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Abstract 
Reduced Ordered Binary Decision Diagrams (ROBDDs) are a data structure frequently 
used for representation and manipulation of Boolean functions. Since the size of ROBDDs 

is extremely sensitive to the variable order a lot of heuristics to get a good variable order 
have been developed. For the class of partially symmetric Boolean functions this paper 
presents a new general method to improve quality of ordering heuristics based on the 
exchange of variables. Statistical and benchmark results are given to show the efficiency 
of our approach. 
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1 INTRODUCTION 

Binary Decision Diagrams (Boos) as a data structure for representation of Boolean func­
tions were first introduced by Lee (1959) and further popularized by Akers (1978) and 
Moret (1982) . In the restricted form of ROBDDs they gained widespread application, be­
cause ROBDDs are a canonical representation and allow efficient manipulations (Bryant 
1986) . Some fields of application are logic design verification, test generation, fault simula­
tion, and logic synthesis (Malik 1988, Bryant 1992). Most of the algorithms using ROBDDs 
have running time polynomial in the size of the ROBDDs. The sizes themselves depend on 
the variable order used. Thus, there is a need to find a variable order that minimizes the 
number of nodes in an ROBDD. 

As an example of the application of ROBDDs consider the use of Field Programmable 
Gate Arrays (FPGA) in the construction of Combinational Logic Circuits (cLC). A BDD 
has a direct correspondence to a CLC when each node of the BDD is substituted by a 
multiplexer. Since it is straightforward to map these multiplexer circuits on a FPGA whose 
logic blocks are based on multiplexers, BDDs have become a good framework for logic 
synthesis. The usage of BDDs also simplifies the technology mapping and the routing for 
FPGAs (Brown 1992). Here it is already useful to save only a few nodes using a good order. 
Additionally, these circuits have nice testability properties (Becker 1992). 

The existing methods for finding good variable orders can be classified into three cate­
gories. The first are initial heuristics starting from a CLC (Malik 1988, Fujita 1988, Fujii 
1993), the second are gradual improvement heuristics based on the exchange of variables 
in the ROBDD (Ishiura 1991, Fujita 1991, Rudell 1993, Felt 1993), and the third are ex­
haustive methods to find a mininum order (Friedman 1990). The gradual improvement 
heuristics play an important role in dynamic variable reordering, since these methods are 
able to handle large circuits that cannot be represented without dynamic methods (Rudell 
1993). 

In this paper we consider partially symmetric functions, i.e., functions that are invari­
ant under the permutation of some input variables. Given its ROBDD representation the 
symmetries of a Boolean function can be determined efficiently (Moller 1993). Know­
ing a Boolean function to be symmetric allows the application of special logic synthesis 
tools that can improve the results of the design (Hurst 1977, Kim 1991, Drechsler 1995). 
Furthermore, knowing the variables of a function which are symmetric often restricts the 
search space of a logic design problem what may yield in a remarkable decrease of running 
time for that problem. Such problems are, e.g. the equivalence test of Boolean functions 
for that the input correspondence is not known (Cheng 1993, Lai 1992, Mohnke 1993) 
and technology mapping (Mailhot 1990). In this paper, we especially show that symme­
try properties can be efficiently used to construct good variable orders for ROBDDs using 
modified gradual improvement heuristics. 

There are three facts that create the basis of our ordering improvements: 

1. The exchange of two symmetric variables does not change the size of the ROBDD, 
because the function remains the same. 

2. The size of the ROBDD of any totally symmetric function f : {0, 1 }n -+ {0, 1} is O(n2) 

(Wegener 1984, Bryant 1986). 
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3. The value of a function which is symmetric in some variables { x;, .. . , x;.} does not 
depend on the exact assignment of these variables but only on their weight LJ=I x;;. 

Using the first fact, the ordering heuristics can skip over the exchange of symmetric 
variables and so the running time decreases. However, the resulting ROBDD sizes will be 
the same. The second and third fact leads to a special class of variable orders. In those 
orders the symmetric variables are located side by side. This class will be introduced and 
investigated in this paper. Especially, our paper gives a negativ answer to the conjecture 
stated in (Panda 1994)* that for each Boolean function there is at least one order where 
the symmetric variables are located side by side, for which the ROBDD is of minimal size. 
We will present counterexamples to this conjecture. 

