satisfies that z(t,f(t)) =/{for to :S t < T* and 



Zt- Zxx < 0 

zx(to,x) > 0 

Zx(t, a) > 
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inQ, 

for a ::; x ::; £(to), 

for t0 < t < T*. 

87 

Then, we conclude that z takes its maximum value on any point in the curve { ( t, x ); x = 
f(t),t0 ::; t < T*}. Hence, zx(t,f(t))::; 0 for t0 ::; t < T*. By the definition of z, we have 

Vx(t,f(t)) ~ -K fortE [to,T*). 

Therefore, we obtain that IR'(t)l = iux(t,f(t))l::; K for t0 ::; t < T*. Thus this theorem is 
proved. D 

We refer to Lemma 6.3.1 in Ladyzenskaja-Solonnikov-Ural'ceva (1968) and Lemma 4.2 
in Aiki(to appear) for the proof of Theorem 4 and to Aiki-Kenmochi(1991) for comparison 
principle. 

3 NUMERICAL RESULTS 

We carried out numerical computations to DP with £0 = 1 and u0 (x) = u~(x) = 
Ax2( x - 1 )2 • We note (H2) is satisfied for large A. 

Numerical computations need some additional techniques due to treatment of the un­
known boundary. Therefore, we used the fixed domain method using the following map­
ping function 

.e( t) 
x(t,e)=2(e+1), O::;t, -1::;e::;1. (12) 

The free boundary problem is transformed to the following equivalent problem in the fixed 
domain using the variable transform. 

Ut(t, 0 = £2~t) uee(t, 0 - 2~2 ~)1 ) ue(t, 1)ue(t, 0 + u1+"(t, e), 0 < t, -1 < e < 1, (13) 

A e+ 1 u(O, e) = Uo (-2-), -1 < e < 1, (14) 

u(t,-1)=0, o::;t, (15) 

u(t, 1) = 0, 0::; t, (16) 

.e'(t) =- .e~) ue(t, 1), 0 < t, (17) 

£(0) = 1. (18) 

Here we should remark this problem becomes the normal blow-up problem with the 
fixed boundary( (8), u(t, 0) = 0 fort E (0, T], (10) "" (11) ) by setting f(t) = 1 and 
neglecting the 2nd term in (13) and (17). 
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To these transformed problems we applied the 2nd order finite difference method in 
space and the 4th order Runge-Kutta method in time. We used 201 grid points in space. 
The basic time increment is 10-4 • It is controlled adaptively as in Chen (1986). Figure 1 
shows numerical results to DP. Figure 2 shows numerical results to the normal blow-up 
problem with the fixed boundary ((8) ~ (10)). 

From comparison principle mentioned in the previous section it is expected the free 
boundary has the influence of the enhancement of the blow-up phenomena. This expec­
tation is confirmed by these numerical results. However, the blow-up phenomena of the 
free boundary are not observed. This is because as Figure 1 shows blow-up points do not 
sufficiently get toward the free boundary. 
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