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Abstract 
Exact and heuristic techniques are presented to calculate the Boolean relation for an 
arbitrary subcircuit in a multiple-level logic circuit with an external don't care set. We 
are not restricted to process subcircuits which are only driven by primary inputs. The new 
techniques keep BDD sizes small and therefore allow the calculation of Boolean relations 
for many circuits of nontrivial size which could not be dealt with before. The efficiency of 
the techniques is demonstrated on various benchmark circuits. The developed techniques 
are applied to multiple-level logic optimization. 
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1 INTRODUCTION 

The ability to calculate and exploit don't care conditions has long been recognized an 
important technique in multiple-level logic synthesis. A variety of methods has been pre­
sented (Bartlett, 1988; Muroga, 1989; Damiani, 1993). Whereas a don't care set is calcu­
lated for a single node and specifies all the flexibility for implementing the node's function, 
Boolean relations describe all the flexibility for implementing an arbitrary multiple-output 
subcircuit. It has been pointed out before (Brayton, 1990) that Boolean relations are su­
perior to don't care sets as don't care sets cannot capture the complete flexibility for 
implementing a multiple-output subcircuit. The reason is that for the calculation of a 
node's maximal don't care set, the functions of all the other nodes are not allowed to 
change. Boolean relations, however, allow the simultaneous modification of all nodes of a 
subcircuit. The example of Figure 1 illustrates the advantage of using Boolean relations. 

Figure 1 shows a small section of a multiple-level logic circuit. The primary inputs and 
outputs of the circuit are omitted. We consider the subcircuit consisting of gate G1 and 
G2. The table on the right side specifies the output vectors which may be computed by the 
subcircuit if the respective input min term is applied. This table represents a Boolean rela­
tion. For an input min term with several output vectors, the values of the circuit's primary 
outputs do not depend on the output vector actually computed by the subcircuit. This 
flexibility, expressed by the Boolean relation, is due to the embedding of the subcircuit in 
a larger circuit. Here, the only degree of freedom exists for the input minterm (1, 1), as 
the subcircuit may compute either the vector (0, 1) or (1, 0). The actual implementation 
of the subcircuit computes the vector (0, 1 ). If the sub circuit is modified to compute the 
vector (1, 0) instead, gate G1 is replaced by an XNOR gate, and gate G2 by constant 
0. Gate G3 can be replaced by a wire from G4, thus yielding a total gain of two gates. 
It is important to note that the subcircuit cannot be optimized by don't care methods 
because two node functions have to be modified at the same time to exploit the degree of 
freedom. Methods for the minimization of Boolean relations have been developed which 
find good two-level implementations (Watanabe, 1991 ). We, in contrast, are concerned 
with the calculation of the Boolean relation for a subcircuit. 

Techniques have been presented (Chen, 1992) which calculate Boolean relations for 
multiple-output subcircuits in terms of primary input variables. Other methods (Cerny, 
1977; Savoj, 1993) calculate the Boolean relation of a subcircuit in terms of internal 

input allowed 
min term output vector 

y1 (x1, x2) (y1, y2) 

G1 
(0, 0) (1,0) 
(0, 1) (0,0) 
(1, 0) (0,0) 
(1, 1) (0,1),(1,0) 

x1 : ix2 

Figure 1 Boolean relation for subcircuit (G1,G2). 
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network variables. With regard to the specification of a subcircuit, the latter methods 
are therefore more general. Cerny and Marin laid the foundation for a theory of Boolean 
relations (Cerny, 1977). They present formulas to compute maximal Boolean relations 
for the subcircuits of a serially or parallelly two-partitioned circuit. These techniques can 
be used to calculate the Boolean relation for an arbitrary subcircuit. Recently, Savoj 
and Brayton expanded on these ideas and presented algorithms to compute maximal and 
sub-optimal ("compatible") Boolean relations (Savoj, 1993). 

