
9

Circuit Partitioning For FPGAs

G. Saucier, D. Brasen, J.P. Hiol
Institut National Polytechnique de Grenoble I CSI
46, Avenue Felix Viallet, 38031 GRENOBLE cedex FRANCE
Tel: (33) 76-57-46-87 Fax: (33) 76-50-34-21 E-mail: saucier@imag.fr

Abstract

High-level synthesis tools have traditionally used circuit hierarchy to partition circuits into
packages. However hierarchical partitioning can not be easily performed if hierarchical blocks
have too large a size or too many lOs. This problem becomes more frequent with FPGAs
which have small size limits and even smaller 10 pin limits. An 10 bottleneck often prevents the
maximum FPGA package size from being reached. In this paper, two new FPGA cone
partitioning algorithms are presented that have been implemented in the ASYL+ tool set. High­
level synthesis is linked to cone partitioning by creating circuit hierarchy from a VHDL
description.

1. INTRODUCTION

High-level synthesis strives to minimize the number of packages required to realize a circuit
with minimum production cost at maximum frequency. The post-synthesis circuit partitioning
addressed here is normally required for blocks that can not be cut based on high-level structures
(architecture reorganization, data-path bit-slice partitioning, or Ram/Rom array sectioning).
Such blocks are partitioned by grouping basic circuit elements like FPGA modules to meet size
or 10 package constraints and match the worst timing of the blocks produced during synthesis.
Given that timing constraints can be met by keeping critical paths within a partition, the
problem becomes fmding partitions of high size to 10 ratios that meet 10 package constraints.

Prior work in post-synthesis circuit partitioning has primarily focused on top-down minimum­
cut algorithms (Fiduccia 1982), (Hwang 1992), (Kring 1991). These algorithms recursively
attempt to find the cut that minimizes the number of connections between two bipartitions
(Figure 1). The min-cut of (Keringhan 1970) proposed starting with two random bipartitions
followed by iterative pair swapping on all pairs of nodes. Subsequent algorithms have
improved the time complexity, added a look-ahead into future moves to stabilize results, and
reduced the cut size by gate replication and improved move set generation Kuznar 1993. All
allow for a maximum size constraint per partition by limiting the size of a bipartition during
each min-cut operation. However to meet a maximum number of 10 pins constraint per
partition the min-cut algorithm has to cut further, reducing the size as well as lOs of otherwise
optimal partitions.Traditional min-cut approaches lack the ability to find constrained 10
partitions with high Size/IO.

To meet high Size/IO requirements for specific packages, cone structure partitioning is
proposed. Define a cone structure as the set of all combinational nodes that can be found
between a single output and the inputs that lead to that single output (Figure 1). For sequential
circuits, the inputs/outputs of the cone can also be the outputs/inputs of sequential elements.
Cone partitioning selects and merges/cuts high Size/IO combinational groups within cones that
exist because of low fanout. Circuits with low fanout are easily partitioned into unoverlapping
cones that fit packages. Circuits with high fanout have the majority of each cone overlap several

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995

98 Part Three . Partitioning and Clustering for Programmable Devices

others and merging/cutting of optimal high Size/IO circuit sections is required to produce good
partitions.

/,
Primary lnpou""'!Jr"
Primary Ouopou

In this paper, a hierarchical partitioning algorithm is proposed that preserves high-level timing.
For those nonhierarchical blocks found to be too large, flat cone partitioning is analyzed.
Critical path containment within a partition is shown to be easy with cone partitioning with no
loss to area. A first cone partitioning algorithm clusters by cutting each cone around highest
cost cones and then cluster merges. A second cone partitioning algorithm clusters nodes found
within the same cone overlapping region and then cluster merges. Experimental results using
MCNC and industrial benchmarks on two different industrial FPGA packages show that the
cone partitioning algorithms produce better partitions than min-cut. The hierarchical partitioning
algorithm is also used to partition circuit hierarchy created from an example VHDL description.

