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Abstract
We study one-phase Stefan problems for semilinear parabolic equations with Dirichlet
boundary conditions in one-dimensional space. We show behavior of free boundaries of
blow-up solutions at finite blow-up time and numerical experiments for our problem.
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1 INTRODUCTION

Let us consider the following one-phase Stefan problem DP (resp. NP ) with homogeneous
Dirichlet (resp. Neumann) boundary condition in one-dimensional space: The problem is
to find a curve z = £(t) > 0 on [0,7], (0 < T < ), and a function u = u(t,z) on
Qe(T) :={(t,2);0 <t < T,0 < z < £(t)} satisfying that

U = uge + 't in Qu(T), (1)
u(0,2) = up(z) for 0 <z <4, (2)
u(t,0) =0 for 0 <t <T, (3)
(resp. a—axu(t,O) =0 for 0<t<T,) (4)
u(t,£(t))=0 for 0<t<T, (5)
%é(t) = —u(t,f(t)) for 0<t<T, (6)
£0) = £ (7)

K. Malanowski et al. (eds.), Modelling and Optimization of Distributed Parameter Systems

Applications to engineering © Springer Science+Business Media Dordrecht 1996



84 Part Two  Properties of Solutions to PDE

where o and £, are given positive constants and ug is a given initial function on [0, £o).

In Fasano-Primicerio(1979) they established the local existence in time and the unique-
ness for solutions to the above DP and NP in the classical formulation (which means that
u; and u,, are continuous functions). Besides, for solutions of DP and NP in the distribu-
tion sense (which means that u; and u,, belong to L?-class) the existence, the comparison
and the behavior were studied by Aiki(1990), Kenmochi(1990) and Aiki-Kenmochi(1991).

It is well known that there are blow-up solutions of the usual initial boundary value
problem for semilinear equation (1) in a bounded domain (cf. Tsutsumi(1972)). Accord-
ingly, by using comparison principle it is clear that DP(NN P) has a blow-up solution for a
sufficiently large initial data. Here, we note the the following global existence result of a
solution: Let [0,7*) be the maximal interval of existence of the solution to DP and NP,
we see (cf. Aiki-Kenmochi(1991)) that the following cases (a) or (b) must occur:

(a) T*=+oo;
(b) T* < 400 and |u|pe(q,uey) = +o0 as t TT™.

However, from the above result we can get no information for the behavior of free boundary
£ at blow-up time. In the present paper we shall show the behavior of blow-up solutions
to DP and NP at finite blow-up time (see Theorems 2 and 3). Our proofs to Theorems
2 and 3 are essentially due to Friedman-McLeod(1985). Also, we get an estimates for the
time-derivative of free boundary, £ (see Theorem 4).

In the final section we shall show numerical experiments to DP. For the investigation
of the influence of a free boundary, numerical results are compared with those of the nor-
mal blow-up problem with the fixed boundary and the homogeneous Dirichlet boundary
conditions.

We begin with the precise definition of a solution to DP and NP. In this paper we
consider classical solutions to our problems since we shall apply the strong maximum
principle for the proofs to our theorems. Let C1°(Q,(T')) be the set of functions which
are continuous on Q¢(T) with their z—derivatives.

Definition 1 A couple {u,£} of functions u = u(t,z) and z = £(t) is said to be a solution
of DP (resp. NP) on a compact interval [0,T], 0 < T < 400, if the following conditions
(S1) and (S2) are satisfied:

(S1) £€CY([0,T)), and u € C1O(Q4(T)), use and u; are continuous in Q(T);
(52) (1) ~ (3) and (5) ~ (7) (resp. (1) ~ (2) and (4) ~ (7)) hold in the classical sense.

Also, we call a couple {u, £} is a solution of DP (resp. NP) on an interval [0,T"), 0 < T' <
oo, if it is a solution of DP (resp. NP) on [0,T] in the above sense for any 0 <T < T".

First, we recall the theorem concerned with local existence of solutions to the above
DP and NP.