In this paper we focus on the problem of calculating maximal Boolean relations for 
subcircuits in a multiple-level logic circuit to use them for optimization. External don't 
care sets are exploited. A Boolean relation is expressed in terms of the subcircuit's outputs 
and inputs. New exact and heuristic techniques are presented for the calculation of Boolean 
relations. These methods are applicable to nontrivial circuits. We present results for the 
calculation and exploitation of Boolean relations. 

The article is organized as follows. In Section 2 the basic terminology used throughout 
the paper is explained. Techniques to compute Boolean relations are discussed in Section 
3. The application to multiple-level logic optimization is described in Section 4. We give 
conclusion and directions for future work in Section .5. 

2 TERMINOLOGY 

This section introduces some terminology for BDD (Binary Decision Diagrams) operations 
and Boolean relations. For the definition of a Boolean network, which is used to model a 
combinational circuit, we refer to standard literature (Brayton, 1990). 

2.1 Boolean functions 

We are dealing with Boolean functions f : Bn -+ B, where B = {0, 1}. Let x = 
(xi, ... , Xn) denote a vector of Boolean variables and xk E Bn the k1h minterm, i.e., 
x0 = (0, ... , 0), xi = (0, ... , 0, 1) etc. The number of elements of a vector is denoted by 
lxl, here lxl = n. A vector of Boolean functions is given by f = (ft, ... , fm)· We will 
denote the Boolean function obtained from f(x, y) by assigning the minterm xk as hk (y), 
i.e., hk (y) = f(xk,y). 

The consensus operator of a Boolean function f(x, y) with respect to the vector x is 
given by Cxf = h0 (y). hi(y) ..... h2"-i(y) = £n:oi hk(y). 

The smoothing operator of a Boolean function f(x, y) with respect to the vector x 
is given by Sxf = h0 (y) + hi(y) + ... + h2"-i(y) = L:i:oi hk(y). The consensus and 
smoothing operations can be computed efficiently if applied to BDD representations of 
Boolean functions. 

2.2 Boolean relations 

A Boolean relation R is a binary relation from Bn to Bm : R ~ Bn x Bm. We say that 
an output vector y 1 E Bm is allowed for an input minterm xk E Bn iff (xk, y 1) E R, e.g., 
two output vectors are allowed for the input minterm (1, 1) of the Boolean relation in 
Figure 1. For each Boolean relation R there is a characteristic function q, : Bn x Bm -+ B 
such that q,(xk, y1) = 1 iff (xk, y1) E R. As an example, the characteristic function of the 
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Boolean relation in Figure 1 is <P(x, y) = Xt · x2 · Yt · Y2 + Xt · x2 · Yt · Y2 + Xt · x2 · Yt · Y2 + 
Xt . X2. Yl . Y2 + Xt . X2. Yl . Y2· 

We are dealing with characteristic functions of Boolean relations and represent them by 
BDDs. Because of the close correspondence between Boolean relations and characteristic 
functions, we sometimes use the term Boolean relation· for a characteristic function. If 
not stated otherwise, the terms Boolean relation and characteristic function refer to a 
maximal Boolean relation, i.e., no input minterm/output vector-pair could be added to 
the Boolean relation without violating the circuit's specification. 

Let a network N implement a Boolean function z = f(x). The characteristic function 
which is the relational representation of the multiple-output function z is 

IZI 
<P~(x, z) = IJ (z;EBJz, (x)). ( 1) 

i=l 

A Boolean function f: Bn-+ Bm is compatible with Riff Vxk E Bn, (xk,f(xk)) E R. 
The goal of Boolean relation minimization (Watanabe, 1991) is to find a function with 
minimum cost which is compatible with R. 

3 NEW TECHNIQUES TO COMPUTE BOOLEAN RELATIONS 

In this section, new techniques to calculate the Boolean relation for a subcircuit are 
derived. These techniques exploit the fact that in many practical cases a combinational 
circuit's specification is not an arbitrary relation, but a multiple-output function plus an 
external don't care set. An external don't care set denotes all input vectors that are never 
produced by the environment at the circuit's inputs. For example, during the synthesis of 
the combinational logic of a finite state machine, the set of unreachable states can be used 
as an external don't care set. Existing methods (Cerny, 1977; Savoj, 1993) handle arbitrary 
relational specifications. This, however, implies unnecessarily expensive computations in 
the above-mentioned case of a specification with an external don't care set. 