2. HIERARCHICAL PARTITIONING ALGORITHM

For FPGA implementations, circuit hierarchy constrains partitioning with a prioritized list of
gate clusters within clusters. Since this can guarantee the timing of high-level structures,
partitioning based on circuit hierarchy can be powerful. However if the designer or high-level
synthesis tool that creates the circuit hierarchy does not understand the final technology, the
hierarchy overconstrains producing bad partitions with low gate utilization .

..,...--- Top-Level Block

r===-=====-.
~~~~~ 

Conorol 
~~b-~..._-l-

For example, refer to the circuit hierarchy of Figure 2. As seen from a high-level, there is a 
Data-Path block, a RAM or ROM block, and Glue-Logic scattered as a controller for the data­
path and a separate block of logic. At the post-synthesis level, the contents of all these blocks 
are mapped to FPGA library macros or modules which represent gates. The timing designed 
for at the high-level is preserved by implementing such blocks within one FPGA package. If 
the circuit hierarchy is flattened, a connected network of FPGA modules from an FPGA library 
results. No more Data-Path, RAM, or ROM since the typical FPGA currently has no 
specialized hardware sections. The only way to guarantee the desired high-level timing is to 
partition based on circuit hierarchy. 
To exploit the hierarchy and preserve high-level timing, the following algorithm is proposed to 
perform hierarchical circuit partitioning. 



Circuit panitioning for FPGAs 99 

Hierarchical Partitioning Algorithm· 
Step 0) Begin with a pointer to the top-level block assigned as the current BLOCK. 
Step I) Tf the current BLOCK has no hierarchical sub-blocks AND the BLOCK is larger than Size or 10 

constraints, perform Flat Cone Partitioning on the BLOCK. The BLOCK will be replaced by non-hierarchical 
sub-blocks (i.e., flat circuit partitions that meet constraints) under a new BLOCK pointer at the same level of 
hierarchy. 
Step 2) If there exists hierarchical sub-blocks in the current BLOCK, recursively call the hierarchical 

partitioning algorithm for each sub-block (i.e. , set BLOCK=sub-block and goto step I). 
Step 3) Perform pair-wise merging on resulting nonhierarchical sub-blocks of BLOCK to meet constraints. 

Merge sub-blocks (i.j) to meet MaxSize or MaxiO constraints and minimize the number of packages. For 
FPGAs this means to maximize the cost ratio 

C ( SizeM = Size;+ Sizei ) O.StM = 
10M= /0; + [Qj- (2 * /Ocommon} 

since 10 pin bottlenecks cause MaxSize constraints to be rarely met. IOcommon is the number of common 10 
connections between the blocks. The block with largest cost=Size/10 is merged with the block that will 
produce a new block with largest cost. Finding larger cost merges is not a problem since size grows faster than 
lOs. Partitions are filled sequentially allowing for the selection of different packages. When finished merging, 
remove this level of hierarchy and analyze the next (i.e. , move all sub-blocks of BLOCK to the parent of 
BLOCK, set BLOCK to its parent, and goto step 1 ). Exit if BLOCK is the top-level block since the circuit 
hierarchy has been .fully partitioned. 

By recursively descending the circuit hierarchy. blocks smaller than constraints are first merged 
together. Such blocks connected only through the top-level are unlikely to be implemented in 
the same FPGA. The blocks larger than constraints are partitioned with cones. 

6 Final FPGA Partilions 

Partitioned Glue Logic 

Figure 3: Partitioning The Example Hierarchy. 

In Figure 3, the Hierarchical Partitioning Algorithm is performed on the example of Figure 2. 
