
16

ROM-based Multi Thread Controller

H.A. HilderinkandJ.A.G.Jess
Eindhoven University of Technology
Eindhoven University of Technology, Department of Electrical Engineering,
Design Automation Section, P.O. Box 513, 5600MB Eindhoven,
The Netherlands. email: H.A.Hilderink@ele. tue .nl

Abstract
A new controller architecture is presented which can handle multiple threads efficiently without state explosions.
The architecture is based upon a ROM, where the address decoders are replaced by lalehes on each row, which
makes it possible activating more rows (states) at the same time. The extta logic for controlling the control flow is
minimal.

Keywords
Controller Generation, Controller Architectures

1 INTRODUCTION

The current generation DSP chips is able to handle large sequences of arithmetic operations in an efficient way.
Nowadays the specifications become more and more complex, resulting in small data introduction intervals (the time
between the current and the new data to be offered to the system: dii) for delivering data, like for video applications.
At medium throughput applications the dii is larger than the time needed for the calculation of a result based on data,
but at high throughput applications the wanted dii becomes smaller. This results that serialization of the algorithm
becomes too slow and that other techniques must be found, like:

coucuneucy where two (or more) independent tasks are executed at the same time on different resources;
pipeliuiug where the process is executed before its previous execution has finished.

A controller is fully specified by the results of a High Level Synthesis (HLS) system. Starting from a behavioral
description operations are placed in time (scheduling) and each operation is assigned to a module which can perform
the operation (module binding). The controller is specified as a token flow graph (similar to that of [Eijn93]), where
nodes correspond with states and edges with state transitions. Each state is associated with a control vector indicating
the operations the modules must perform. A state is active when it contains a token, which will be passed to the next
state(s) at the end of the clock cycle.

For the implementation of the controller, different architectures can be used. A first consideration is the parti·
tioning of the controller. For each set of resources a sub-controller is defined, while all these sub-controllers are

G. Saucier et al. (eds.), Logic and Architecture Synthesis
© IFIP International Federation for Information Processing 1995

170 Pan Six Controllers

mastered by a global controller. Each sub-controller can be implemented on the most appropriate architecture. The
next consideration is the choice of the implementation. There are different forms like a standard cell implementa­
tion, a Programmable Logic Array (PLA) or a ROM-based implementation. But all these implementations appear
to be inefficient when the control flow contains a large grain of concurrency.

At the CATIIEDRAL-11 system [Zege90], the controller is implemented on a ROM-based architecture, which is
accompanied by a branch and status finite state machine for the calculation of new (conditional) branch addresses,
and an incrementer. The control output signals are directly provided by the ROM. At [Rane93) the controller spec­
ification is first partitioned, based upon sub-routine callings. Then the most suitable architecture is chosen for the
implementation, which is based upon extended finite state models. The same method is also followed at [Gerb92).
There the implementation is based upon a ROM-based architecture, where control logic is added for the providing
of the addresses by special structures according special constructions at the control specification, like conditional
statements, loops and sub-routine callings. A modular interconnection of finite state machines architecture is used at
[Ku91), where it is possible to implement multi thread control flows on separate finite state machines. The resulting
set of communicating finite state machines are implemented on standard cells.

For all these implementations, except the last, holds that the concurrent specification is implemented on a single
threaded architecture, i.e. an architecture where only one state can be active at the same time. This limitation often
results in state explosions and consequently large implementations.

This paper presents a new controller architecture which can handle concurrency and pipelining efficiently. The
architecture is based upon a ROM-structure, where the conventional ROM structure is slightly modified for permit­
ting the activation of more than one row at a time. First the impact of concurrency and loop-pipelining is treated,
followed by the description of the architecture. As result some implementation-templates are shown, illustrating the
efficiency of the structure.

2 CONTROL STRUCTURES

A controller specification consists of an ordered set of sequences. A sequence is a consecutive list of states, where
the states are executed one after the other. State transitions within a sequence are performed synchronous with a
clock signal and are unconditional. A sequence can be executed independently of other sequences by using its own
resources. Conditional execution of sequences is achieved by conditional state transitions between sequences.

