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Abstract 
We consider the problem of optimal control of a Kirchhoff plate. Bilinear controls are used 
as forces acting on internal regions, to make the plate close to a desired profile, taking 
into the account a quadratic cost of control. We prove the existence of an optimal control 
and characterize it uniquely through the solution of an optimality system. 
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1 INTRODUCTION 

We consider bilinear optimal control of a Kirchhoff plate as modeled below. The controls 
act on small non-intersecting regions in the interior of the plate. These controls behave 
as an internal tension or "spring-like" control attached to the plate at specific locations. 

In order to define admissible vector controls for our system, we begin by defining an 
admissible component controller. Let h; be such that the support of h; C Q; = !l; x (0, T] 
and such that 

h; E UM, = {h; E L""(Q;) : llhiiLOO(Q;) :5 M;}, 

where 0 < M;. We define our control vector, h = (h1, h2, ... , hk), where k is the number of 
controlled regions (and consequently the number of controllers) for the system, requiring 
that each h; E U M., so that 
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For convenience later, we define M = maxf=1 M;. 
Concerning the regions which will be controlled, we require that n; cc n, fl; n ni = 0 

fori =f j and that an; nan= 0. 
Under these assumptions, the "displacement" solution w = w(h) of our state equation, 

satisfies 

Wtt + D-2w + w = Ef=t h;(x, y, t)w 
w(x, y, 0) = wo(x, y ), Wt(x, y, 0) = Wt(x, y) 

D.w + (1- p.)B1w = 0 } 
a~vw + (1- p.)B2w = 0 on r; = r X (O,T) 

when t = 0 
onQ=nx(O,T)) 

(1.1) 

where n c R2 with C2 boundary, an= r, v= (nt, n2) is the outward unit normal vector 
on an, and 

B1w 2ntn2Wxy- n~Wyy- n;w.,., 

B2w ![(n~- n~)wxy + n1n2(wyy- Wxx)]. 

The direction T in B2w is the tangential direction along r. The plate has free vibrations 
along f. The constant p., 0 < p. < ~' represents Poisson's ratio. 

We take as our cost functional 

J(h) =! (1 (w- z) 2dQ + EfJ; 1. hfdQ;), 
2 Q i=l Q, 

(1.2) 

where z is the desired evolution for the plate and the quadratic term in h; represents 
the cost of implementing the controls. We seek to minimize the cost functional, i.e., find 
optimal control h* E U such that 

J(h*) = minJ(h). 
hEU 

The goal of this paper is to characterize the unique optimal control vector in system 
consists of the state equation coupled with an adjoint equation. We note that the solution 
w = w( h) is a nonlinear function of the control, so that uniqueness of the optimal control 
becomes a delicate issue. We will show that the optimal control is unique, as the unique 
solution of the optimality system. However, due to the highly nonlinear structure of the 
optimality system, we obtain this uniqueness only for a small time interval. Consequently, 
we prove uniqueness of the optimal control for this same small time interval. 

For background information on plate equations and control theory, the reader is referred 
to the classical works of Lagnese {1989), Lagnese and Lions (1988) and Lions (1971 ). 

2 EXISTENCE OF THE OPTIMAL CONTROL 

We begin by proving existence, uniqueness, and regularity results for the state equation 
(1.1). These results will provide the a priori estimates needed to prove the existence of 
an optimal control. 
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To define our notion of weak solution, we first define the following product Hilbert 
space: 'H = H2(fl) x L2 (fl). We note that the bilinear form 

a(w,v) = fo {dwdv + (1- j.L)[2w.,yvxy- w.,.,vllll- wy11v.,.,] +wv}dfl (2.3) 

induces a norm on H2(fl) which is equivalent to the usual norm on H2(fl). 
Definition. Given h E U, w = w(h) = (w,wt) is a weak solution of (1.1) if w E 

C([O, T]; 'H), w(O) = ( w0 , w1), and w satisfies 

k 

< Wtt. tP > +a( w, tfo) = t; fo; h;wtfo dfl; for all tfo E H2(fl). 

Here, we interpret<·,·> as the duality pairing between H2(fl) and [H2(fl)]'. 

Lemma 1 (Well-posedness and Regularity) 

{i} Let w(O) = (wo,wl) E 'Hand h E U, then the state equation (1.1} has a unique 
weak solution w = w(h) = (w,wt) with (w,wt) E C([O,T];'H). 

{ii} /fin addition, (w0,w1) E (H4(fl)nH2(fl)) x H2(fl) with w0 satisfying the homoge­
neous boundary conditions in {1.1}, and hE C2(Q;) n UM;. then the weak solution 
w = w( h) satisfies 

w E C([O, T]; (H4(fl) n H2(fl)) x H2(fl)) 
Wtt E C([O, T]; L2(fl)) 

with w(O) = (w0 ,w1). Also w satisfies equation {1.1} in the L2 sense. 