The small control blocks of the bottom-level hierarchy are first merged, some with the Data­
Path block, until MaxSize and MaxiO limits prevent further merging (Figure 3 - Left) . The 
bottom-level hierarchy is removed and partitioning performed at the top-level (Figure 3 -
Right). The Glue-Logic block was too large for constraints and was cone partitioned into two 
blocks. The Circuit Hierarchy is thus partitioned into 6 FPGAs with the original RAM/ROM 
and Data-Path blocks fully contained within an FPGA package to preserve high-level timing. 
Hierarchical partitioning in this way assumes some a priori rules during the creation of circuit 
hierarchy by designers or high-level synthesis tools to achieve good results. 

• Since the target FPGAs are rarely known when designing at the high-level, nonhierarchical 
flat blocks should be made smaller than the smallest possible FPGA package considered. This 
facilitates the post-synthesis merging of the hierarchical partitioning when the target FPGA is 
known. Also the high-level structures of Data-Paths, RAMs, and ROMs are more properly 
partitioned at the high-level anyway. 

• Merge together the hierarchical blocks which do not serve to preserve high-level timing. 
The tlat cone partitioning algorithms to follow seek out highly connected sections and more 
accurately fill the target FPGAs since the block granularity used is the basic FPGA module. 
The local timing considerations of containing entire critical paths within a package are also 
performed by the flat cone partitioning. 



100 Part Three Partitioning ll17d Clustering for Programmable Devices 

These two rules are not in cont1ict since the first is a rule for blocks which should not be further 
partitioned and the second is for those that should. With hierarchical blocks designed as pre­
partitioned circuit sections, the remainder of this paper will focus on the flat cone partitioning of 
blocks too large for target FPGA packages. 

3. CONE STRUCTURES WITHIN A FLAT CIRCUIT 

Define a cone structure as the set of all combinational nodes that can be found connected 
between a single output and the inputs that lead to that single output. For sequential circuits, the 
inputs/outputs of the cone can also be the outputs/inputs of sequential elements. In the netlist of 
Figure 4 there are two cones. Cone 2 has an input pin and an output pin connected to the 
sequential element 2. Since sequential element 2 has only connections within cone 2, these two 
pins can be removed from the cone 2 pin list of lOs. 

Primary Inputs Region Of 
Cone Overlap 

D 
ill 

Figure 4: Finding Cone Structures Within A Flat Circuit. 

Cone structures are minimum-cut structures because they outline regions of low fan-out. The 
only combinational gate node in Figure 4 with fanout greater than one results in an overlapping 
section between the two cones. A fanout greater than two would possibly result in an 
overlapping section with a third or fourth cone, making the cones harder to merge/cut. If all the 
nodes in cone 2 had fanout of one, the maximum Size/10 becomes 4/4 (4 nodes, 3 inputs, and 
I output). If all nodes in cone 2 had fanout of greater than one, the minimum Size/10 becomes 
417 (4 nodes, 3 inputs, and 4 outputs). The difference between maximum and minimum 
Size/lOs becomes greater as the cone size increases. 

4. CRITICAL PATH CONSIDERATIONS To IMPROVE TIMING 

Define a critical path as a long combinational path between two sequential elements or 10 pads 
of an original unpartitioned circuit. Classical algorithms for identifying critical paths have been 
published (Singh 1991). If such critical paths are cut during partitioning of the circuit into 