Concurrency of sequences Concurrency is defined as the execution of two (or more) sequences independent of
each other, where each sequence controls an own set of resources. Thke for example the control flow of figure I,
where loops are started along sequence s. State Tn can only execute when all the loops have finished their exe­
cutions. There are two forms of synchronization: first is when the number of iterations of each sequence is known
beforehand, where synchronization is achieved by waiting for the slowest sequence (implicit synchronization); and
second is when the number of iterations of one (or more) sequences is data dependent, requiring special actions
which keep track whether all sequences are finished or not (explicit synchronization).

Pipelining of sequences Pipelining of sequences is defined when the sequence is restarted before its previous
execution has been finished. This is only possible when the resources needed for the new invocation are released
before the start of a new invocation, and that at every state of the sequence this criterion holds. Moreover it is needed
that data, needed at the new invocation, has become available from the current invocation (or before). The data
introduction interval (dii) is defined as the maximum time needed for the release of a particular resource controlled
by states of the sequence.

If each state controls only one set of resources which is not controlled at other states, the dii is one cycle, like in
figure 2(a). Here a loop with 6 states is pipelined by restarting the loop each cycle. Looking at the control of the

ROM-based multi ~ad controller

b,
B I
- l

----,

•••

' I I

b.

T.2 _______)
Figure 1 Set of concurrent sequences, where sequence s starts other sequences (loops) a, b,

171

loop, we see that its execution can be divided into three parts: first the prologue sequence, where the pipeline is
filled, second the steady state sequence, and last the epilogue sequence, where the pipeline is being emptied. For
the implementation on a single thread control flow this results in extra states for both the prologue and epilogue,
but the body of the steady state sequence contains less states as the body of the original loop.

3 MULTI THREAD ROM BASED CONTROLLER ARCHITECTURE

Conventional controller models, based on a single ROM architecture, are characterized by the implementation of
a single thread control flow, which is caused by the limitations of the conventional ROM. Although the ROM is
efficient for large controller implementations [Gerb92], its structure is not suitable for a multi thread controller.
Looking more in detail at the ROM structure, it is evident that the address decoders on its inputs (which selects one
row at a time, according the provided address) fonns the bouleneck. When these address decoders are replaced by
latches, each row can be controlled separately (figure 2(b)).

The control signals (output signals of the controller), are generated by the the columns of the ROM. Each column
(set of columns) controls one resource. During the synthesis of the behavioral description, it is guaranteed by the
scheduler and allocator that a specific resource is controlled by only one state at a time. This results that for the
controller implementation each column can be activated only by one row at each cycle.

A row is activated when a signal ("I") is clocked into the corresponding latch. At the next cycle, the signal can
be shifted into the next latch, activating the next row. In this way, a simple sequence of states can be executed.

At a conditional statement, the signal must be passed to one of the possible latches, according the test signal (from
the datapath). Only that latch is selected for which the test condition evaluates true. Thus the evaluated test signal
for each alternative must be "anded" with the token for each conditional latch (figure 3). After tennination of the
conditional sequence, the token must be passed to the next latch. This results that both outputs of the conditional
sequences (then and else body) must be "orred" for the next latch. Thus only two and gates, one or gate (and one
invenor) are needed for the implementation of if-then-else control flows.

For a loop implementation the same number of gates are required.
Concurrency is achieved when the token is fed not to only one latch, but to more latches, each staning an in­

dependent sequence. The next state following the concurrent sequences can only be executed when all concurrent
sequences are finished (figure 4b). Synchronization becomes implicit by taking the token from the slowest chain,

172

I
I,

I
Ia
I

& I,
I

I ,

I
I,

I
I ,

\ -

Pan Six COli/rollers

ROM rna trlx

"-'
--...,­
___ 1

I
__ _j_

I __ ...J_

I __ ...J_

I
· --I­

I
·---r-

1

i
!
I

I

I

I

I

\7 buf1ers

-l} todat ath ap

latches start I
s1 ::::.. s2 :::.> s3 -
s4 ::::
s5 --------.