Nevertheless, in general, it is reasonable to locate the symmetric variables side by 
side: To give an impressive example, consider the function X!Xn+! + ... + XnX2n (Bryant 
1986). The size of the corresponding ROBDD with variable ordering x1, x 2 , x3 , ... , x 2n is 
exponential in n whereas the size of any ROBDD with an order where the symmetric 
variables are side by side is linear in n. 

We present statistical facts for all partially symmetric Boolean functions with up to 
five input variables and experimental results of functions taken from the LGSYNTH91 
benchmark set proving the new class of orders to be very efficient with respect to the 
ROBDD size. This leads to the idea of modifying the reordering heuristics presented in 
literature so that they do not reorder single variables but whole symmetric blocks. The 
benchmark results show that the modified algorithms outperform the original ones. 

The paper is structured as follows: In Section 2 ROBDDs and symmetric functions are 
defined. Symmetry variable orders are introduced in Section 3 and statistical results are 
presented in Section 4. In Section 5 benchmark results are given. We finish with a resume 
of the results in Section 6. 

2 NOTATIONS AND DEFINITIONS 

We provide a short introduction to basic notions which are important for the understand­
ing of this paper. 

2.1 Binary Decision Diagrams 

We start with a brief review of the essential definitions and properties of BODs (see Bryant 
(1986)). 

Definition 1 A Binary Decision Diagram (BDD) is a rooted directed acyclic graph G = 
(V, E) with vertex set V containing two types of vertices, non-terminal and terminal ver­
tices. A non-terminal vertex v has as label an argument index index(v) E {l, ... ,n} 
and two children low(v), high(v) E V. A terminal vertex v is labeled with a value 
value( v) E {0, 1} and has no outgoing edge. 

*Similar methods as those presented in this paper have independently be developed in that paper. 
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BODs are also called branching programs (Wegener 1987). A BDD can be used to compute 
a Boolean function f(xl, ... , Xn) in the following way: Each input x = (xb ... , Xn) E 
{0, 1 }n defines a computation path through the BDD that starts at the root. If the path 
reaches a non-terminal node v that is labeled by i it follows the path low(v) iff X;= 0 and 
it follows the path high(v) iff x; = 1. On all paths a terminal vertex is reached since a 
BDD is directed and acyclic. The label of the terminal vertex determines the return value 
of the BDD on input x. 

More formally, we can define the Boolean function corresponding to a BDD, recursively. 

Definition 2 A BDD having root vertex v denotes a Boolean function fv defined as: 

1. If vis a terminal vertex and value(v) = 1 (value(v) = 0), then fv = 1 Uv = 0). 
2. If vis a non-terminal vertex and index(v) = i, then fv is the function 

The variable x; is called the decision variable for v. 

It is well-known that for each Boolean function f there exists a BDD denoting f. 
BODs are often used as a data structure in design automation and logic synthesis. 

Thus there is a need of efficient manipulation of BDDs. Unfortunately, this property is 
not fulfilled by the general BODs defined above (see Gergov (1992)). Therefore we need 
further restrictions on the structure of the BDDs. 

Definition 3 A Reduced Ordered BDD (ROBDD) is a BDD with the following two proper­
ties: 

1. The BDD is ordered, i.e. for any non-terminal vertex v, if low(v) (high(v)) is also a 
non-terminal vertex, then index(v) < index(low(v)) (index(v) < index(high(v))). 

2. The BDD is reduced, i.e. there exists novE V with low(v) = high(v) and there are no 
two vertices v and v' with identical labels such that the sub-BODs rooted by v and v' 
are isomorphic. 

Functions denoted by ROBDDs can be manipulated efficiently (Bryant 1986). For our 
practical experiments we use a ROBDD package with complemented edges as described in 
(Brace 1990). If not other mentioned, all results are given for this kind of ROBDDs. 