packages, resulting inter-package wire capacitances cause the circuit timing to drop. Also if 
only the most critical path is considered during partitioning, resulting inter-package wire 
capacitances can be sufficiently large along secondary critical paths to cause them to become the 
most critical paths. Prior work has used min-cut algorithms to create initial bipartitions that 
contain the n-most critical paths and then not allow gates of such paths to cross bipartition 
boundaries. The partitioning algorithm proposed in (Murgai 1991) clusters and merges the 
circuit around critical paths so that the maximum delay is minimized. 

Containing The Most Critical Path Containing TheN Most Critical Paths 
Within Cone 2 And Cutting Cone I. By Merging Cone I And Cone 2. 

Figure 5: Containing Critical Path(s) Within Cone Structure. 



Cirr:uil panilioning for FPGAs 101 

Since cones are defined as starting from a primary output or sequential element and fmishing 
at primary inputs or sequential elements, containing a critical path within a cone is relatively 
easy. On the left of Figure 5, containing the most critical path within cone 2 forces the cutting 
or immediate merging of cone 1. On the right of Figure 5, the n most critical paths are 
contained by forcing the merger of cone I and cone 2. Initial results indicate containing critical 
paths does not alter Size or lOs of partitions since most critical paths run through similar cones. 

5. CUTTING FOR BEST CONES AND MERGING 

In this section, the first of two cone partitioning algorithms is listed below and called 
Best_Cone_Merge. This method preserves the best cones by keeping them whole. However 
these whole cones are sometimes too large for package constraints with circuits of low fanout 
and further partitioning is required. 

Cone Partitioning Algorithm 1. Best_Cone_Merge: 
I. Define cone structures as described in section 3. 
2. Preserve largest cost cones and cut all others. Nonoverlapping clusters result which are the highest cost 

sections extracted from the original circuit. Clusters that are too large f or constraints, usually the whale cones 
that were preserved, must be divided using min-cut. 

3. Add sequential elements to clusters f or reduced Size/10 ratio. This means adding to clusters with the 
largest number of common interconnections. 
4. Merge clusters with combinationaVsequential elements on the same critical path as in section 4. 
5. Merge clusters into partitions to meet package constraints as in the hierarchical partitioning algorithm of 

section 2. 

Primary 
Inputs Or 
Sequential 
Elements 

To illustrate this algorithm, a combinational network example is given in Figure 6. It has a 
total size 26 assuming each node has a size of 1 and total number of lOs 20. 

I ~one3 7/10 

Cone 2 
919 

Cone 4 
8110 

Figure 7: Cones Of Example Network And Associated Costs. 

Figure 7 shows the network of Figure 6 after the definition of cones. 



102 Pan Three Panitioning and Clustering for Programmable Devices 

Figure 8: Flattened Cone Stmcture With Whnle Best Cone 2. 

In Figure 8, cone 2 with the greatest cost 1 remains whole. The other cones are cut around 
cone 2 producing cone .I cost of 4/5, cone 3 cost of 4n, cone 4 cost of 7/8, <md cone 5 cost of 
6/8. Of these cut cones, the highest cost cone is cone 4. Cones 3 and 5 are cut around cone 4. 

In Figure 9, clusters have resulted from the cut cone sections. Cluster 2 has the greatest cost 1. 
The costs after merging with cluster 2 are 13/12 for 2-1, 11/10 for 2-3, 16/15 for 2-4, and 
13114 for 2-5. The highest cost merge 2-3 is accepted if the merged cluster 2-3 meets package 
