
9

HandMove: a system for creating animated
user interface components by direct
manipulation

D. Vodislav
Conservatoire National des Arts et Metiers/CEDRIC
292, rue St-Martin, 75141 Paris Cedex 03, France, vodislav@cnam..fr

Abstract
We describe HandMove (Human ANimation by Direct Manipulation of Objects and Visual
Elements), a highly interactive system for building animated scenes by direct manipulation. Its
underlying model is based on concurrent evolution of graphical objects, position and attribute
constraints, trajectory-based motion, event synchronization. Animation may be produced by
time signals, user input or application values. Our objective is twofold: first, to present an
animation model allowing intuitive and simple descriptions of complex animated scenes
without textual programming; next, to integrate the resulting animation as dynamic elements in
user interfaces built with a UIMS (User Interface Management System).

Keywords
Animation, user interfaces, direct manipulation, demonstrational techniques, constraints

1 INTRODUCTION

Classical computer animation systems use several methods to produce animation: creation of
consecutive frames, behavior simulation for dynamic systems described by equations, etc.
Usually they ignore user interface aspects and focus more on rendering problems, keyframing,
object deformation, forward and inverse kinematics of articulated structures (Watt, 1992).

Animation was first introduced in user interfaces to visualize the dynamic behavior of the
underlying application and appeared as a very suitable way to convey information. By
presenting a continuous evolution instead of switching from one configuration to another,
animation shifts a user's task from cognitive to perceptual activity and consequently decreases
mental load (Robertson, 1993).

L. J. Bass et al. (eds.), Engineering for Human-Computer Interaction
© IFIP International Federation for Information Processing 1996

152 Part Two Tools and Techniques

From a user interface perspective, animation raises two complementary issues: how to in­
teractively describe the evolution of graphical objects (structure, relationships, motion laws)
and how to use resulting animated scenes as user interface components (communication with
other interface elements, with the application, with the user).

Several approaches were used to specify animation in user interfaces. Algorithm animation
visualizes a program execution by representing data structures as graphical objects and data
manipulation as object movements. Balsa (Brown, 1988) is a well-known algorithm animation
system based on libraries of graphical objects and predefined movements. Tango (Stasko,
1991) uses a graphical editor (Dance) to create animation routines by specifying motion paths
as a sequence of locations. However, algorithm animation, as most data visualisation systems
controlled by the application, does not consider user interaction or building standalone user
interface components.

Whizz (Chatty, 1992) creates animated modules controlled by three types of input signals:
time, application values and user input. Using a musical metaphor, Whizz separates graphical
objects ('dancers') from their motion laws ('notes' played by 'instruments') and represents
animated scenes as data-flow graphs. Hudson and Stasko (Hudson, 1993) extend the Artkit
user interface toolkit to include animation support. They improve the path-based model of the
Tango system and create time-based animation modelled by 'transitions' (defined by a
graphical object, a time interval, a trajectory and a pacing function).

Graphical constraints specify permanent relations between the objects in a scene. They offer
a simple and declarative way to define dependencies to be maintained by the system at run­
time, speeding up the prototyping process. Juno (Nelson, 1985) and Geometer's Sketchpad
(Jackiw, 1993) use constraints to describe the structure of geometric figures. Animus
(Duisberg, 1987), based on the Thinglab constraint management environment (Horning, 1986)
uses static, time function, time differential and trigger constraints to define animation.

Direct manipulation and demonstrational techniques (Cypher, 1993) allow visual interaction
between the user and the graphical representations of objects, defining their structure and
behavior without textual programming. If direct manipulation interfaces for animation
specification already exist (Chatty, 1992)(Stasko, 1991), programming by demonstration is
more difficult to use in this field. Demonstration is very appropriate for repetitive user centred
tasks such as graphical editing or text formatting, but specifying animation has a more
imperative style and concerns time-dependent relationships; in conclusion animation is hard to
demonstrate. However, we think various demonstrational techniques may be used in animation
programming, by example for inferring position, attribute and time constraints.

To date, there has been little support for animation in user interface builders. Current DIMS
create static user interfaces by interactive techniques, but in most cases illustrating the
application's dynamic behavior needs significant programming. In order to reduce such
programming effort, the user should be able to describe animated elements by direct
manipulation and to build the user interface by combining static and dynamic components.

We consider that a system which creates animated components for user interfaces must
fulfill the following requirements:
• It should be based on various animation sources in user interfaces: time, application values,

user input. By mixing animation input stimuli, resulting scenes may be adapted to different
application types (time-driven animation, data visualization, interactive games, etc).