Proof. We refer the reader to techniques used in Bradley and Lenhart (1994) where the 
authors used semigroup theory combined with a contraction mapping argument to obtain 
the desired well-posedness and regularity results. 0 

To prove the existence of an optimal control, we need the following a priori estimate. 

Lemma 2 Given w0 = (w0 ,wi} E 'Hand hE U, the weak solution w = w(h) = (w,wt) 
of {1.1} satisfies 

(2.4) 

where C1 = llwoll?i and k is the number of control regions. 

Proof. The proof is obtained using "multipliers technique" on the smooth solutions guar­
anteed by Lemma 1 (i) and then passing with a limit for solutions in 1{. For details, see 
Bradley and Lenhart (1994). 0 

We now prove the main result of this section. 
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Theorem 1 There exists an optimal control vector h• E U which minimizes the cost 
functional J(h) for hE U. 

Proof. Let {hn} E U be a minimizing sequence such that 

lim J(hn) = in£ J(h). 
n-+oo heU 

We denote the corresponding solution to (1.1) by wn = w(hn). By Lemma 2, 

On a subsequence, we have 

wn ~ w• weakly in L2([0, T]; H 2(!1)), 
wn --+ w• strongly in L2 ( Q), 
w; ~ w; weakly in L2(Q), 
w~ ~ w;1 weakly in L![O, T]; [H2(!1)]') 

and 

h? ~hi weakly in L2(Q;). 

We may now pass to the limit on (1.1) as n--+ oo, to obtain that w = w(h) = (w•,w;) 

solves the state equation (1.1) with control h•. Since the cost functional is lower semicon­
tinuous with respect to weak convergence (basically Fatou's Lemma), we obtain J(h*) $ 
lim,. .... 00 J(hn) = infheu J(h). Hence h* is an optimal control. D 

3 CHARACTERIZATION OF THE OPTIMAL CONTROL 

We now derive the optimality system by using the weak partial differentiability of the 
cost functional J(h) with respect to the controllers h;. In order to justify that such partial 
derivatives exist, we first must prove that the mapping h --+ w(h) has the desired weak 
partial derivatives with respect to controllers h;. 

Lemma 3 The mapping h E U --+ w(h) E 1l is has weak partial derivatives in the 
following sense: 

w(h~> ... ,hi+ d, ... , hk)- w(h) ~ ;j;i weakly in L2(0, T; 1l) 
c 

as c --+ 0, for any hj, hi + d. E U M1 • Moreover {;i = ( 1/Ji> 1/Ji,t) is a weak solution of the 
following problem: 

k 

1/Ji,tt + /::,. 21/Ji + 1/Ji- L h;'I/Jj = fw in Q (3.5) 
i=l 

1/Ji(x, 0) = 1/Ji,t(x, 0) = 0 inn 
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where w = w(h) = (w,wt)· 

Proof. Denote w• = w(h1, ... ,hi+ ci, ... , hk) = (w•, wi) and w = w(h). (We note that w• 
will depend on both j and e.) Then w•;w is a weak solution of 

(w';w)tt + ~2 (w';w) + (w";w) = Ef=l h; (w";w) +fw• in Q 

with (w•;w) (x,y,O) = (w";w)t (x,y,O) = 0 in !l 

and satisfies zero boundary conditions on an X (0, T). Using a priori estimates like in 
Lemma 2, we obtain 

-· -w - w I ., CkMT 
11--llcuo,T),?i) :5 llw lv(Q)e :5 c3 

e 

where C3 depends on the L00 bound on land the number of controlled regions, but is 
independent of e, due to a bound on llw"llvcQ)• independent of e. Hence on a subsequence, 

w• -w --- ~ tPi weakly in L2(0,T;'H). 
e 

This convergence and the above a priori estimates are sufficient to guarantee that {;j is 
a weak solution of (3.5). D 

Finally, we derive our optimality system. 

Theorem 2 Given an optimal control h and corresponding solution w = w(b) = (w, w1), 

there exists a weak solution p = (p,p1) in 1t to the adjoint problem, 

(3.6) 

and transversality conditions p(x, y, T) == p1(x, y, T) = 0 when t == T. Furthermore, each 
control element, h;, satisfies 

h; == max(-M;,min(- ;~,M;)). (3.7) 

We note that, although we obtain dependence in of tPi on the particular partial derivative 
being taken, we obtain only one adjoint equation, since we have only one state equation. 

Proof. Let h E U be an optimal control vector and w == w(h) be the corresponding 
optimal solution. Let hj + d E UMj for c > 0 and w• == w(ht, ... , hj + d, ... , hk) be the 
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corresponding weak solution of the state equation (1.1 ). We compute the partial derivative 
of the cost functional J(h) with respect to h; in the direction of l. Since J(h) is a minimum 
value, 

1. J(ht, ... , h; + d, ... , h~e)- J(h) 0 $ 1m --!.--"-'--'--"--'-_..:..--'-.:.:.'----'--'-
a-o+ e 

= lim 2
1 I ((w6 - z)2 - (w- z?)dQ + 2{3; I ((h; + et?- h~)dQ; 

a-o+ e }q e }qj 

= lim I (wa- w) (we+ w- 2z) dQ + {3; I (2h;l + el2)dQ 
e-o+ }q e 2 2 }q 

(3.8) 

= k 1/J;(w- z)dQ + {3; k h;l dQ, 

where we have used the fact that the support of h; CC Q; c Q. Also, 1/J; is defined as in 
Lemma3. 

