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Abstract 

This paper describes extensions to the Tioga flight-simulator browsing protocol presented by 
Stonebraker et al. (1993a). These extensions allow users to navigate a multidimensional data 
space using sophisticated zooming capabilities. This design also allows users to move easily 
between different multidimensional spaces. Tunneling between different data spaces is shown to 
be a substantial generalization of hyperlinks in a hypermedia system. Finally, our design 
provides for the coordination of multiple browsers. This preserves context and allows users to 
explore multiple paths simultaneously. 

In concert, these extensions incorporate the functionality of many information management 
paradigms as well as introducing new constructs. These powerful mechanisms for relating data 
provide users with great flexibility. For example, users can create magnifying glasses which 
show an enhanced view of the underlying data. 
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1 INTRODUCTION 

The design of user interfaces for database systems is an area in need of more attention 
(Stonebraker et al., 1993c). Existing database user interfaces are often unfriendly and difficult 
for nonexperts to use. Common database interfaces include textual programming languages or 
forms-based interfaces oriented towards business applications. 

In Stonebraker et al. ( 1993a), we presented Tioga, a new paradigm for user interaction with 
a database management system (DBMS). Tioga is motivated by the needs of scientific DBMS 
users in the SEQUOIA 2000 project (Stonebraker and Dozier, 1992; Stonebraker et al. 1993b). 
Tioga uses the boxes and arrows notation popularized by scientific visualization systems 
such as AVS (Upson et al. , 1989), Data Explorer (Lucas et al., 1992), and Khoros (Rasure and 
Young, 1992). Tioga improves upon these systems by providing sophisticated data management 
using the POSTGRES DBMS (Stonebraker and Kemnitz, 1991). In the Tioga programming 
model, boxes represent user-defined database queries or browsers, and edges between boxes 
represent flow of data. Although a limited number of boxes has currently been implemented, 
additional boxes may be programmed by users. Nonexperts build visual programs called 
recipes by interactively connecting boxes together using a graphical user interface. Current 
recipes include a photographic 35mm slide library and a geoindexing system. The underlying 
data manager is able to optimize and efficiently execute recipes. 

The purpose of a recipe is to specify the data to be visualized, access the data through a 
database management system, and then locate the data in a multidimensional browser display. 
Figure 1 shows a typical recipe as constructed by a user. The recipe includes two browsers, 
viewer! and viewer2, to display the data generated by the recipe. The default Tioga browsing 
paradigm allows users to visualize data results in a multidimensional space. Users navigate 
through their data using a flight-simulator interface. (Additional browsers may be implemented 
by advanced users.) Figure 2 shows a browser displaying objects in a latitude/longitude 
viewing space that contains California. One object, a digitized 35mm slide, has been selected and 
displayed. 

In the default Tioga browser, the user chooses two dimensions to be displayed on the 
screen. Remaining dimensions appear as sliders which restrict the objects in the display to 
those which have values matching the constraints indicated by the sliders. The original 
navigational interface allows the user to pan over the two dimensions of the display or to zoom 
by enlarging a certain portion of the display. Clearly, more sophisticated navigation is desirable. 

In Stonebraker et a!. (1993a), we explored the basic constructs of Tioga and provided a 
query execution model. Chen et a!. (1993) 
expanded the Tioga model to interface to 
foreign systems and provided a notion of 
transactions for the Tioga environment. 
Woodruff et a!. ( 1994) introduced 
mechanisms to support navigation in 
multidimensional space. 

In this companion paper, we extend 
these ideas and present three mechanisms 
which can be combined to support both 
novel, powerful constructs and constructs 
of proven worth. These extensions include: 

enhanced detail. Our system must be 
able to provide enhanced detail as a 
result of a zoom operation. For 
example, the Kodak PhotoCD 
representation for digital images 
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supports five different resolution Figure 1 
formats, ranging from a full size 2K by A Tioga Boxes and Arrows Diagram. 
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Figure 2 
Data Displayed in the Tioga Browser. 

3K by 8-bit color image to a 128 by 192 
by 8-bit abstract (Eastman, 1992). A 
user would like the ability to see 
abstracts on the screen and then zoom in 
to view the images at a higher 
resolution. A similar feature was 
provided by SDMS (Herot, 1980), but 
it was hard-coded into that execution 
engine. Hence, retargeting SDMS 
required a considerable amount of 
customization. 
movement to different multidimensional 
spaces. Enhanced detail implies a 
change in perspective within a 
multidimensional space. Users also 
want the ability to switch to a new 
multidimensional space. For example, a 
user could zoom in on a map of 
Berkeley to find the Computer Science 
building. Additional levels of detail 
could yield documents corresponding to 
Computer Science technical reports. 
These documents should be displayed 
in a different context than the 

latitude/longitude coordinates appropriate for the map of Berkeley. When a document is 
being viewed, a further zoom could yield the image of the author or the layout geometry of 
his or her office. Again, a different multidimensional space should be used. 
coordination of multiple browsers. Our system must support multiple levels of detail in the 
same display. For example, it should be possible to place a magnifying glass on a portion of 
the display and have a zoom operation performed only for the objects under the glass. The 
remaining objects in the display should serve as a context for the magnified data and should 
not change. Because the objects in the magnifying glass are shown with enhanced detail, this 
function is considerably more complex than simply changing the number of pixels used for 
display. For example, support for magnifying glasses requires that browsers be allowed to 
share windows. 

