
24

Module generators and their
integration in an architectural
systhesis system

J.F.M. Theeuwen
Eindhoven Universisty of Technology
P.O. Box 513, 5600MB Eindhoven, The Netherlands.
Telephone: 31-40-473344· Fax: 31-40-464527.
email: J.F.M. Theeuwen@es.ele.tue.nl

Abstract
* Cuneutly a lot of research is going on in the field of architectural synthesis. Many prob­
lems are addressed in this field, like scheduling, allocation, module binding and register
allocation. To be able to judge the value of au architectural synthesis system in real world
and to make the system appropriate for real world applications an extended library of ba­
sic operations is requined. Not only the muuber of basic operations has to be large enough,
it should also be possible to make a trade off in terms of area, speed and required number
of clock cycles for au operation. In this paper we show how flexible module generators can
be couuectted to au architectural synthesis system. Moreover we will describe two module
generators, a divider generator and a multiplier generator.

Keywords
Architectural synthesis, module generators.

1 INTRODUCTION

Currently a lot of rtesearch is going on in the field of architectural synthesis. Many prob­
lems are addressed, like scheduling, allocation, module binding and register allocation.
There are a number of well known beuc.hmark examples like FDCT (Fast Discrete Cosine
Transform) [Mall90] and WDF (Fifth order elliptical filter)[dewi85]. For benchmarking
purposes the library of basic operations that is used is rather simple and does not have
much relation with the real world. Especially the notion about area and delay is too sim­
ple. To be able to judge the value of an architectural synthesis system in real world and
to make the system appropriate for real world applications an extended library of basic
operations is required. Not only the number of basic operations has to be large enough, it
should also be possible to make a trade off in terms of area, speed and required number

*This research has been made possible by the support of the ESPRIT III BRA project 6855, called Link

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995

246 Pan Eight Link to Libraries

of clock cycles for an operation. To make the above described requirements possible two
things should be available:

(1) module gf'nerators that are able to generate basic functions in many different versions
(speed, area, number of clock cyeles, bit width).

(2) communieation fwm the module generators to tht> architectural synthesis system, to
inform the architedural synthesis system the ability of the module generators.

In the .uext chapter an overview of the developed architectural synthesis system will be
given, with special emphasis on the description and selection of the library elements. After
that the generation of a customizt>d library for a certain design will be explained. At the
two examples of module generators will ht> shown.

2 THE ARCHITECTURAL SYNTHESIS SYSTEM

The task of an Architectural Synthesis System is to translate a behavioral description of
a chip into a digital network description. Tltis network has to be composed of functional
modules (like ALU's, multipliers, adders), storage modules (register files, ROM, RAM),
and eoutrollers. One of the requirements on these items is that there is an (automatic)
way to generate a layout for the required module). The task of translating the behavioral
description into a network is rather complicated, so architectural synthesis is partitioned
into a number of sub steps:

• Selection: What kind of modules are required
• Allocation: How many resources are ne<'essary
• Binding: Which operations have to be performed on which specific resource
• Scheduling: When should specific operations be activated

In general all these problems are NP complete and a lot of research is going on in these
fields. To allow a large freedom for research in the field of architectural synthesis, an
interface, the New Eindhoven Architectural synthesis Toolbox (called NEAT) has been
developed, which is independent of the synthesis tools aud the design trajectory chosen. A
central item in this system is the way the design data are represented. In an architectural
synthesis system three domains of data can be distinguished:

• Behavior:
The behavior of a chip is often specified by an algorithm, written in a special language
like VHDL, Silage, Ella or Hardware C. To resolve the different natures of the languages
a central format is ueeded. This format should have a close relation with the nature of
hardware, hut should not impose a particular hardware structure. A Data Flow Graph
(DFG) is chosen as the central format [eijn92]. A DFG is a directed graph consisting
of nodes representing operations, and edges representing transfer of values (tokens).
The behavior of a data flow graph is defined by a so called token flow mechanism.
Tokens are objects which can bear a particular value. Tokens are transported from
origin nodes (producing a value) to destination nodes (consunting a value) by the edge
which connects the two nodes. A node can start its execution when tokens are available

Module generators in an architectural synthesis system

process examP,le (b,c)
in boolean 6[8~ rut boolean c[);

}

a=l·
while (a< 3)
do (

a++·
b=h+a;

}
c=b;

Figure 1 A hardware C program with the corresponding DFG

247

on all the incoming edges of tht> node. After execution the node produces tokens on
all the outgoing edges of the node. To support special language constructs like loops
and branches, nodes with a different execution model are introduced. In figure 1 an
example of a Hardware C algorithm and its corresponding data flow graph are shown.