Let p = (p,p,) be the weak solution of the adjoint problem (3.6). Existence and unique­
ness of p is proved by arguments similar to those in Section 2. Substituting the adjoint 
solution into (3.8) for (w- z), we obtain 

Using the weak form of (3.5), we have 

0 $ k l(wp + f3;h;)dQ. 

By a standard control argument concerning the sign of the variation l depending on the 
size of h;, we obtain the desired characterization of h; = max(-M;,min(-T,,M;)). 0 

Substituting (3.7) for h; into the state equation (1.1) and the adjoint equation (3.6), 
we obtain the optimality system: 

Wtt + l::J.2w + w = Ef=1 max(-M;,min(-7;•M;))w 
Ptt + l::J.2p+ p = Ef=1 max(-M;,min(-7;•M;))p + w- z 

!::J.w+(1-JL)Btw=!::J.p+(1-JL)Bip=O } L: 
/;t:J.w + (1 -JL)B2w = /;t:J.p + {1 -JL)B2p = 0 on 

w(x,y,O) = wo(x,y), Wt(x,y,O) = w1(x,y) 
p(x, y, T) = Pt(x, y, T) = 0. 

m Q 
inQ 

on n 

(3.9) 

Weak solutions of the optimality system exist by Lemma 1 and Theorems 1 and 2. 
However, the problem of uniqueness of solutions for this nonlinear optimality system 
(which implies the uniqueness of the optimal control vector) proves to be more difficult. 
We will now prove for small timeT, that the optimality system (3.9) does, in fact, possess 
a unique solution and thereby show that the optimal control is in fact unique for a small 
time interval, [0, T]. This, then will give a characterization of the unique optimal control 
in terms of the solution of (3.9). 
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Theorem 3 ForT sufficiently small, weak solutions of the optimality system {9.9} are 
unique. 

Proof. Suppose we have two weak solutions, 

Since w, w, p, p E C(O, T; H2(S1)), we have that w, w, p, p are bounded on Q. 
We change variables 

Then u (and respectively, q) satisfies in a weak sense 

Utt + 2Aut + (A2 + l}u + Ll2u + u = Et:1 max(-M;,min(-~,M;))u 
-qtt+ 2Aq1 - (A2 + l}q- Ll2q- q = L:~=l max(-M;,min(-~,M;))(-q) 

- e2·Mu + e"1z. 

One can check that u, q satisfy similar boundary and initial/terminal conditions as before, 
so that u- u and q -q satisfy equations as above (modulo e"1z term in q equation}, with 
homogeneous data. 

Using multiplier (u- 11}1 on the u- u equation and multiplier (q -q}1 on the q -q 
equation, and combining, we have the following estimate: 

~j 0 ((u- u),)2(x, T)dn + ~1 0 ((q- q}1}2(x, O}dn 

A21 +"2 0 ((u- u)2(x, T) + (q- q)2(x, O))dn (3.10} 

+a(u- u, u- u)(T) + a(q -q, q -q}(O} 

+2A 1 Q[((q- q}1}2 + ((u- u)1?JdQ 

" = L 1 [(h;u- h;u)(u- u)1 - (h;q- h;q)(q- q}1 - e2.x1(u- u)(q -q)1] dQ 
i=l Q 

where h; = max(-M;,min(-~,M;)) and h; = max(-M;,min(-W.:,M;)). It can be shown 
by direct computation that 

- 1 1 
ih;- h;i $ {3; iuq- uqi $ /3; (iu- ullqi + l7i- qliul), 

so that we can estimate the right hand side of (3.10} and obtain, 

2A k[((q-7j}1}2 +((u-u)1}2]dQ (3.11} 

$ k[((q- 7i)t)2 + ((u- u)t)2jdQ + (CieC,(kM+.\)T) k[(u- u)2 + (q -q)2jdQ, 
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where Ct, C2 are independent of ,\ and T but do depend on the number of controlled 
regions, k and on the L00 bounds on u and q. Noting that 

and using a similar argument for the variable q, we obtain, 

(2.\-1)j)((q-q)1) 2 + ((u-u)1) 2]dQ:S 

T2(CleC,(kM+.\)T) i)((q- li)t)2 + ((u- u)t)2]dQ. 

We now fix ,\ such that 2,\ - 1 > 0 and choose T sufficiently small so that 

and thus ( q- li)t = ( u-u)t = 0 in Q. Due to agreement of q, q and u, u at top and bottom 
of the cylinder Q respectively, we obtain q = q and u = u, as desired. D 
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