Jl ready I

Figure 2 a: Example of a pipelined loop with 6 states, b: Proto Multi Thread ROM based controller

S1
tMt.....-....J"iii

l1 .,

' -12 o2

Sn

Figure 3 a: If-then-else implementation, b: Loop implementation

ignoring the other tokens (figure 4a). Synchronization becomes explicit when a state machine is needed which keeps
track of sequences which are finished and sequences which are not. Only when all sequences are finished, a token
is passed to the next latch. Take for example figure 4c, where explicit synchronization is implemented. If the con­
current sequences are started, the FSM is set to state qo. When one of the concurrent sequences ends, the status of
the FSM changes (to state qa if sequence b is ended or to state qb if sequence a is ended). If both (all) sequences
end at the same time, the final state q0 is reached, which issues a signal to the next state s 0 .

Pipelining

Pipelining of a sequence is started when a token is inserted while the previous token still has not leaved the sequence
yet. This results that more than one states are active at the same time, resulting in two (or more) active rows within

ROM-basi!il multi thread controller 173

ROM matrix

$1

at bt

a2 b2

+
b3

Sn

phi

Figure 4 a: Implementalion of concurrent sequences with implicit syncllronization, b: A concurrent sequence con­
struction, c: Implementation of concurrent sequences with explicit synchronization

the ROM. Take for example the implementalion of a simple sequence of figure 2: a new token can be insened at
least three cycles after the previous token was insened (the dii of the sequence is therefore 3 cycles). This does not
mean that the next token must be insened directly if possible, but it might also be delayed some cycles. This results
in extra freedom for defining the pipelines while the implementation remains unaltered.

Also pipelining can be used within special constructs (i.e. if-then-else constructs,loops or concurrency), but then
special attention must be paid to for maintaining the correct sequence of the tokens. Consider for example the if­
then-else construction of figure 3 where the sequences of the alternatives do not have the same number of stales.
When a first token enters the construction and goes the longest way (else-branch), while a second token enters the
construction a cycle later and goes the shortest way (then-branch), it can occur that both tokens anive at the end
stale at the same moment. This non-determinism can be prohibited by either implementing a kind of syncllroniza­
tion within the construction, or by defining the dii of the construction equal to the number of stales of the longest
sequence.

Partitioning

The most efficient way for partitioning a controller is to define sub-controllers which control only a limited set of
resources (probably two or more resources), and that each resource is controlled by only one controller. This re­
sults that the outputs of the controllers never have to be combined to deliver the final control word for the resource.
Problems arise when a concurrent set of sequences is followed by another concurrent set of sequences, where there­
source partition each sequence controls can differ (figure 5). So is resource 8 controlled together with resource C by
sequence b, but is the resource together with resource A controlled by sequence p. This makes efficient partitioning
difficult, but not entirely imjlossible.

4 EVALUATION

This adaptalion of the ROM structure and the use of it as a controller has its impact on the total size of the imple­
mentalion of the controller, and also on the delay and power consumption. This section compares the differences
between the Multi Thread ROM controller implementalion and a conventional ROM based controller implementa­
tion.

174 Pan Six Controllers

Resources
State A 8 c I

••
51 X X X A A • -a X I
b X X

52 X X X

u c A B
q

p X X

q X

S) X X X

I -..
~co--

Figure 5 a: Resource occupation by different concurrent statements, b: Area occupation of a conventional ROM

Area A conventional ROM based controller consists of the following parts (figure 5):

e TheROM:
Matrix: area depends on the number of columns and rows;
Buffers: area depends on the number of columns;
Address Decoders: area depends on the number of rows and the number of address lines;

• Finite State Machine: area depends roughly on the number of address lines for which it has to determine a value
for each state transition, and on the number of states.

The Finite State Machine provides the next address of the ROM which depends on the output of the ROM of the
current address, combined with the status signals from the data path. The more complex the state transitions are,
the larger the area will be.

Comparing this conventional architecture with a Multi Thread ROM based solution, the following differences are
evident:

• The address decoders are replaced with latches: the size of a single latch is about 4 times larger than an address
decoder for 8 bits (The sizes are compared within the Compass Design System where the area of an address
decoder, part of its generic ROM structure, is compared with the area of a single transparent latch: this is nev­
ertheless a rough estimation).