• Tin1e:
A control graph is used to specify the behavior of the controlling finite state machine.
The nodes in the control graph correspond to states, and the edges denote possible
state transitions. Control graphs are extended with some special constructs to explicitly
represent conditionals, loops, multiple adive states and hierarchy.

• Structure:
A network graph is used to describe the resulting digital network. The nodes of the net­
work graph correspond to the physical modules. Edges represent the interconnections
between these modules.

2.1 Intra-domain relations

If a graph is used somewhere as an operation, it will appear as a single node. The node
is called an instantiation of the graph. The type of the node is used to refer to the graph
that is instantiated, and hence defines the behavior of the node. Standard operations
or modules, like additions, multiplications, ALU's etc. can he created by instantiation
of the corresponding graph. These operations or modules can be supplied to the system
by libraries. In chapter "libraries in the NEAT system" we will discuss this item more
extensively.

2.2 Inter-domain relations

In passing through some architectural synthesis processes, relations arise among objects
of different domains. A scheduler for instance relates data flow nodes to particular states;
a hinder relates data flow nodes to fundional modules. There are two kinds of such inter­
domain relations:

248 Part Eight Link to libraries

.---------~ -------- ----~\ .

. -------------.. ®\\.
··-·-<::

DFG CTG NWG

Figure 2 Representation of a complete design

• Graph level:
relates behavior, time and structure, i.e. which data flow graph can be implemented
upon which network graph, and which control graph specifies the time behavior. The
objects used to denote these relations are called graph links.

• Node level:
relates operations, the states in which they are executed, and the modules upon which
they are executed. The objects to denote these links are called node links. Node links
are the fine grain relations among graphs; they denote relations between data flow
nodes, control nodes and network nodes.

An example ean be found in figure 2

3 LIBRARIES IN THE NEAT SYSTEM

As explained in a previous chapter the basic operations like addition multiplication etc.
are stored in libraries. In these libraries all the properties of the available modules and
operators have to be stored. There are three basic items that should be described in the
libraries:

(1) The basic operators that are available in the system.
Examples of operators are:+ , - , *, /, etc.

Module generators in an architectural synthesis system 249

Together with the operation type the name and the type of the input and output
terminals have to be annotated. These data are described in the data flow domain.

(2) The basic modules that are available in the system.
Examples are: adder, subtracter, ALU etc.
From these modules the input and output pins have to be described, (type, name,
bit width). Also properties like, speed and power consumption of the module can be
described on this place. These data are described in the network domain.

(3) The relation between the operators and the basic modules.
The library must tell the system that a + Olleration can be performed on either an
adder or on an ALU. This can he described by graph links between the data flow
domain and the network domain. Also the relation between the terminals in the data
flow domain and the pins in the network domain have to he described. This can be
done by the node links.

3.1 Generation of customized libraries

As you can imagine the power of au architectural synthesis system is heavily influenced
by the size and flexibility of the library. The more different kinds of modules for a given
operator exist, the more freedom the synthesis tools have to select the appropriate module,
and thf' more possibilities there will exist to share the functionality of that module with
other operators. If for a given module different versions in the area-speed domain are
available the architectural synthesis system ean try to use the smallest version of a module
still providing the required speed. It is also evident that for each module there have to
exist versions for a lot of different hit widths. Taking into account all the above described
llroperties that have to he present in the library it is clear that the library will be rather
large. This has lead to the decision to generate a specialized library for each design. This
specialized library will contain only those library elements that will be useful for the
given design. i.e. only the appropriatf' modules with the appropriate hit widths will be
described.