• It should provide a rich scene model, able to describe object structure, inter-object relation­
ships, various evolution laws, synchronisation, etc. Features not supported by the model
usually need an important programming effort.

HandMove: a system for creating animated user inteiface components 153

• It should avoid classical programming, by using direct manipulation for all scene definition
aspects. Non-skilled programmers should be able to use the system with little effort.
Resulting scenes must have concise but meaningful graphical representations and enable the
user to understand and modify the scene's structure and behavior.

• It should enable an easy integration of animated scenes in user interfaces, as independent
modules having inputs, outputs and internal dynamics.

Existing animation systems do not satisfy (totally or partially) some of these requirements.
Systems such as Balsa (Brown, 1988) or Tango (Stasko, 1991) focus on a specific aspect
(algorithm animation) and do not consider user interface interaction. Other systems have no
support for advanced features such as graphical constraints (Whizz (Chatty, 1992)) or
synchronization (the Artkit extension (Hudson, 1993)). A system such as DataViews (from
V.I. Corporation) cannot express synchronization or user-driven animation by direct
manipulation, even though it offers the programming support to realize them.

This article presents HandMove, an interactive system for creating animated scenes to be
integrated in user interfaces. HandMove was conceived to fulfill the four requirements above.
Its scene model allows composed objects related by position and attribute constraints, with
concurrent evolution based on abstract trajectories and synchronized by events. Animated
scenes are adapted to time, application values and user input stimuli. The interaction model is
simple and intuitive; based on direct manipulation, it does not use textual programming at all.
Resulting scenes are independent modules, used by a UIMS as ordinary widgets. An implemen­
tation using the XnslDraw (NSL, 1994a) graphical widget (created by NSL) and integrating
HandMove in XFaceMaker (NSL, 1994b) (the NSL's X/MotifUIMS) is currently in progress.

2 THE HANDMOVE SYSTEM

The architecture of the HandMove system is presented in Figure 1. The HandMove editor
enables easy creation of complex animated scenes by direct manipulation. Roughly, a scene is a
set of graphical objects (actors) with motion laws based on various input stimuli (time,
application values, user input) and synchronized by events. A declarative scene description
language called HandScript is used to express resulting animated scenes and to store them in
external files.

The scene compiler translates HandMove scenes into the target language of the XnslDraw
widget (NSL, 1994a), which manages graphical objects with dynamic behavior described by
scripts. Resulting scenes are used as dynamic user interface components, integrated in
applications built with the XFaceMaker X/MotifUIMS (NSL, 1994b).

It is not our intention to build whole interfaces with HandMove, but only dynamic parts that
otherwise need programming. We think that current UIMS manage well enough static interface
design, with the advantage of respecting standard graphic styles (e.g. OSF/Motif (Open
Software Foundation, 1991)). HandMove scenes may be used by an external UIMS, while in
most current systems, resulting animation can only be used inside the system. In order to
integrate the animated scenes into user interfaces, such systems are forced to offer full interface
design capabilities.

HandMove significantly reduces the programming effort of a UIMS user, by creating
complex animated scenes without textual programming. The architecture of the HandMove
system also contributes to reduce this effort. The scenes have internal dynamics and

154 Part Two Tools and Techniques

communicate with the application only by stimuli and signals; thus the application has not to
control each action in the scene, but only to send/receive signals.

By considering various input stimuli, HandMove can successfully build scenes for different
application types: data visualisation, simulation, animated help, algorithm animation, interactive
games, standalone animated objects (e.g. a sandglass), etc.

Figure 1 The HandMove architecture.

3 THE UNDERLYING MODEL

3.1 Primitive objects

Actors, decor
Graphical objects in HandMove scenes are two-dimensional; they have a name, graphical
attributes (e.g. color, visibility, rotation angle, line type) and a composition list. Components
may be primitive objects (e.g. lines, rectangles, labels) or other composite objects, thus an
object's structure is represented by a composition tree. Objects with dynamic evolution are
called actors. Figure 2.a displays the actor sandglass and its composition tree, with component
actors top and bottom and static objects HMRectl and HMRect2. An actor's components are
constrained to follow its motion, but they may have their own attribute evolution and a motion
relative to the higher level actor. In Figure 2.a, top and bottom change their filling percentage
attribute, while in Figure 2.b, the component actor b follows the motion of the higher level
actor a, but also has its own relative motion (Ta is the trajectory for a, Tba is the trajectory for
b relative to a and Tb is the 'global' trajectory for b).

sandglass ~HMRect1

Etop top
bottom

HMRect1 bottom

H MRect2 H MRect2

(a) Composition tree (b) Relative motion for component actors

Figure 2 Actor composition.