In the rest of this paper, we explore our design in detail. Specifically, in Section 2 we define 
a zoom capability that allows enhanced detail. We proceed in Section 3 to define wormholes that 
allow users to change multidimensional spaces. We tum in Sections 4 and 5 to our design for 
coordination of multiple browsers. We present the execution model in Section 6. In Section 7 we 
discuss potential applications, and in Section 8 we summarize our findings. 

2 SHOWING ENHANCED DETAIL 

To eliminate clutter in the display and to orient the user, data should have different 
representations when seen from different distances in multidimensional space. Intuitively, we 
wish to extend Tioga with the possibility of zooming into data to display more detail about 
screen objects. Our notion of zooming is semantic in that it involves changing the data objects 
being displayed, as opposed to simple graphical zooming. To support this functionality, we are 
extending the original Tioga browsing protocol. 

In our design, data objects can have different abstracts that are produced by separate recipes. 
An elevation map relates these recipes to each other by specifying which recipes are valid at 
what distance (elevation) from the object. The elevation map is used to control the invocation of 
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different recipes as the user zooms in and 
out through the data space. Therefore, if the 
user zooms into the elevation range of a 
different recipe, the recipe providing input 
to the browser is changed. 

Figure 3 shows an elevation map 
containing four recipes, Rl ("State 
outline"), R2 ("Census tracts"), R3 
("Rivers"), and R4 ("Highways"). Rl 
produces output for the browser at high 
elevations. When the user zooms to 
elevation E1, Rl and R2 are both valid. 
Further inward at £2 , Rl stops output and 
only R2 may display data. Further zooming 
can display output from recipes R3 and R4. 

To support this behavior, we begin by 
associating with any browser in any recipe 
an elevation range over which the browser 
displays data from this recipe. A browser is 
associated with a multidimensional 
coordinate system as noted above. In this 
presentation, we assume N dimensions 
which we denote Ah ... , AN· We add an 
N + 1st dimension, designated elevation, 
which is used to indicate the user's 
perspective. This does not represent a 
physical elevation, but is rather a logical 

representation of a user's viewing distance from theN-dimensional space. 
The original Tioga implementation displays two user-selected dimensions, Ax and Ay, on 

the screen. In this browser, the user can change the range of these dimensions by resizing the 
window. The range is adjusted proportionally to the change in window size. Note that resizing 
the window has no effect on elevation, as Figure 4 illustrates. Assume that the user's initial 
position in a displayed dimension is ELEV1 
with viewing angle e~. as shown in 
TRIANGLE1. Adjusting the window size 
while remaining at a constant elevation is 
analogous to changing the user's viewing 
angle, as shown in TRIANGLEw. 

In our new design, the user is also 
allowed to adjust the elevation of a 
browser. When the user zooms to ELEV z, 

81 remains constant, resulting in 
TRIANGLEz. Because TRIANGLE1 and 
TRIANGLEz are similar, RANGEz can be 
recalculated as follows: 

RANGEz = RANGE1 * (ELEV z I ELEV 1) 

Adjusting the window size or zooming 
may select the same range for display. 
However, the two operations may have 
very different results. Adjusting the 
window size does not change the recipe 
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providing input to the browser. Conversely, zooming may place the user in the elevation range 
of a different recipe. In this case, the recipe providing input to the browser is changed as 
specified by the elevation map. 

The data provided by each recipe must be supplied to the browser in a common, 
multidimensional coordinate system. When more than one recipe at a given elevation may 
provide output to the browser, the elevation map also specifies the overlay priority of the 
recipes, which is shown on the horizontal axis. When conflicts occur in allocation of display 
space, objects from recipes with higher priority are visible on the screen in preference to those 
from recipes with lower priority. 

In addition to specifying the elevations at which recipes are to be invoked and their overlay 
priority, the elevation map also contains a collection of semantic restrictions on the display of 
recipe output. Each recipe in an elevation map can be: 
• required. In this case, recipe output must be displayed if the browser is at an elevation within 

the elevation range. 
optional. In this case, when the user enters the elevation range of the recipe, he or she is 
prompted as to whether the output from this recipe should be visible. This behavior occurs if 
the user zooms into the elevation range from above or zooms out from below. At any given 
elevation range, a mechanism allows users to tum on or off optional recipes valid at the 
current elevation. Using this interface, a user can change his or her mind about seeing (or not 
seeing) the objects from optional recipes. 
exclusive. A user can specify a radio button behavior for recipes that are valid at common 
elevations. With this behavior, at most one of the recipes can be activated, and the user is 
presented with a menu of radio buttons to indicate which one. 