Theorem 1 (cf. Fasano-Primicerio(1979)) We assume that ug € C*([0,£]), uo > 0 on
[0, 4], uo(£o) = 0 and ug(0) = O(resp. (uos(0) =0). Then there exists a positive number
Ty depending only on [uo|ci (o)), o and a such that problem DP (resp. NP) has a unique
solution {u,£} on [0, To).
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For the problems DP and NP, we say that [0,7), 0 < T' < +00, is the maximal interval
of existence of the solution, if the problem has a solution on time-interval [0, '], for every
T" with 0 < T" < T and the solution can not be extended in time beyond 7.

2 MAIN RESULTS

In order to establish results concerned with the behavior of blow-up solutions we give
assumptions (H1) ~ (H4) for initial data 4 and uo.

(H1) 4 > 0 and up € C*((0,4)) N C*([0,40]) and ug(z) >0 for z € (0, 4),

(H2) uozz(z) + up**(z) > 0 for z € (0,4),

(H3) uo(€y) =0, ug < 0 for z € (0,45) and ue(0) = 0,

(H4) uo(0) = uo(fo) = 0, uor > 0 0n [0, z0) and ug, < 0 on (2o, 4] for some x4 € (0, 4p).

Theorem 2 (cf. Aiki(to appear)) Assume that (H1) ~ (H3) hold. Let {u,£} be a solution
of NP. If T* < 0o, then £(t) T L < 400 ast 1 T*, u(t,0) —» +occ ast T T*, and for any
z € (0, L) there exists a positive number M(x) such that

[u(t,z)| < M(z) for any t with (¢,z) € Qu(T).

In Fyjita and Chen(1988) they studied the following initial boundary value problem.

Uy = Ugp + 1 in (0,7) x (0,1), (8)
uy(¢,0) =0 forte (0,7], 9
u(t,1)=0 for ¢t € (0,71, (10)
u(0,2) = uo(z) for z €[0,1]. (11)

They showed that under the similar assumptions for up to (H1) ~ (H3) if the solution u
blows up then blow-up point is one and only one point z = 0. In the proof of Theorem 2
we done with help of the idea in Fujita-Chen(1988).

In case the homogeneous Neumann boundary condition the maximum point is always
the point £ = 0 for some initial data, so we get Theorem 2. However, in case Dirichlet
boundary condition the maximum point may move so that we can not estimate the blow-
up point. Hence, we conclude the following theorem.

Theorem 3 (cf. Aiki-Imai(submitted)) Assume that (H1),(H2) and (H{) hold. Let [0,T*)
be the mazimal interval of existence of the solution {u,£} to DP. If T* is finite, then either
the following cases (A) or (B) always happens:

(A) €(t) — L ast T T™ where £y, is some positive number, there exists one and only one
point z* € (0,4) such that u(t,z) — 400 ast 1 T* and for z € (0,4 ) with z # x* there
is a positive constant M;(z) such that |u(t,z)| < Mi(z) for t with (t,z) € Qu(T*);

(B) £(t) — +o00 ast 1 T* and for any z > 0 there is a positive number My(z) satisfying
that |u(t,&)] < Ma(z) for (t,€) € Q(T*) N {¢€ < «}.

The proof of Theorem 3 is done in the following way. We assume that (B) does not
hold, that is, the following cases (A1) or (A2) is valid:
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(A1) Thereis a number z; € (0, 00) satisfying that for some sequence {t,, &} C Q(T™),
t, T T* and u(tn,&n) — 00 as n —;

(A2) there is a positive constant Lo such that £(t) < L for any ¢ € [0,T™).

Next, by using the similar argument to those of Friedman-McLeod(1985) we conclude
that (A1) is a sufficient condition for (A). Similarly, we can prove that (A2) implies (A).

Remark 1 By the numerical experiments it seems that the case (B) in the statement of
Theorem 3 does not occur, however, we can not prove it, theoretically.

Theorem 4 Under the same assumptions as in Theorem 3 we assume that the case(A)
in the statement of Theorem 8 occurs. Then, there is a positive constant C' such that

[ <C  forte[0,T).