HandMove: a system for creating animated user interface components 155

Decor elements are motionless objects involved in the motion of some actors in the scene.
A decor element may have one or more actors attached to it during scene evolution. Figure 3
presents a scene for a sort program, where each ball is an actor representing a sorted value and
vertical sticks are decor elements with attached actors. Actor-decor attachment is useful when
it is simpler to address an actor through the decor element (e.g. in the sort program we want
(decor) positions 3 and 4 to interchange values). Decor elements may be used as start/end
points for actor motion; in such a case they must define positioning rules for the attached
actors (in Figure 3, actors are positioned at the bottom of the decor elements).

As in the example in Figure 3, in many cases we have similar actors behaving in a similar
way. In such a situation it is more profitable to describe the evolution of one actor only and to
treat the others by similarity. We introduce the notion of collection of actors (or decor
elements) to respond to this need. Collections (frequently used in algorithm animation) are
modelled with arrays and the only operation we consider is addressing an element by its index.

actors decor

Figure 3 Actors and decor.

Constraints
Actors may be related to each other by position constraints and attribute constraints. Position
constraints are obtained in HandMove scenes with fixed/mobile articulations and translation
guides. In Figure 4.a, the crank-rod-piston mechanism is constrained by two mobile
articulations (B, C), a fixed one (A) and a translation guide for the piston on the axis. The
position constraints split actors into two categories: with independent motion and constrained
ones. To describe the motion in a scene, one needs to specify motion for independent actors
only. In Figure 4.a, the crank is the independent actor which determines the movement for the
rod and the piston. Another kind of position constraints is induced by actor composition: a
component's motion is relative to the position of the whole.

Attribute constraints express permanent relations between the attributes of two actors.
HandMove uses binary one-way relationships for attribute constraints. In Figure 4.b, the filling
percentage of top determines the filling percentage of bottom, which constrains the string
displayed by label.

<- -i>

top s-.. lilling'l6(bottom)=100 _ h11ing%(top)

' label
bottom s~{~!':lil~~~~~

(a) Position constraints (b) Attribute constraints

Figure 4 Position and attribute constraints.

156 Part Two Tools and Techniques

3.2 Motion elements

Input stimuli and actor evolution
Actors have independent evolutions, under the influence of three types of basic input stimuli:
time, values (produced by the external application) and user input (produced by mouse or key­
board events). Time signals are periodic with a given frequency; the others are sudden events.

Actor evolution concerns object motion and attribute changes. Motion is a combination of
translation and rotation. HandMove pays special attention to translation (modelled with
trajectories), but considers rotation as a simple attribute change (rotation angle).

Trajectories
HandMove associates with each actor its (translation) trajectory. Trajectories are paths made
up of consecutive segments. A segment has an origin, an end point, a type (point, line,
polyline, ellipse arc, spline) and a geometry. The actor moves along the successive segments;
on each segment it follows a different evolution law and it may have a different input stimulus
source. The translation law for a segment expresses the covered distance as a function of the
input stimulus. Other numerical attributes (e.g. rotation angle, filling percentage) may also vary
according to continuous evolution laws. Attributes with discrete values (e.g. color, visibility)
may only have discontinuous changes.

Spots are salient points on the trajectory, places where 'something happens'. Spots are the
only places where discontinuous changes may happen. Segment start/end points are always
spots. A spot may be defined:
• Explicitly, by a given position (pointed on the trajectory) or a decor element (only for seg­

ment start and end points);
• By a particular value of the input signal (e.g. when the application value v becomes 0);
• By a particular value of an attribute with continuous evolution (e.g. when the rotation angle

is 45°);
• By an incoming event (as shown below).

Figure 5.a presents a possible trajectory, containing all segment types. Segments a, b, c, d, e
are of type line, point, ellipse arc, polyline and spline. On a point segment there is no transla­
tion; the start and the end point have the same location, but different definitions (e.g. the end
point is often defined by an incoming event). In Figure S.b, the actor has continuous laws for
translation and rotation. A is the start point, B the end point defined by the incoming event e, C
is defined by an explicit position and D by the value of the rotation angle (90°). Figure 5.c il­
lustrates the use of decor elements as start/end points; the exact position at destination is given
by the positioning rule of the end point decor element. In Figure S.d, the pointer moves along
the AB segment, controlled by the application value val; spot C corresponds to val=O.

• •• a b
9 '

----Oo·-.
c •

d '':. 0
••

0 0.0 0:.

(a) Trajectory segments

G
(j) .)(· -~ • • c

A

(b) Spots

Figure 5 Trajectory and spots.