3.2 The library generator

The basic structure of the customized library is described in the so called template library.
In this library the basic dependencies between operators and modules are described. For
instance on this place it is stored that a + operator can he implemented by either an
adder, an adder/subtracter or an ALU. By examining the data flow graph to be synthe­
sized, the library generator obtains information about the required operations with the
accompanying hit widths. It is evident that it is nearly impossible to design for all the
modules many different versions for all the required bit widths and for the different points
in the area time domain by hand. This would take a lot of work and it would be very
tedious to keep the library Ull to date. Because of this, module generators for the required
operators are written. These module generators not only produce the VHDL description
that can be synthesized into layout but also generate data about the performance of the
resulting modules in terms of area, delay and power consumption. These data are also
used by tht> library generator to generate the customized library. The overall design and
information flow is shown in figurf' 3.

250

functional

description

Part Eight Link to libraries

1 ____________ 1customize

/ ~require-
\ ments 1 I nenv'< eontrollcr ___ __,

, _____ ..,apabilitie"'-----'

Figure 3 The design flow

4 THE MODULE GENERATORS

template
l---1

library

In this chapter we will show two examples of module generators that are developed for
use iu our architectural syuthesis system. To he able to use the module generators in
as mauy desigu systems aud techuologies as possible the module generators produce a
structural VHDL description that can he synthesized into layout by available systems like
for instance the "asic synthesizer" from Compass Design automation.

4.1 The Block multiplier generator

The architecture used in the block multiplier generator is described in (arts91], (the93].
The basic idea consists of dividing both operands X and Y of Nx and Ny bits into kx
and ky blocks of nx and ny hits (Nx = kx * nx, Ny = ky * ny). The blocks of nx and
ny hits will he multiplied with each other in a carry save multiplier and the intermediate
results arf' added in au accumulator. By changing N x and N y many different versions of
a multiplier cau be g<'uerated.

Module generators in an architectural synthesis system 251

4.2 The block divider

The algorithm chosen resembles very much the tail division algorithm used by people
performing a division by hand. First the divider and the dividend are aligned (roughly:
most significant hits at the same position) Then during each clock cycle n bits of the
result are going to he computed. Each <~yde it is checked how many times the divider can
be subtracted from the dividend. This is done by trying to subtract the multiples 1 to 2n
-1 of the divider from the dividend. The largest multiple that results in a non negative
result is subtracted and n hits of the result are known. After this the divider is shifted n

places to the right and the process is repeated. Studying this algorithm it is clear that for
larger values of n this algorithm takes a lot of hardware because all the 2n - 1 multiples of
the divider are to he computed and stored. Moreover there need to he 2n - 1 subtracters
to check which multiple of the divider can be subtracted from the dividend. Hardware
could be saved here by doing the subtrac.tions sequentially instead of parallel. Currently
howt,ver this option is not exploited.

5 CONCLUSIONS

In this paper we showed that it is possible to make a tight hut flexible connection between
module generator·s and an architectural synthesis system. This connection gives the archi­
tectural synthesis system the possibility to make full advantage of the capabilities of the
module generators. Currently the modules are generated in a standard cell layout style.
In the future we will incorporate the use of data paths for some parts of the modules.

6 REFERENCES

[arts91]
Arts, H.M.A.M., Stok, L, Eijndhoven .J. T . .J. van, "Flexible block multiplier generation",
Readers Digest of Technical Papers of the international conference on computer aided
design, Santa Clara, November 1991. pp 106-110.
[eijn92]
.J. T . .J. van Eijndhoven and L. Stok, "A data flow graph exchange Standard", Proceedings
of the European Conference on design autumation, pp. 193-199, Brussels, March 1992
[dewi85]
Dewilde, P, Deprettere, E, Nouta, R,"parallel and pipelined VLSI implementations of sig­
nal processing algorithms, pp 258-264, Prentice Hall, Englewood Cliffs, 1985
[mall90]
Mallon. D . .J., Denyer, P.B.," A new approach to pipeline optimization", proceedings of
the European conference on design automation, pp. 83-88, Glasgow, March 1990, IEEE
Computer Society Press
[the93]
Theeuwen, .J.F.M., Arts, H.M.A.M. Arts, Eindhoven van, J.T.J., Sleuters, H.J.H., Wijde­
ven, .J.H.P.,"Module generation in an architPchual synthesis environment" pp. 359-371, ,
IFIP Transactions: Synthesis for control dominated circuits, North Holland, 1993