Proof. First, from Lemma 5.5 in Aiki-Imai(submitted) we observe that there are z* <
a < £, and to € [0,7™) such that a < £(¢o) and

[u(t,z)| < My(a):=M -1 for (t,z) € Q

where Q = {(t,2) € Qu(T*);z > a,t > to}
Here, we denote by v a solution of the following initial boundary value problem in
non-cylindrical domain @);

Vs — Ugp = MT* in Q,

v(to,z) = vo(z) for z € (a,{(to)),
v(t,a)=M fort € (to,T7),
v(t,4(t)) =0 forte (4,T)

where v € C*([a, £(to)] with u(to, ) < v(to,*) < M on [a,£(to)], vo{a) = M and ve(£(to)) =
0.
By using comparison principle we see that u < v on @ and vg(¢,4(¢)) < u(t,£(t)) <0
for t € [to, T™).
Next, let w be a solution to the following problem:
W —wey =0 in (to, T*) x (a,(to)) := Q,
w(te,z) = wo(z) for z € (a,£(to)),
w(t,a)=M fort € (to,T7),
w(t,é(to)) =0 fort € (to,T*)

where wo € C*([a,£(to)]) with 0 < wy < vo on [a,£(t0)], wo(a) = M and wo(£(to)) = 0.
It is clear that |w.(¢,z)| < Ci on @ for some positive constant Cy, w < v on ¢ and
wy(t,a) < v.(t,a) for t € [to, T*) so that

vy(t,a) > —Cy  for t € [to, T™).

Putting 2(t,z) = v(t,z) + Kexp(z — £(t)) where K = (M™* + |v,(to)|rooae00)) +
C1) exp(feo), # satisfies that z(t,£(t)) = K for to <t <T™* and
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2t — 25 <0 In Q,
zp(to,2) >0 for a <z < L(to),
z(t,a) > forto <t < T

Then, we conclude that z takes its maximum value on any point in the curve {(¢,z);z =
£(t),to <t < T*}. Hence, 2,(t,£(t)) < 0 for to < ¢t < T*. By the definition of z, we have

va(t,£(t) > —K  for t € [to, T").

Therefore, we obtain that [£(t)] = |us(t,£(t))| < K for tg <t < T*. Thus this theorem is
proved. O

We refer to Lemma 6.3.1 in Ladyzenskaja-Solonnikov-Ural’ceva (1968) and Lemma 4.2
in Aiki(to appear) for the proof of Theorem 4 and to Aiki-Kenmochi(1991) for comparison
principle.

3 NUMERICAL RESULTS

We carried out numerical computations to DP with {5 = 1 and ug(z) = ui(z) =
Az?(z — 1)*. We note (H2) is satisfied for large A.

Numerical computations need some additional techniques due to treatment of the un-
known boundary. Therefore, we used the fixed domain method using the following map-
ping function

w0, =Die+n), o<t <<t (12

The free boundary problem is transformed to the following equivalent problem in the fixed
domain using the variable transform.

ut(taé) = z%uff(tag) - Q(li—:t_)l)uf(t7l)u5(t’§) + u1+a(t1€)7 0<t,-1<é<], (13)
u(0,8) = u(ﬁ‘(ﬁ—;—l), -1<é<], (14)
u(t,-1) =0, 0<t, (15)
u(t,1) =0, 0 <, (16)
Vi 2

£ =~ ), o<t (17)
Qo) =1 (18)

Here we should remark this problem becomes the normal blow-up problem with the
fixed boundary( (8), u(t,0) = 0fort € (0,T], (10) ~ (11) ) by setting £(t) = 1 and
neglecting the 2nd term in (13) and (17).
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Figure 1 u(t,z) to DP for a = 1. (a):A=108.8, u(t,z) | 0. (b):A=108.9, u(t,z) T +o0
as t T14.6.

V. /e
FA IR

Figure 2 u(t,z) to the normal blow-up problem for o = 1. (a):A=205.05, u(t,z) | 0.
(b):A=205.1, u(t,z) T +o0 as ¢t T 0.86.
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To these transformed problems we applied the 2nd order finite difference method in
space and the 4th order Runge-Kutta method in time. We used 201 grid points in space.
The basic time increment is 1074, It is controlled adaptively as in Chen (1986). Figure 1
shows numerical results to DP. Figure 2 shows numerical results to the normal blow-up
problem with the fixed boundary ((8) ~ (10)).

From comparison principle mentioned in the previous section it is expected the free
boundary has the influence of the enhancement of the blow-up phenomena. This expec-
tation is confirmed by these numerical results. However, the blow-up phenomena of the
free boundary are not observed. This is because as Figure 1 shows blow-up points do not
sufficiently get toward the free boundary.
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