~e

••
B

10 j e B

0 ~ C(val-o)

oiO • A

(c) Decor start/end points (d) Input value spot

HandMove: a system for creating aniiTUJted user inteiface components 157

The actor's behavior in a spot is described by a set of standard actions. Updating an
attribute and generating an event are the most common actions (see section 4).

The user creates spots on the trajectory, but their position is relative. Except for the first
type of spot, their exact location is known at run-time only. Moreover, spots may be local to a
segment or global to the whole trajectory. Only spots defined by an attribute value or by an
incoming event may be global. In the case of a global spot, the definition condition is tested all
along the trajectory, thus the spot may be located in any point of any segment.

Because segment start/end points are spots, the real trajectory is also known at run time
only (in most cases). A segment start point is defined by the real position of the previous end
point spot. Moreover, the segment's end point position may be changed by actions at run-time.
All these relativity elements define the notion of abstract trajectory. Roughly, this means that
the path drawn at specification time is different from the real trajectory, but contains all the
necessary elements to obtain the final run-time behavior.

Events
HandMove actors communicate through events. An actor can explicitly generate an event
(only in spots) to announce a change in its status or its motion. Events are identified by their
names and may carry one or more values (e.g. attribute values, index of an actor in a collec­
tion). In Figure 6.a, event e is generated to announce that the actor reached the end of the
segment and carries the value of the current rotation angle. Other event sources are:
• The Master, a special object that monitors user defined relations between actors. An event

is generated when the condition of such a relation is satisfied (e.g. the collision of two
actors). In Figure 6.b, the Master generates event e (received by the ball) when the ball hits
the wall.

• The Constraint manager, a special object that manages position constraints. An event is
generated when an actor reaches a limit point. In Figure 6.c, the Constraint manager gener­
ates event e (received by the piston) when the piston moving to the left hits its left limit.

• User input (e.g. a mouse button click, a key stroke).
• The external application, which in addition to application values may generate events for

synchronisation purposes and communication with the animated scene.

0.te(rot)

-· B

walt
e ~ A

· -- -- ---B roo
piston
~

:crank ,
I I - r

(a) Actor generated event (b) Master event (c) Constraint manager event

Figure 6 Event generation.

Master and Constraint manager events may be received by the actors involved in the event
generation only. Event reception may be restrained to a trajectory segment by using local
spots. Generally, events may be received by:
• Actors; this is the most common case.
• Decor elements with attached actors; the event is then dispatched to actors.
• Collections of actors; the event is dispatched to the specified element.

158 Part Two Tools and Techniques

3.3 Animated scenes

A scene is a set of actors and decor elements, related by constraints, moving on trajectories
under the influence of input stimuli and communicating through events. Scenes are modules
with possible inputs for application values or events and outputs for events (Figure 7.a). Ac­
tually, application values may be seen as events carrying a value, so one may consider scenes as
receiving and generating events. We consider as scene inputs/outputs every explicit connection
which should be made between the scene and its external environment in order to exchange
signals. User input stimuli (keyboard, mouse) are produced at run-time and are automatically
directed to the scene. They are global to all scenes and need no explicit connection to a scene's
input. Time signals are automatically produced by the system for every time-driven segment
evolution inside the scene.

values Scene

I time signals I
I user input I

events

Scene A

va~uev c. eventa' .. • e ,
.. 'valuev

v~z~
e~

Scene A

c .. -~
Scene 8 event a

va~uev eve ta

evente

(a) Scene inputs and outputs (b) Merging scenes

Figure 7 Animated scenes.

HandMove uses a scene specification language named HandScript to describe animated
scenes. The HandScript format is used to save scenes in external libraries (Figure 8). A scene
may be reused in standalone or merged into a new scene. In the latter case, we must indicate
the correspondence between the inputs/outputs of the included scene and the existing signals in
the new context. In Figure 7.b the scene B is merged into the scene A; the inputs/outputs ofB
are connected to signals from the context of the scene A (value v - the input of A; event e -
generated by an actor of A, event a - the output of A).

SceneS (Input Value lnt v, Event in(Color c); Output Event out()){ II inputs and outputs for the scene

Actor a{ II an actor
Object{ II graphical object description

AUributes { ... } II graphical attributes
Geometry{ ... } II if primitive graphical object
Composition { ... } // if composed object
Constraints { ... } II position and attribute constraints

}
Trajectory{

{Type: HM _line;
Geometry { ... }
Stimulus ~ Time (I 00);
Evolution{ ... }
Startpoint: Spot_descr{ ... }
Endpoint: Spot_descr{ ... }
Spots{ ... }

}, ...