Our new exact technique allows the computation of maximal Boolean relations in much 
larger circuits than existing methods if the circuit is specified with or without an external 
don't care set. This is achieved by the application of a new formula for the calculation 
of the satisfiability relation, yielding smaller BDD representations, and the use of effi­
cient image computation techniques. Experimental results are given to compare the new 
techniques with existing approaches. 

3.1 Satisftability relation 

In (Cerny, 1977) formulas are given to calculate the characteristic functions for the sub­
circuits in a serially or parallelly two-partitioned circuit. Two formulas needed in the 
sequel are restated here without explanation. A network N, serially decomposed into the 
subnetworks Land U (lower and upper part) is given, see Figure 2(a). The characteristic 
functions for L, U and N are <PL(x,y), <Pu(y,z) and <PN(x,z). 
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If <PN(x, z) and <Pu(y, z) are given and <Pu = <Pb according to equation (1), the maximal 
Boolean relation <P Lma• {X, Y) is 

{2) 

As this Boolean relation follows from the restricted observability of the outputs of L at the 
primary outputs, it is called observability relation. The observability relation determines 
for each minterm x a set of allowed vectors y, for which the upper part U computes 
allowed values at the primary outputs z. 

If <PN(x, z) and «<>L(x, y) are given, the maximal Boolean relation «l>um .. (y, z) is calcu­
lated as 

{3) 

As this Boolean relation follows from the restricted satisfiability of the inputs of U from 
the primary inputs, it is called satisfiability relation. 

Whereas equation {2) exploits the fact that <Pu = <Pb, formula (3) holds for general 
Boolean relations <P L· We will use a formula for the satisfiability relation which exploits 
<PL = <Pf. 

Lemma 1 Jf<Pu(y,z) and <Pf{x,y) are given, and «<>N(x,z) = Sy{«<>f(x,y) · <Pu(y,z)), 
the maximal Boolean relation <Puma> (y, z) is calculated as 

<Pum.,(y, z) = «l>u(y, z) + Sx (<Pf(x,y)). {4) 

Proof. We restate the lemma in the following way: Iff z1 is an output vector allowed 
for the input min term yk, then <Pum .. (yk, z1) = 1. There are two cases: First, the input 
minterm yk is computed by L for some primary input vector, i.e., yk is satisfiable. Then 
no additional degree of freedom is added to the Boolean relation of U by the presence 
of subnetwork L. We have <Puma• (yk, z1) = 1 iff <Pu(Yk, z1) = 1 because the second term 
in equation (4) evaluates to 0. Second, the input minterm yk cannot be computed by 
L, i.e., yk is not satisfiable. Then any vector z1 is an allowed output of U. It holds that 
<Puma•(yk,z1) = 1 because the second term in equation (4) evaluates to 1. D 

This formula, which can also be applied if an external don't care set is present, is relevant 
for multiple-level logic optimization because during resynthesis of U some network L is 
given. Consequently, <PL = <Pf, which is exploited by equation (4). Using equation (4) 
instead of equation (3) has significant practical advantages as will be shown below. 

3.2 Boolean relation of a subcircuit 

Our goal is to calculate the Boolean relation for an arbitrary subcircuit or block of a 
Boolean network N'. Through structural analysis of network N', a subnetwork N is ob­
tained which contains all nodes functionally related to the considered block. The network 
N can be further divided into three subnetworks, i.e., the block B, the lower part Land 
the upper part U. The subnetwork U consists of all the nodes which may influence the 
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(a) (b) 

Figure 2 Decomposed network N. 

observability of the block's outputs at the primary outputs. Likewise, the subnetwork L 
holds all the nodes which may influence the satisfiability of the block inputs or the inputs 
of U. Figure 2(b) shows the network N with its three parts. As the figure illustrates, block 
inputs can directly go into U, and some outputs of L may directly feed U. 