We associate with each ROBDD an array 1r such that 1r[i] denotes the variable that 
corresponds to label i. The array 1r is called the variable order of the ROBDD. Using this 
notation, the function fv at the non-terminal node v with label i is 

2.2 Symmetric functions 

Let f: {0, l}n-+ {0, 1} be a completely specified Boolean function and Vn = {x1, ... , Xn} 
be the corresponding set of variables. The function f is said to be symmetric with respect 
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to a set A ~ Vn if f remains invariant under all permutations of the variables in A. For 
completely specified functions the symmetry is an equivalence relation which partitions 
the set Vn into disjoint classes A1, ... , Ak that will be named the symmetry sets. A function 
f is called partially symmetric if it has at least one symmetry set A; with IA;I > 1. If a 
function f has only one symmetry set A = Vn, then f is called totally symmetric. For 
totally symmetric functions all variable orders generate ROBDDs of the same size. Thus, 
no reordering is necessary and we will focus on partially symmetric functions only. 

Sometimes, it may be occur that {x;,x;} is not a symmetric pair but {x;,x;} is one. 
This kind of symmetry was introduced by Hurst (1977) and named equivalence symmetry. 
In such a case, we change the phase of variable x; in the ROBDD and get symmetry in 
{x;,x;}. Note that the negation of a variable does not change the size of an ROBDD, 
because it exchanges the successors of the nodes with label x; only. 

3 SYMMETRY VARIABLE ORDERS 

In this section, we introduce the new class of symmetry variable orders that we will use 
to improve the existing reordering heuristics. 

Definition 4 Let f be a partially symmetric function with the set of symmetry sets 
S = {A11 ... ,Ak}· A variable order 1r is called a symmetry variable order if for each 
symmetry set A; E S there exists j so that {1r(j), 1r(j + 1], ... , 1r(j + lA; I- 1)} =A; . 

By this definition, the class of symmetry variable orders consists of all variable orders 
where the variables of each symmetry set are located side by side. The ROBDDs that 
correspond to symmetry orders are called symmetry ordered ROBDDs. In the remainder of 
this section the efficiency of symmetry orders will be motivated. 

It is well known that the ROBDD size of any totally symmetric function f is O(n2). In 
a symmetry ordered ROBDD there exists a lot of sub-ROBDDs where all variables in the 
upper part form a symmetry set. Thus, the upper part of these sub-ROBDD forms a totally 
symmetric function and the size of this part is O(k2} if k is the size of the symmetry set. 
Thus, symmetry ordered ROBDDs contain a number of small O(k2)-sized sub-ROBDDs. 

Furthermore, the value of a function that is symmetric in some variables { x;, , ... , x;.} 
does not depend on the exact assignment of these variables but only on their weight 
L:1=1 X;;. If one uses symmetry ordered ROBDDS, this weight is computed in neighbouring 
levels and no information about partial weights has to be kept over several non-symmetric 
levels - and keeping information may cause large ROBDD sizes. Symmetry variable orders 
avoid this drawback. 

4 STATISTICAL RESULTS 

Due to the remarks above, it seems that symmetry orders generate smaller ROBDDs than 
general orders. To check this assumption, we investigated all partially symmetric functions 
with three, four and five inputs. For each function we determined the number of general 
orders and and the number of symmetry orders that create an ROBDD with x% more 
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nodes than the minimum ROBDD. Using these data, we computed the probability to get 
an ROBDD with more than x% more nodes than the minimum for an arbitrary function 
and an arbitrary order. Figre 1 shows the result obtained for the four and five input 
functions. The daflhed line shows the probability that the ROBDD for an arbitrary partially 
symmetric function with an arbitrary symmetry order has more than x% additional nodes 
with respect to the minimum. The solid line shows the same for general orders. It turns out 
that the probability to get a x% oversized ROBDD with a symmetry order is always smaller 
than it is for general orders. This shows from a statistical point of view that the symmetry 
orders constitute an efficient subclass of variable orders. For completeness, we computed 

the number of partially symmetric functions for that each symmetry order results in a 
non-minimal ROBDD. For the 120 partially symmetric functions with three inputs there are 
24 {20%) such functions. For example, the {x0 ,xl} symmetric function shown in Figure 2 
has symmetry ordered ROBDDs with 4 internal nodes while the minimum ROBDD has 3 
internal nodes. For the 20.548 partially symmetric functions with four inputs there are 
960 {4.7%) and for the 162.535.140 partially symmetric functions with five inputs there 
are only 972.280 {0.6%) such functions. The distance of the best symmetry order to the 
minimum was at most two nodes. We confirmed our results by performing experiments 
with some functions with more than five inputs. Thus, considering only symmetry variable 
orders seems to result in ROBDDs with sizes not larger than the minimum in almost all 
cases. 
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Table 1 Initial ordering with symmetry orders 