II list of segments
II segment type~ line
//line coordinates
II stimulus signal on the segment (100 ms timer)
II evolution laws on the segment
II spot description for start point (actions)
II spot description for end point (type, actions)
//list of other spots

II other segments

}... II other acton, decor elements, collections, etc.

Figure 8 HandScript description of a scene.

HandMove: a system for creating animated user inteiface components 159

4 DESCRIBING EVOLUTION

4.1 Principles

HandMove focuses the description of an animated scene on actors and their trajectories.
Unlike the Whizz model (Chatty, 1992), which separates actors from their motion sources
(position/attribute generators), HandMove collects all actor evolution elements at one level.
Conceptually, by handling all actor features together, it becomes simpler to express internal
relationships, thus to represent more complex and natural evolution.

At the user perception level, this actor focusing policy favours locality: when describing an
actor's evolution, the user doesn't need to concentrate on the rest of the scene. The trajectory,
the motion laws, the received events, the response actions are all described in the actor's
context. For the user describing a scene, with few exceptions, actors are loosely coupled: they
interact by events or by constraints (maintained by the system).

Trajectory is the fundamental element in describing actor evolution. Its spatial
representation allows a simple and intuitive support for human-system interaction. Actor
evolution has two distinct aspects: continuous and sudden changes. Position (obtained from
the covered distance on the trajectory) and possibly some actor attributes (e.g. rotation angle,
filling percentage) have continuous evolution laws expressed as a function of the input
stimulus. Each continuous law gives to a trajectory point a new dimension: the attribute value
corresponding to this point. Therefore, we say that continuous evolution laws enrich trajectory
semantics. In Figure 9, the point C has four different meanings and is perfectly defined by any
of the four values.

sdmulus: time
distance = 1 0 • I

angle= 2 • I
filling%=100-1•1

B

1=45
distance=450
angle=90

fillingo/o=55

Figure 9 Continuous evolution laws Figure 10 Position constraints solving

Discrete or sudden changes are described in HandMove by spots, more precisely by the set
of actions in each spot. The actions in a spot concern the current actor only and their execution
order does not matter. The most important action types are: update an attribute, generate an
event, stop/continue evolution, change the current position, restart trajectory/segment, update
the end point position, start an alternative segment. Repetitive evolution is obtained by using
the restart trajectory/segment actions.

Even though trajectory-oriented motion is appropriate for interactive specification, it has
the drawback to fix in advance the actor's route. With the notion of abstract trajectory (defined
above) HandMove proposes a solution to this problem by significantly increasing flexibility. By
using event-defined end points and end point updates, trajectories dynamically change at run
time following the scene status. Thus the trajectory traced by the user is an abstract
representation of the real trajectory (at run time). The difference between the two trajectories
is the same as the distinction between a program and its execution.

160 Part Two Tools and Techniques

Using constraints represents an appropriate way to reduce the programming effort, by
decreasing the number of independent actors. One of the most difficult tasks for HandMove is
to manage these constraints. Figure I 0 shows an example of determining the movement of a
constrained actor. A, B and C are articulations to other objects, A has a known motion law, B
is fixed and C is free. The actor's position is completely determined by two points. We know
the position of A and B at any moment, so the actor's motion is also known. Thus the motion
of C can also be determined and now C will behave as a point with known motion law for the
other object articulated in C. This method is used by the scene compiler to determine the
motion of all constrained actors and to verify if the position constraints are not contradictory.
The compiler finds the sequence of direct calculation formulas to be computed at run time for
each constrained actor.

Most of the previous examples use time because the reader has a better perception of time­
driven animation. The other input stimuli types may be used in a similar manner. Motion and
continuous evolution laws can be based on numerical application values or the mouse pointer
position. A special (and frequent) case is when the actor is constrained to follow the mouse
position. The main difference between time and the other stimuli is that time signals are
periodic and cumulative. While for application values or user input the stimulus value is carried
by the signal, the time stimulus value used is given by the total number of time signals.

4.2 The HandMove editor

The HandMove editor allows to create animated scenes by direct manipulation. Actors, decor
and trajectories are described using graphical primitives (e.g. lines, arcs) and interaction
techniques typical of graphical editors. All actors in a scene share the same space for their
evolution. Actors/decor and trajectories are organized in separate layers.

To define attribute constraints, the user points the related actors, specifies the attributes and
the dependency formula (among some standard dependency types). To define an articulation,
the user specifies the joined actors and the articulation point for each one. A guide constraint is
defined by attaching a trajectory to the constrained actor.