For notational convenience, the same symbol, e.g. v;, is used to denote a node and 
its variable in the Boolean network. We will denote the Boolean function of a node w; 
in terms of the primary inputs x by fw, (x). The Boolean functions of other nodes are 
denoted analogously. For each primary output z; two Boolean functions, J:, and f~., are 
needed in the sequel. The function J:, is the Boolean function of the primary output node 
z; in terms of the variables v and w, J:, ( v, w). The function f~. is the function of z; in 
terms of the variables v, wand y, J:,(v, w,y). 

The new technique for the calculation of a Boolean relation is based on the following 
theorem. 

Theorem 1 Given a block B in a network N, which may have an external don't care set 
exdc(x), the characteristic function of the maximal Boolean relation of B is given by 

(5) 

with the observability relation <Pob.(v, w, y) = nl~11 (!:, (v, w)EBJ:,(v, w, y)), and the sat­
isfiability function <P •• t(V, w) = Sx (exdc(x). nl~\ ( v;ffifv. (x)) . nl!i1 ( w;ffifw.(x))). 

Proof. Combination of equation (2) and equation (4) yields the Boolean relation for B' 
(see Figure 2(b)): 

<PB'm.,(v, w,y) = Sz (<PBu(v,w,z) · <Pu(v,w,y,z)) + Sx (<PL(x,v,w)). (6) 

Using ci>Bu = <P~u of the cascade of Band u, <PBu(v,w,z) = nl~11 (z;ffif:,(v,w)), and 

similarly <Pu = <Pb, <Pu(v, w,y,z) = nl~11 (z;ffif~.(v, w,y)), we obtain for the first term 
on the right side of equation (6) the observability relation: 
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tllobs(v, w,y) Sz (tiiBu(v, w,z) · tllu(v, w,y,z)) 

(
IZI IZI ) 

Sz g (ziE&f~(v,w)) · g (z;"E&J;,(v,w,y)) 

IZI 
II (f~(v, w)"EBJ;,(v, w,y)). 
i=l 

For the (not complemented) second term in equation (6), use of tilL = tllf according to 
equation ( 1) and consideration of external don't cares yields the satisfiability function 
tll.at· To obtain tiiBm•• from tiiB:,. ... formula (8) in (Cerny, 1977) is applied: tiiB,..,(v,y) = 
Cw(tiiB:,..Jv, w,y)). 0 

Note that the onset of t~~ •• t is the image of the possible primary input minterms, which 
are in the offset of exdc(x), by the functions fw, fv. For comparison, equation (7) shows 
how the Boolean relation for block B is computed in (Cerny, 1977) and similarly in (Savoj, 
1993), 

(7) 

where the characteristic function for the cascade of B and L is denoted by til LB. The 
derivation of equation (7) is given in the appendix. Note that equation (7) has also been 
used in (Kukimoto, 1992) in the context of design rectification for FPGAs. 

Despite their structural similarity, the two formulas (5) and (7) differ in several impor­
tant aspects: First, the observability relation tllobs in formula (5) depends on the internal 
variables v, w, y. The corresponding function tiiLB in formula (7) additionally depends on 
the primary input variables x. Furthermore, the satisfiability function til sat in formula (5) 
depends on the internal variables v, w only, whereas the function tilL in formula (7) also 
depends on the variables x. In the worst case, if the block is located at the primary out­
puts, tilL and tiiLB represent the functionality of almost the complete network N. As a 
consequence, the BDD representation of the argument of the consensus operation is much 
larger for formula (7) than for formula (5). Finally, to calculate the satisfiability function 
t~~ •• t in formula (5), the characteristic function tilL need not be calculated explicitly. This 
is achieved by the use of image computation techniques, which have originally been de­
veloped for automata verification (Coudert, 1990). The satisfiability function is computed 
using image computation techniques as shown in (Savoj, 1991). Note that tilL has to be 
calculated explicitly in formula (7). 