constraints. 

6. CLUSTER ALONG CONE BOUNDARIES AND MERGE 

In this section, the second cone partitioning algorithm Cluster _And_Merge is introduced. This 
algorithm clusters nodes found in similar overlapping cone sections. However these clusters 
often contain only one node with circuits of high fanout, forcing reliance completely on the 
merging operations to achieve high SizeflO partitions. Therefore this algorithm contrasts the 
first in that it should be used for circuits of low fanout and the first algorithm used for circuits 
of high fanout. 

Cone Partitioning Algorithm 2. Cluster _And_Merge: 
1. Define cone structures as described in section 3. 
2. Cluster Overlapping Cone Sections. Nonoverlapping clusters result which are the highest cost sections 

extracted from the original circuit. 
3. Add sequential elements to clusters for reduced Size/10 ratio. 
4. Merge clusters with combinationaUsequential elements on the same critical path. 
5. Merge clusters into partitions to meet package constraints as in cone partitioning algorithm I. 

Figure I 0 illustrates overlapping regions for the example network of Figure 6. The degree of 
shading in a region reflects the amount of overlap between cones. The dark region at the center 
is the overlap region of the three cones 2, 3, and 4. The node within this dark region has the 
three labels 2, 3, and 4. 



Circuit panitioning for FPGAs 103 

Figure 10: Defining Overlapping Region Clusters For Example Network. 

All combinational gate nodes with the same set of labels are contained within the same 
overlapping region and are assigned to the same cluster in Figure 11. Note that the node at the 
top of clusters which were overlapping cone regions always have a fanout greater than one. 

Figure 11: Block Clusters Formed From Cone Cuts. 
In Figure 11, cluster 2 has largest cost 1. The merge costs after merging with cluster 2 are 

9/10 for 2-l, 7/8 for 2-3, 8/10 for 2-4,9/10 for 2-5,6/6 for 2-6,7/6 for 2-7,7/11 for 2-8,7/10 
for 2-9, and 6/9 for 2-10. Cluster 2-7 is merged if it meets package constraints. 

7. EXPERIMENTAL RESULTS 

Table I lists cone partitioning information for ISCAS85 MCNC benchmarks and some real 
industrial circuit benchmarks. Size is the number of ACTEL2 FPGA logic modules. Primary 
inputs and outputs are of the initial circuit. Benchmarks with many more algorithm 2 clusters 
than cones indicate high cone overlap and circuits with high fanout. Cone structures are rooted 
at the input nodes of primary outputs or sequential element inputs. Thus for combinational 
circuits there can never be more cones than primary outputs, but there can be more primary 
outputs than cones. Since sequential elements have multiple inputs, the same does not apply. 

Total Primary Primary Whole Sequential Alg.l Alg.2 
Circuits Size Inputs Outputs Cones Elem Size Clusters Clusters 
c7552 9425 207 108 107 0 107 251 
c5315 7005 178 123 123 0 123 284 
c3540 5712 50 22 22 0 22 112 
c6288 3216 32 32 32 0 32 62 
c2670 3191 233 140 64 0 64 119 
c880 1096 60 26 26 0 26 39 
c499 912 41 32 32 0 32 43 
lndustl 7362 21 92 102 171 102 195 
Indust2 1287 41 96 96 0 96 101 
Indust3 928 38 25 6J 35 63 119 

Table 1: Benchmark C1rcmt InformatiOn. 



104 Pan Three Partitioning and Clustering for Programmable Devices 

The industrial benchmark industl was synthesized from a behavior level VHDL description. 
During the high-level synthesis process, a netlist hierarchy was created with the partitioning 
rules stated. Figure 12 lists a VHDL description summary of each hierarchical block and at each 