In describing a scene, the user first specifies scene's inputs/outputs, then actors, decor,
constraints, trajectory, etc. For actor evolution, he describes each segment's characteristics
(input stimulus, continuous laws). Continuous laws may be chosen among some standard types
and usually are linear dependencies. The most interesting case is in describing actor translation
laws in time-driven animation. Besides the standard motion types (uniform, accelerated, 'slow­
in/slow-out' (Hudson, 1993), etc), the user may specify arbitrary motion laws, by using a
special editor (Figure 11). The user traces the graph of velocity (v) as a function of the covered
distance (d), by using lines, ellipse arcs, splines, etc. We use distance instead of time, because it
is difficult to estimate the total time necessary to cover the segment, while the total distance
can be easily determined.

To create a spot, the user indicates a point on the trajectory and its meaning (exact location,
attribute or stimulus value, incoming event). Related actions are selected among the limited set
of choices. All these elements (scene's inputs/outputs, stimuli sources, segment characteristics,
spots) are displayed with dedicated graphical notations. This graphical feedback provides to
the user a synthetic view of the scene. Figure 12 shows an example for spots: we describe spot
definition, spot actions, restart condition (if one of the actions is 'stop') and restart actions.
Spot A is defined by its exact position on the abstract trajectory; when the spot is reached, the
actor generates events. Spot B is defined by the value of the rotation angle (45°) and the actor

HandMove: a system for creating animated user interface components 161

arrived in B stops. It will restart only when it receives event g and it will change its color at
that moment.

d

l m~c='ns l:t!~t~~ ::
)(exact position 1 generate event

~ rotation anglo e stop

Incoming ovoot 0 change color

Figure 11 Arbitrary motion law. Figure 12 Graphical feedback for spots.

Animated scenes can be entirely described by using the direct manipulation techniques
presented above. In certain cases, demonstrational techniques may be used in order to facilitate
the scene definition process. Future work will consider the construction of a demonstration
layer on the top of the HandMove model. The visual representation of animation provided by
our model offers an elegant solution to the problem of program visualisation/update, typical for
programming by demonstration. We present below some examples of using demonstration to
infer relationships.
• Constraint inference, by using different configurations of the related objects (in Figure 13 . a,

the system receives the two actor configurations and infers the existence of articulations in
A, Band C).

• Generalisation of collection elements behavior (in Figure 13.b, the system infers that each
collection element switches with the previous one).

• Inference of positioning rules for decor elements with attached objects (in Figure 13 . c, the
position of the attached actors enables the system to infer the positioning rule).

E 8 A I I--

--~:-
(a) Position constraints inference

. .._.
gen..-alisation :

element with index k interacts with
the previous one (index k-1)

(b) Collection generalisation

Figure 13 Demonstrational techniques.

5 ANEXAMPLE

A · decor element

~ ;-;-attached actors

rule: a new actor is put
on the top of the others

(c) Rule for decor element

Let's assume the four-stroke engine in Figure 14. We define the following actors:
• Piston, rod and crank, related by position constraints (fixed point articulation for crank in A,

rod and crank articulated in B; rod and piston articulated in C). Piston has a linear
translation inside the cylinder, rod and crank are constrained by piston.

• Admission and leakage, the valves for admitting fuel and evacuating exhaust gas.
• In and out, arrows that are visible only when admission, respectively leakage are open.
• Spark, which is visible a brief moment when piston produces a maximum fuel gas pressure.

162 Part Two Tools and Techniques

Figure 14 Example: a four-stroke engine.

Position constraints
A: fixed articulation for crank
B: crank-rod ortK:ulotion
C: piston-rod articulation

The evolution description for the main independent actors is illustrated in Figure 15 .
Leakage and out have similar evolution to admission and in; rod and crank are constrained by
piston. We only illustrate start/end point definitions using the graphical representation
described above; continuous evolution laws are not shown.

~.~~· · .~ .~
0 B A C E

fston

segments: AB, BC, CO, DE t • gonemtod ovonts
(lype: line) s • spa r1<

A m constraint manager event to • tookago open
lc • leakago closed 0 • ,....tart trajectory ac • admission closed

(from the current positionfotatuo) 80 • admission

segments: AB, BC (lype: po;nt)

(S) • limo valuo • •• : • got Invisible

Q • got visible

Figure 15 Actor evolution description.

segments: AB, BC
(lype: line)

t 1v • In visllllo

t li • in Invisible

segmonts: AB, BC
(lype: po;nt)

Piston trajectory has four (collinear) segments, which end points are defined by Constraint
manager events indicating limit positions. Events generated by piston control other actors
(spark in B, leakage opening in C, leakage closing and admission opening in D, admission
closing in E). At the end, motion is restarted considering the current position as start point.
Spark has no motion, so we use point segments. The action in A establishes the initial status
(invisible). The first segment ends when the s event from piston is received; spark becomes
visible for 20 seconds, then its evolution is restarted (thus by becoming invisible again).