These differences are essential, because during the calculation of the block's character­
istic function according to formula (5) much smaller BDDs are created. This enables us 
to handle larger circuits. Due to smaller BDD sizes, the calculation according to the new 
technique also proves to be significantly faster. However; since our technique is based on 
the exploitation of a special kind of specification (multiple-output function plus external 
don't care set), we cannot deal with arbitrary relational specifications. 

We have implemented both methods according to the new formula (5) and formula (7) 
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Table 1 Comparison of Boolean relation computation techniques 

Ci·rcuit In Out Literals BDD nodes CPU time in sec 
previo-us new Ratio previo-us new Ratio 

apex? 49 37 3.51 52776 12387 0.23 413.4 37.6 0.09 
b9 41 21 256 NF 65846 27.1 
c8 28 18 301 24.50 826 0.34 3.6 1.4 0.39 
cordic 23 2 194 32327 1987 0.06 163.7 5 . .5 0.03 
count 35 16 174 1392 524 0.38 3.3 1.6 0.48 
example2 8.5 66 432 124280 17346 0.14 64.2 32.0 0.50 
f51m 8 8 319 70 70 1.0 0.1 0.1 1.0 
i4 192 6 340 NF 11-58 4.4 
k2 45 45 3047 131533 20961 0.16 868.6 248.0 0.29 
Ia! 26 19 257 ll01 799 0.73 2.7 2.4 0.89 
pcler8 27 17 102 102583 28187 0.27 47.5 8.3 0.17 
term1 34 10 977 NF 149592 139.7 
ttt2 24 21 592 2307 2034 0..88 5.9 3.8 0.64 

s298 17 20 244 143862 6227 0.04 200.9 16.8 0.08 
s344 24 26 269 NF 47622 42.2 
s444 24 27 3.52 NF 3.5460 89.7 
s526 24 27 445 NF 57609 284.0 
s641 54 42 539 NF 63027 1751.2 

using the same shared ROBDD package, which is based on (Brace, 1990). For the ordering 
of the BDD variables, a simple depth first search heuristic was used. 

Table 1 shows results for the computation of Boolean relations for some MCNC bench­
mark circuits. The first column gives the name of the circuit. The next two columns give 
the number of primary inputs and outputs. For sequential circuits, the number of flip-flops 
is added to the number of inputs and outputs. The fourth column shows the circuit size 
in literals. The next two columns show the maximum number of BDD nodes during the 
calculation of a block's Boolean relation, where previous denotes the method based on 
formula (7), new the new technique based on formula (5). The following column Ratio 
shows the ratio between the BDD sizes obtained with the new and the previous method. 
The last three columns show the CPU time in seconds for the two different methods and 
again the ratio. An entry NF signifies that the shared ROBDD grew larger than 150000 
nodes. Calculation was aborted at that point. The circuits have been partitioned into 
two-output blocks using a heuristic described in the next section. All experiments have 
been performed on a DECstation 5000/200. 

There are some circuits, e.g. f51m, where both methods yield identical maximal BDD 
sizes. This happens when the characteristic functions il>B of the blocks and not the inter­
mediate functions have the largest BDD representation. 

The results emphasize two aspects. First, Boolean relations can generally be calculated 
with significantly smaller BDDs and also much faster using the new technique. Many 
circuits, e.g. almost all sequential circuits in Table 1, cannot be handled by the previously 
known method. Secondly, the BDDs for large circuits are usually still large. Even the new 
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method fails for the large sequential circuits not given in Table 1. This is mainly due to 
the large number of outputs w; of subnetwork L which directly feed U. 

To tackle this problem, we propose a heuristic. The functions fw, involved in the image 
computation strongly influence BDD sizes and computation time. Therefore, the outputs 
w; of the lower part L are partitioned into two sets W' and W", where W' contains a 
prespecified number of nodes which are structurally "closen to the block. By calculating 
the image only for the functions of the nodes in V and W', it is assumed that the functions 
of the nodes in W" may produce any vector. This simplification decreases the result 
quality. The Boolean relations are not maximal any more, but their computation is in 
general sped up and becomes possible for large circuits. Note that Table 1 gives only 
results for the calculation of maximal Boolean relations. 