Heuristic ROBDD size nodes Heuristic ROBDD size nodes 
< > < > 

initial 58688 initial ...so 49199 

first 9 5 3 58432 1.3% first...so 312 236 101 47275 1,2% 

median 14 3 0 58020 1.5% median ...so 398 174 77 46353 1.5% 

last 14 3 0 58007 1.8% last...so 409 161 79 46362 1.6% 

best 15 2 0 57888 2.5% best ...so 534 112 3 45252 2.4% 

In (Panda 1994) it was conjectured that for ROBDDs without complemented edges for 
each functions one of its symmetry orders results in an ROBDD of minimal size. A negative 
answer to this conjecture was given by our experiments with these kind of ROBDDs. The 
four input function f = x1x2X3 + X1X2X3 + X1X2Xs + X1X2X3X4 which is symmetric in 
{ xb x2, x3} has best symmetry order of ROBDD size 9 and the minimum size is 8. For 
ROBDDs without complemented edges there are 80 partially symmetric functions with 
four inputs and 1.262.800 functions with five inputs without a minimum symmetry order. 

5 BENCHMARK RESULTS 

In this section we show the efficiency of the symmetry variable orders in practical ap­
plication. For our experiments we used the CMU-BDD package contained in srs-1.2 (Sen­
tovich 1992) and processed 109 combinational two-level and multi-level circuits from the 
LGSYNTH91 benchmark set. Since the single primary outputs of a multiple output function 
sometimes have more symmetry we also processed each primary output of each circuit sep­
arately, to get more results about symmetric functions. Symmetry detection was executed 
on the ROBDDs using the algorithm proposed in (Moller 1993). We modified this algorithm 
to detect equivalence symmetry as well. This results in about 10 % more symmetry. 

If an ROBDD is to be created from a circuit description, a heuristic, e.g. (Malik 1988), 
generates good initial order which is not necessarily a symmetry order. As discussed above, 
the size of the ROBDD may be reduced, if the initial non-symmetry order is transformed 
into a symmetry one. We have applied three algorithms to get a symmetry order. They 
differ only in the way they select the new position for a symmetry set. Heuristic first 
selects as position for a symmetry set the position of the first variable of the symmetry 
set, median selects the position of the middle variable and last selects the position of the 
last symmetric variable. Heuristic best calls all three methods and then selects the best 
order. The suffix ...so denotes the methods that handle each primary output seperately. 
The results obtained by initial reordering are shown in Table 1. The first column gives 
the name of the reordering heuristic. The second, third and fourth column shows the total 
number of benchmark functions where the size of the symmetry ordered ROBDD is smaller, 
equalsized, or greater than the initial one when it was reordered with the corresponding 
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Table 2 Reordering with symmetry orders 

Heuristic ROBDD size nodes time (sec) 

< > 
win3 66350 14 

Swin3 25 29 2 64200 5.7% 16 

sift 33878 92 

Ssift 26 26 4 33149 7.1% 93 

win3_so 67961 36 

Swin3_so 693 1443 42 63668 3.4% 41 

sift _so 58177 116 

Ssift_so 452 1695 4 54970 2.6% 99 

heuristic. The last column shows the total number of nodes of all ROBDDs and the average 
improvement over all benchmarks. 

For the 109 multiple output functions we detected 56 to be partially symmetric. The 
initial ordering heuristic already generates a symmetry order for 39 of these functions. 
For more than the half of the remaining non-symmetry ordered ROBDDs the order has 
been improved by each of the three symmetry reordering methods and the overall number 
of nodes decreases. The best heuristic seems to be last and we select it for our next 
experiments. However, row best shows that the heuristics work well on different functions. 
There are only three of the single output functions for which all three heuristics generate a 
symmetry ordered ROBDD that is greater than the initial one. This shows that symmetry 
orders are also good in practice. 