Admission begins by stopping its motion and waiting for event ao (from piston) to start the
first segment. When starting, it generates an event to make in visible. In end point B (defined
by an exact position), admission stops again; to start the second segment, it waits for the ac
event. At the end point C (defined by an exact position, the same as for A), the motion is
restarted from the current position (thus by waiting). In acts like spark, excepting that its
visibility is controlled by the events generated by admission.

HandMove: a system for creating animated user interface components 163

6 IMPLEMENTATION ISSUES

As mentioned above, our implementation uses the XnsiDraw widget, created by NSL.
XnsiDraw is an XWindow (Xt Intrinsics) widget managing graphical objects (e.g. lines,
ellipses, text). Low-level scripts may be attached to objects, describing behavior in reaction to
external events. Function calls available in scripts are: move object, change an attribute, call
another script, etc. The HandMove scene compiler translates actors to XnsiDraw objects and
their evolution to XnsiDraw scripts. The integrated constraint compiler transforms constraint
resolution in direct calculation formulas.

The contents of a compiled scene is kept in a XnsiDraw file. The dynamic element to be
included into a user interface will be a XnsiDraw widget instance connected to this file. Thus,
we do not create a special widget for each scene; we simply use the XnsiDraw widget with
different description files. However, it is possible to transform a couple XnsiDraw widget - file
into a new independent widget.

XnsiDraw animated scenes are integrated in inter.:aces created with XFaceMaker, the NSL's
X/Motif UIMS. XFaceMaker provides an interactive editor for interface layout design and a
high-level language (Face) for user interface behavior specification. XnsiDraw widgets
containing animated scenes are added to the user intc:rface as any other static Motif widget.

To communicate with the application and with the rest of the interface, HandMove scenes
use two methods. In order to receive input signals (which can all be seen as events carrying
values), HandMove scenes define a reduced functional interface (Figure 16). Sending a signal
to the scene is equivalent to a function call. To send signals to the rest of the interface,
HandMove scenes use the active values mechanism of XFaceMaker (Figure 16). Roughly, an
active value is an interface object defined by a variable and two Face scripts (get script and set
script) to manipulate this variable. For each outgoing event, a HandMove scene uses an active
value. At run time, in order to send the signal, the scene calls the set script of the active value.
This script can be handled by the XFaceMaker user to program the reaction of the application
to the signal.

function call - Acliwvalue
HandMove value

scene event
getscnpt

set script ~ event treatment

Figure 16 Integration ofHandMove scenes in XFa,:eMaker applications.

Animated scenes may be used outside the XFaceMaker UIMS (e.g. inC programs), with
one restriction. Currently, there is no mechanism for 1:ransmitting events generated by the scene
toward the external application, thus HandMove scenes may only receive signals.

To respect time requirements, HandMove uses the script scheduling mechanism of
XnsiDraw, which allows to arm a script to be launched after a specified time period. This
method cannot guarantee exact timing, due to the script treatment policy of XnsiDraw and to
the asynchronous character of the XWindow system. Timing problems in Unix and XWindow
systems are well presented in (Hudson, 1993). On the other hand HandMove provides a
powerful mechanism to describe asynchronous scene evolution (by event-based
communication).

164 Part Two Tools and Techniques

7 CONCLUSIONS AND FUTURE WORK

HandMove is an interactive system for creating animated scenes, used afterwards as dynamic
user interface components. Resulting animation can be integrated in applications built with the
XFaceMak:er UIMS, but it may be easily adapted to other user interface builders. HandMove
combines various input stimuli (time, application values, user input), so it can be used for very
different dynamic application types (e.g. standalone animation, algorithm animation, interactive
games).

The scene model is rich, containing some novel features as: composed actors, decor
elements with attached actors, collections of actors, position and attribute constraints, event­
based communication, abstract trajectories. The interaction model is based on direct manipula­
tion and favours a local view on actor evolution. The use of dedicated graphical symbols offers
a comprehensive view on the programmed behavior.

Future work will consider the following problems:
• Extending the scene model to include new features as object creation/destruction, shape

changes, etc.
• Formalizing the HandMove scene model.
• Minimizing the interaction between the scene and the application. A scene's status is given

by the position and the attribute values of each actor. Other status information must be kept
by the application and exchanged by events with the scene. We want to extend our model in
order to reduce such exchanges.

• Building a demonstrational layer on the top of the HandMove model.