level of hierarchy. During the netlist partitioning, the hierarchical blocks were easily 

r·~-
Merge 58 

Merge 36 

r·~ 

Merge35 

Neur nes_Top u·~tyt'7_"""-Top • ] 
end Neurons_ Top, 
An:httcctureTop ArchofTopJS 

::1 bq~•;;.tity~rl<LVQ, 

Lvq_a L VQ port map ( ), 
end Top_Arch, 

Neurones ~~io~:':'.':::~•ExtRAM_Cil. E"RAM_ WE m BIT, ... );] 
endproc_ncur, 
Architecture Archi of Neurone 1S' 

gm 

when st_3 => Prg_Adr <=lncrcm (Prg___Adr), 
.._____ Read.RamAdr<=Prg_ln(9downto0), 

end Ardu; 

[= .. ~~~~:~~::.:~~~·· 0); J Pt_Rom <= Incrcot (Pt_Rom); 
Lsbbd_Rom <=Rom_ out; 

dLvq_Arch; 

pPerator ~~~;· ::.o=~(: oo~•• ol, 
begm 
A_N =not A(7) & A(6 do'Mlto 0), ----38 Sub_Blocks ~{.:~~<B_N 

mdCntp, 

Figure 12: Hierarchical Partitioning Of Benchmark Industl With VHDL Descriptions. 

merged to a minimum number of 11 packages with Size constraint 684 and IO constraint 104. 
This optimal result (i.e., 11 packages * 684 = 7524 is just greater than circuit size 7362) would 
not have been possible if the high-level synthesis had not created highly connected blocks 
which were smaller than the package constraints. 

In Tables 2 and 3, experimental comparisons with a min-cut algorithm of (Fiduccia 1982) are 
presented against the cone partitioning algorithm! of Best_Cone_Merge and the cone 
partitioning algorithm 2 of Cluster _And_Merge. Benchmark circuits were partitioned for two 
industrial packages. Table 3 lists partitioning information for a smaller package with maximum 
size constraint of 684 and maximum number of IO pins constraint of 104. Table 4 lists 
partitioning information for a larger package with maximum size constraint of 1232 and 
maximum number of IO pins constraint of 140. For each algorithm, Tables 2 and 3 list the 
number of packages into which the circuit has been partitioned (#Pkg), the average size of the 
circuit partitions (AvSize), the average number of 10 pins of the circuit partitions (AviO), and 
the CPU time in minutes taken during the execution of the algorithm on a Sun Sparcstationl + 
(Time). Min-cut consistently produced bad partitions resulting in more packages because of 
the FPGA package 10 bottleneck. Differences in results between the cone partitioning 
algorithms is not as clear since the typical circuits used here have average fanout (i.e, algorithm 
1 clusters all met package constraints and algorithm 2 clusters all had size greater than 1). 



Circuit partitioning for FPGAs 105 

Min-Cut Alg 1. Best Cone Merge Alg 2. Cluster And Merge 
Circuits #Pkg AvSize A viC Time #Pkg AvSize AviO Time #Pkg AvSize AviO Time 
c7755 ~~ 497 ~ 27.!S_ 15 628 _67 4.9 14 674 89 6.4 
c5315 24 292 71 25.7 11 636 60 4.1 11 637 64 4.2 
c3540 13 440 70 !S.6 10 571 91 2.6 9 635 75 1.1 
c62_!S!S 9 357 70 22.9 6 536 78 5.8 5 643 92 2.!S 
c2670 8 399 79 6.9 6 532 50 1.5 5 639 90 1.0 
c880 3 274 93 0.1 2 548 78 0.1 2 548 81 0.1 
c49':1 4 228 78 0.1 2 456 52 5.5 2 456 55 0.1 
lndustl 17 430 78 32.1 11 669 75 9.7 11 670 88 6.3 
lndust2 4 322 92 1.8 2 644 89 1.2 3 429 83 0.3 
lndust3 4 232 67 1.4 3 309 156 0.6 2 464 98 1.1 

Table 2: Results Wtth Package Constramts Max Stze=684 And Max 10s=104. 

Min-Cut Alg 1. Best Cone Merge A1g 2. Cluster And Merge 
Circuits Pkg f.vSize AviO Ttme #Pkg AvSize AviO ime ~Pkg f.vSize ~viO [.rime 
c7755 13 725 96 16.2 IS 117!S 119 5.2 9 1048 110 8.9 
c5315 11 637 121 10.6 6 1168 108 6.3 6 1168 90 6.0 
c3540 8 714 79 3.3 5 1143 96 2.8 5 1143 91 1.4 
c628!S 5 644 87 !S.4 4 8U4 !S3 7.4 3 1072 99 6.2 
c2670 5 639 103 4.5 3 1064 101 1.7 3 1064 119 2.0 
lndustl 10 737 86 14.2 6 1227 86 10.8 6 1227 99 7.1 
lndust2 2 644 117 0.8 2 644 74 1.6 2 644 lU4 0.3 

Table 3: Results Wtth Package Constramts Max Stze-1232 And Max 10s=140. 