• The area for the additional gates is slightly less than compared with the area needed for the Finite State Machine
at the conventional solution.

• A minor difference is the size of the matrix: this is smaller caused by a smaller number of states (rows) and the
fact that no state information is obtained from the matrix, which reduces the number of columns.

The area needed for the latches and the additional gates must be weighted against the area needed for the ad­
dress decoders and the Finite State Machine. Especially when a concurrent controller description results in an "ex­
ploded" single thread controller description, the Multi Thread solution can be smaller. Also when flexible pipelining
is wanted, this solution can be smaller than conventional designs.

Delay The difference between both architectures lies within the size of the FSM, whose critical path is for the
Multi Thread ROM solution considerably shorter. This improves the overall speed off the controller and probably
does not require extra pipelines within the controller.

Power A CMOS gate consumes power only when it~ output changes its value: switching. At the conventional
ROM implementation this happens mostly at the address decoders, where for each state transition a new address

State assignmenl selection for FPGAs 111111 CLPDs 175

must be decoded, and at the Finite State Machine where a new address must be determined. At the Multi Thread
ROM structure power is consumed when a token is shifted into a latch (and when it is shifted out of the latch), while
the rest of the latches remain idle, and at the small number of gates when the ttansition is a conditional one.

The power consumption for the output buffers of the ROM matrix remain the same for both implementations.
The Multi Thread ROM solution consumes therefore less power.

5 EXAMPLES

For proving the efficiency of the structure, examples have to be provided, but these are still under construction. This
means that no comparison can be made yet between this multi thread solution and other conventional controller
implementations. Also the Jack of large examples, especially those with a large grain of concurrency, makes a com­
parison difficult. The controller generator is written as an application on the NEAT system [Heij93], using C++. As
backbone the Compass Design System will be used, whereat the Multi Thread ROM module must be generated.

6 CONCLUSION

Although the Multi Thread ROM based controller has not yet been implemented, its preliminary results are encour­
aging. The advantages of the structure are its flexibility and relatively small area and power consumption also when
the controller specification becomes more complex. The mapping of the control graph onto the network architec­
ture is a straight forward job and does not require much time, this in contrary with the conventional state assignment
procedures.

Remaining work will be the mapping of the controller on hardware and proving its efficiency, but also a more
detailed study about partitioning and communicating controllers must be performed.

REFERENCES

[Eijn93] J.T.J. VAN EIJNHOVEN, J. JESS, AND J.P. BRAGE. Behavioral Specifiation for Synthesis. In
F. CATTHOOR AND L. SVENSSON, editors,Application-DrivenArchitecture Synthesis, chapter 2, pages 23-45.
Kluwer Academic Publishers, 1993.

[Gerb92] L. GERBAUX AND G. SAUCIER. Automatic Synthesis of Large Moore Sequencers. Integration, the VLSI
journal, 13:259-28l,September 1992.

[Heij93] M.J.M. HEIJLIGERS, H.M.A.M. ARTS, J.T.J. VAN EIJNDHOVEN, H.A. HILDERINK, J.A.G. JESS,
W.J .M. PHILIPSEN, AND A.H. TIMMER. The New Eindhoven Architectural synthesis Toolbox. In Workshop
on Circuits, Systems and Signal Processing, pages 71-75, Houthalen (B), March 1993. ProRisc/IEEE Benelux.

[Ku91] D. Ku AND G. DE MICHELI. Optimal Synthesis of Control Logic from Behavioral Specifications. lnte­
gration,the VLSI journal, 10:271-298, October 1991.

[Rane93] K. RANERUP, L. PHILIPSON, J. MADSEN, 0. OLESEN, AND G. JANSSEN. Controller Synthesis and
Verification. In Application-Driven Architecture Synthesis, chapter 10, pages 211-230. Kluwer Academic Pub­
lishers, 1993.

[Zege90] J. ZEGERS, P. SIX, F. RABAEY, AND H. DE MAN. CGE: Automatic Generation of Controllers in the
CATHEDRAL-II Silicon Compiler. In Proceedings of the European Conference on Design Automation, pages
617-621, Glasgow, February 1990.1EEE Computer Society Press.