4 APPLICATION TO MULTIPLE-LEVEL LOGIC OPTIMIZATION 

We apply the new techniques to multiple-level logic optimization. Our algorithm is as 
follows. A network is first partitioned into blocks. The nodes in a block have to be "related" 
to one another in order to successfully exploit Boolean relations. We cluster nodes such 
that the nodes of a block have a large number of common successors and predecessors. 
For each block, the maximal Boolean relation according to formula (5) is calculated and 
exploited. 

To exploit the Boolean relation, the optimal function compatible with the Boolean 
relation has to be found. Our cost function is the number of literals. As we do not have 
a Boolean relation minimizer at hand, we find a good implementation by exhaustively 
optimizing compatible functions with ESPRESSO (Brayton, 1994). First, however, we 
check if the Boolean relation allows to set a node function to constant 0 or 1, or to replace 
one block output function by another one. These situations usually yield high gain. 

The algorithm was applied to a number of sequential benchmark circuits. First, for each 
circuit the set of unreachable states was calculated. These unreachable states served as 
external don't care set during optimization. The circuits were preprocessed by the first 
part of the SIS script script. rugged, which basically performs cube and kernel extraction. 
The circuits after preprocessing are the initial circuits. 

We simplified the initial circuits with our algorithm. For comparison, the rest of the SIS 
script script. rugged was applied. Whereas our algorithm calculates and exploits Boolean 
relations, the command fu/Lsimplify, which is called in the script script. rugged, employs 
node simplification by don't care methods. Table 2 shows the obtained results. The column 
Init lists the number of literals of the initial circuits. The column SIS 1.1 shows the 
results obtained by script. rugged, the column BooRel the number of literals obtained by 
our algorithm. 

The size of the initial circuits could be reduced significantly using Boolean relations. 
BooRel performs better than SIS in terms of literals. However, CPU times are larger 
for BooRel because the computation of Boolean relations is more expensive than the 
computation of don't care sets. We believe that even better results can be obtained if the 
following problems are resolved. 

First of all, the problem of partitioning a circuit has to be examined more thoroughly. 
Experiments showed that the optimization quality is very sensitive to the partitioning. 
Furthermore, a Boolean relation minimizer is necessary. 
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Table 2 Optimization results (in literals) 

Circuit In Out /nit SIS 1.1 Boo Rei 

s298 17 20 126 97 89 
s344 24 26 154 142 137 
s382 24 27 166 150 137 
s386 13 13 136 120 111 
s400 24 27 160 143 136 
s444 24 27 158 140 138 
s526 24 27 222 154 135 
s641 54 42 193 185 153 

5 CONCLUSION 

We have developed techniques to calculate the Boolean relation for a multiple-output 
subcircuit with arbitrary inputs. We exploit the fact that in many cases the circuit is 
specified by a multiple-output function and an external don't care set, which is a special 
relational specification. Experimental results show the superiority of our technique in 
terms of computation time and space to previous approaches. With the new technique, 
the BDDs remain much smaller during the calculation of characteristic functions. This 
enables us to apply the technique to many circuits of non-trivial size which could not be 
dealt with before. We applied the computation of Boolean relations to multiple-level logic 
optimization. Other possible applications are design rectification for FPGAs (Kukimoto, 
1992) and technology mapping. Ongoing research concerns the partitioning of circuits into 
subcircuits, which has shown a significant influence on the quality of optimization results. 

6 APPENDIX 

With equation (2), the characteristic function 41N for the complete network, and the 
characteristic function 41[, according to equation ( 1) for the upper part, we get the char­
acteristic function for the subnetwork consisting of B and L: 

41LB(x, v, w, y) = Sz ( 41N(x, z) · 41[,(v, w, y, z)). 

With formula (3), formula (8) in (Cerny, 1977), and the characteristic function according 
to equation (1) for the lower part, 41£, formula (7) is obtained: 

41Bm .. (v,y) = Cw,x (41LB(x, v, w,y) + 41f(x, v, w)). 
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