Acknowledgements

I am grateful to Ion Filotti, Michel Scholl, Stephane Chatty and the whole NSL team for
stimulating discussions and helpful comments.

8 REFERENCES

Borning, A, Duisberg, R. (1986) Constraint-based tools for building user interfaces. ACM
Transactions on Graphics, October, pp. 345-374.

Brown, M. (1988) Exploring algorithms using Balsa II. Computer, 21(5), May, pp. 14-36.
Chatty, S. (1992) Defining the dynamic behavior of animated interfaces, Proceedings EHCI'92,

Engineering for human-computer interaction, IFIP Transactions, pp. 95-109.
Cypher, A (1993) Watch what I do. Programming by demonstration. MIT Press.
Duisberg, R.A (1987) Animation Using Temporal Constraints: An Overview of the Animus

System. Human-Computer Interaction, vol. 3(3), 1987/1988, pp. 275-307
Hudson, S.E., Stasko, J.T. (1993) Animation Support in a User Interface Toolkit: Flexible,

Robust and Reusable Abstractions. Proceedings UIST'93, Atlanta GA, pp. 55-67.
Jackiw, R.N., Finzer, W.F. (1993) The Geometer's Sketchpad. Programming by Geometry.

in Cypher, A Watch what I do. Programming by demonstration, MIT Press, 1993.
Nelson, G. (1985) Juno, a constraint-based graphics system. Proceedings SIGGRAPH'85, San

Francisco, pp. 235-243.
NSL (1994a) The NSL Widget Library.
NSL (1994b) XFaceMaker - User's!Reference Guide.

HandMove: a system for creating animated user inteiface components 165

Open Software Foundation (1991) OSF/MotifStyle Guide, Prentice Hall.
Robertson, G.G., Card, S.K., Mackinlay, J. (1993) Information Visualization using 3D

Interactive Animation. Communications of the ACM, Vol. 36, No.4, April, pp. 57-71.
Stasko, J.T. (1991) Using direct manipulation to build algorithm animations by demonstration.

Proceedings CH/'91, New Orleans, pp. 307-314.
Watt, A., Watt, M. (1992) Advanced Animation and Rendering Techniques. Addison-Wesley.

9 BIOGRAPHY

The author is a PhD student at the Conservatoire National des Arts et Metiers in Paris, France.
He graduated from the Polytechnic Institute of Bucharest, Romania and the 'Pierre et Marie
Curie' University in Paris, France. His research interests include human-computer interaction,
animation in user interfaces, visual programming, programming by demonstration and
geographical information systems.

166 Part Two Tools and Techniques

Discussion

Michel Beaudouin-Lafon: Is your system extensible, for example how can I include audio
output and synchronise it with the graphics?

Dan Vodislav: We haven't considered sound, but as the model is clear and simple, it should be
easy to insert new elements. For example, we added key-frame animation actors.

Claus Unger: How do you check and prove that all the user-defmed constraints are consistent
with each other?

Dan Vodislav: Constraint consistency is checked at specification time, but the fact that an
anchor goes beyond its limit position has to be checked at run-time. This cannot be checked at
specification time because of the abstract nature of the user-specified trajectories. These
constraints are geometric and are easy to check at run-time.

Pedro Szekely: What can HandMove do that systems like Alias Wavefront and similar
commercial tools cannot do?

Dan Vodislav: The main contribution of HandMove is visual specification, especially the visual
representations of evolution. The model was intended to offer a single virtual representation
and it cannot describe any dynamic evolution. In such cases, some actions must be delegated to
the application, which communicates with the animated scene through events.

Jim Larson: What has been the experience of users with HandMove?

Dan Vodislav: The system is not yet completed, so we have no user experiences .

Joi!lle Coutaz: How do you, firstly, specify the types of events and secondly, perform type
checking when composing scenes?

Dan Vodislav: There is a special panel for event parameter (type) specification. The type of a
merged scene must also be explicitly specified by the user.

Joi!lle Coutaz: How do you choose the master object? Does everything change if you change
the master object, for example, taking the crank instead of the piston as the master object for
your example?

Dan Vodislav: The piston is the natural choice for this example, but it is true that changing the
master can require changes to the whole scene evolution, but generally we obtain a different
behavior by changing the master.

Bernard Merialdo: Your example of a ball bouncing off a wall had only one ball. How would
you model several balls colliding with each other and hitting the wall?

Dan Vodislav: We may use a collection of balls and describe the trajectory as the motion
between two collisions, then restarting this trajectory with a new direction after each collision.
The Master has to detect any collision between the ball and the wall or the rest of the ball
collection.