The graphs in Figures 13 and 14 illustrate the comparisons between min-cut and the cone 
partitioning algorithms for the smaller and larger packages. AvSize/AviOs (i.e., average size 
over average number of 10 pins) are graphed against the number of partitioned packages for 
each benchmark circuit Note that the AvSize/AviOs with cone partitioning are always greater 
than min-cut. Also most cone partitioning AvSize/AviOs are greater than the small package 
Size/10 constraint of (684/104)=6.57 and the large package Size/10 constraint of 
(12321140)=8.8 (see the vertical lines shown in Figures l3 and 14). Most min-cut 
AvSize/AviOs are less than both large and small package Size/10 constraints. 

~· 
j ~0 
~ 15 

0 
I 0 

~ 
0 

0 6 8 1 0 1 ~ 

Figure 13: Cone Partitioning/Min-cut Results For Small Package. 

Averaging the AvSize/AviOs with the smaller package for the min-cut algorithm gives 4.4, for 
the Best_Cone_Merge algorithm gives 7.9, and for the Cluster_And_Merge algorithm gives 
7.3. Averaging the AvSize/AviOs with the larger package for the min-cut algorithm gives 7.0, 
for the Best_Cone_Merge algorithm gives 10.8, and for the Cluster _And_Merge algorithm 
gives 10.5. The difference between the min-cut and Best_Cone_Merge algorithms for the small 
package is 3.5 while for the large package is 3.8. 



106 Part Three Partitioning and Clustering for Programmable Devices 

• 14 Tr-------, 
& 12 ---Min-Cu1 -~-l10 ~Aig1.BCM 

8 

0 8 

.: 4 
E 
~ 2 

0 

-·-Aig2.CAM 

---.--Large Pkg 

Slze-To-110 Ratlc 

10 15 

Figure 14: Cone Partitioning/Min-cut Results For Large Package. 

The difference between the min-cut and Cluster _And_Merge algorithms for the small package 
is 2.9 while for the large package is 3.5. As the packages get larger with higher Size/10 
constraints, the cone partitioning algorithms become better solutions for circuit partitioning. 

CONCLUSION 

A hierarchical partitioning and two flat cone partitioning algorithms have been presented. The 
first cone partitioning algorithm, which should be used with circuits of high fanout, clusters by 
cutting each cone around the best cost cones and then merges clusters. The second cone 
partitioning algorithm, which should be used with circuits of low fanout, clusters nodes found 
within the same overlapping cone region and then merges clusters. Experimental results using 
two differing industrial packages show that the cone partitioning algorithms produce better 
partitions than min-cut. Hierarchical partitioning with a circuit hierarchy created from a VHDL 
description also produced an optimal number of packages. 

REFERENCES 

C.M. Fiduccia et al. 1982, "A Linear-Time Heuristic For Improving Network Partitions", 19th 
DAC, 1982, pp. 175-181. 
J. Hwang et all992, "Optimal Replication For Min-Cut Partitioning", ICCAD, 1992, pp.432-
435. 
B.W. Kernighan et al. 1970, "An Efficient Heuristic Procedure For Partitioning Graphs", Bell 
System Technical Journal, vol. 49, Feb. 1970, pp. 291-307. 
C. Kring eta!. 1991, "A Cell-Replicating Approach To Mincut-Based Circuit Partitioning", 
ICCAD, 1991, pp. 2-5. 
B. Krishnamurthy 1993, "An Improved Min-Cut Algorithm For Partitioning VLSI Networks", 
IEEE Trans. On CAD, vol. CAD-33, no. 5, May 1984, pp.438-446. 
R. Kuznar et al. 1993, "Partitioning Digital Circuits For Implementation In Multiple FPGA 
ICs", Technical Report TR93-03, MCNC, Research Triangle Park, NC, March 1993. 
K.J. Singh et al. 1990, "A Heuristic Algorithm For The Fanout Problem", 27th DAC, 1990, 

pp. 357-360. 
R. Murgai et al. 1991, "On Clustering For Minimum Delay/Area", 28th DAC, 1991, pp. 6-9. 