To reduce the size of an ROBDD several reordering heuristics have been developed. 
Two of them, win3 and sift (Rudell 1993) are implemented in the CMU-BDD package. To 
work with symmetry orders we make use of the variable blocking feature of the CMU­
BDD package. Before starting reordering, we block the symmetric variables which were 
made adjacent by last. The modified heuristics are called Swin3 and Ssift, respectively. 
For all symmetric functions from the benchmark set the original heuristics win3 and sift 
and the modified heuristics Swin3 and Ssift were applied to the initial ROBDDs. Results 
are presented in Table 2. The first column denotes the reordering heuristic. The second, 
third and fourth column shows the total number of benchmark functions for that the 
modified heuristics generate a smaller, equalsized, or greater ROBDD than the original 
heuristic. Column nodes shows the number of nodes of all the optimized ROBDDs and the 

average improvement over all benchmarks. Column time shows the running timet of the 
heuristics. The additional overall running time for symmetry detection for multiple-output 
and single-output functions is about 88 seconds. 

tAll running times are seconds at Sparcstation 10/64 Mb 
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Table 3 Benchmark results of reordering with symmetry orders 

circuit symsets in it Sin it win3 Swin3 sift Ssift 

apex2 1(3) 3(2) 2947 2846 910 634 700 654 

cps 1(4) 1455 1445 1301 1294 1035 991 

ex4 14(2) 895 822 692 691 537 539 

seq 2(2) 5638 5532 3737 2586 

t481 8(2) 63 33 33 21 33 31 

vg2 2(2) 390 385 132 146 

comp 16(2) 146 128 146 107 

count 1(2) 232 201 201 82 

dalu 1(2) 4575 4346 1322 1323 

frg2 1(2) 2297 2171 

i2 2(64) 3(16) 3(4) 1586 1583 795 298 

i4 16(3) 50(2) 349 333 333 245 308 233 

Ia I 5(2) 122 110 97 95 75 72 

my ..adder 1(3) 15(2) 457 452 457 411 

pcler8_cl 1(2) 138 122 130 86 

rot 2(3) 2(2) 10224 10222 8212 8204 4574 4568 

tooJarge 1(3) 3(2) 667 676 500 439 

x1 1(2) 1211 1190 784 799 544 518 

z4ml 1(3) 2(2) 37 30 21 17 24 17 

It is shown that the heuristics that use symmetry orders generate better or same re­
sults in most cases. Swin3 saves 5.7% nodes and Ssift3 saves 7.1% nodes in average. The 
running time for symmetric reordering remains nearly the same. Unfortunately, there is 
the extra running time for symmetry detection. This increases the running time of sift 
in general by factor 2 and of win3 up to factor 7. One can overcome this difficulty if 
the symmetry detection is integrated in the reordering method following the Idea 3 of 
neighbouring symmetry in (Moller 1993) as presented in (Panda 1994). Table 3 shows the 
effect of symmetry based reordering for some individual benchmarks. In column symsets 
the symmetry is given. 2(3) means that there are wo symmetry sets of three input vari­
ables. The following columns show the ROBDD size achieved by the mentioned heuristics. 
The leading S denotes the symmetric version. If the symmetric reordering results in the 
same size as the original the results are omitted. 
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It is shown that the symmetry modified algorithms in general outperform the original 
ones. Furthermore, even a small number of symmetry sets and variables can cause a great 
improvement. For example, for seq with only two symmetry sets of size two Swin3 saves 
about 30% of all nodes and for count with only one symmetry pair Ssift saves about 60%. 
Thus, symmetry based ordering is not only suitable for high symmetric functions but also 
for low symmetric functions. 

6 CONCLUSIONS 

We presented a new general method to improve the quality of ROBDD reordering heuristics 
for the class of partially symmetric functions by using symmetry variable orders. In this 
special type of orders the symmetric variables are located side by side. 

Our statistical experiments as well as our benchmark experiments have shown that the 
efficient symmetry orders form a good subclass of all efficient variable orders. So it is useful 
to work only with symmetry orders when representing partially symmetric functions as 
ROBDDS. 

It is also possible to collapse nodes of neighbouring levels corresponding to symmetric 
variables to symmetry nodes, i.e. nodes with more than two outgoing edges. This simplifies 
the procedure of exchanging symmetry sets. First steps in this direction can be found in 
(Becker 1994). 

It is focus of current work to generalize the present appraoch to more powerful graph rep­
resentations, like Ordered Kronecker Functional Decision Diagrams (OKFDDs) (Drechsler 
1994). 
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