These semantics are illustrated in Figure 3. At higher elevations, R1 displays the outline of 
California. Upon zooming to EJ, the user has the option to see also the census tracts in the state 
as output by R2. At the next transition point, E2 , the outline of the state is no longer visible and 
the census tracts are optionally visible. Further zooming shows either the rivers or the highways 
of California (as generated by R3 and R4), but not both. 

Previous work has identified the merits of zooming capabilities (Gorlick and Quilici, 1994; 
Perlin and Fox, 1993). We contribute a dynamic, visual mechanism for specifying the behavior 
of objects when viewed from different distances. Elevation maps allow a user to define easily the 
semantics of the zoom operation, assuming that all recipes produce data in the same 
multidimensional space. We now tum to a mechanism for changing from one multidimensional 
space to another. 

3 CHANGING MULTIDIMENSIONAL SPACES 

Enhanced detail implies a change in perspective within a multidimensional space. Users also 
want the ability to move to related multidimensional data spaces for new perspectives on the 
data, a functionality similar to that provided by hyperlinks (Conklin, 1987). Consider the 
following example in which Tioga presents information about the residents of Berkeley. 
Initially, the application displays a map of Berkeley. Zooming inward gives more detail about 
geographic objects, culminating with the outline of each individual residence. At this point, the 
user may invoke a new type of browser, defined for each residence, that displays an image of 
the people living there. Requesting detail on the residence therefore causes a different 
multidimensional space to be explored. 

When a user changes to a new multidimensional space, objects have a spatial relationship 
that is unrelated to the relationship in effect on the near side. This behavior should be 
distinguished from a zoom operation where the same spatial relationship is present before and 
after the zoom. Therefore, we denote this operation of changing from one multidimensional 
space to another as tunneling through a wormhole, to differentiate it from zooming. A 
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wormhole is a connector between two disparate data spaces, and tunneling is the process of 
travelling through a wormhole. 

To construct a wormhole, the user must specify the following information: 
the wormhole location. We associate the wormhole with objects displayed by some recipe in 
some browser. Hence, the location is indicated by the three-tuple: (recipe name, browser 
name, query). 
the new application that should be run on the other side of the wormhole. 
a tag associated with the wormhole. Because there may be multiple wormholes for a given 
object in a given recipe, we require the tag field to allow a user to specify which wormhole 
should be followed. 

In practice, a user-interface gesture indicates the user's desire to tunnel through a wormhole. 
The user then chooses a wormhole from the list of tags associated with the object(s) selected. At 
this point, a new application is invoked taking the objcct(s) selected as a parameter(s). In the 
example given above, the object identifier of the house would be passed to the new application to 
allow it to display only the people living there. It is also possible to define the wormhole over a 
collection of object identifiers. Specifically, we allow an arbitrary function to identify the objects 
for which the wormhole is defined. One such function could be: 

retrieve (House.oid) 
where House.architect = "Wright" 

in which case the wormhole would be defined only for houses designed by Wright. 

4 SLAVING AND CLONING BROWSERS 

It is difficult for users zooming and tunneling in single browsers to explore multiple paths 
simultaneously. Additionally, when users arc zooming and tunneling in multidimensional space, 
it is difficult for them to maintain a sense of context. A related problem may be observed in 
traditional systems such as graphics packages, help systems, and hypermedia systems. In many 
of these systems, users must repeatedly zoom in and out or backtrack. Somewhat more 
sophisticated systems provide limited browser coordination in overview-detail browser pairs 
(Plaisant et al., 1995). In the next two sections, we introduce mechanisms for browser 
coordination which support simultaneous exploration of multiple paths through multidimensional 
space and display context to the user. 

Browsers in the same recipe can be independent of each other. In this case, movement in one 
browser does not affect the others. This behavior is appropriate when the browsers arc 
displaying independent objects. 

On the other hand, one browser can be constrained to another in a master/slave relationship. 
In this case, whenever the user changes the master's position in N-dimensional space, the 
slave's position in M-dimcnsional space automatically changes as well. More specifically, during 
the recipe definitions, the user defines a function, LOC_CALC, that translates requests in the 
master into requests to the slave: 

LOC_CALC(N-space-region) -> M-space-region 

When the master is moved to REGION I> the slave will be instructed by Tioga to move to 
LOC_CALC(REGION1). Both browsers must recalculate their visible rectangles and issue 
commands to retrieve the objects which will be displayed. Further, when the master changes 
elevation, the slave must automatically change elevation at the same time. Usually, slaved 
browsers will be constrained to have the same elevation as their master; however, we allow the 
user to specify optionally a second function, ELEV_CALc: 

ELEV_CALC (elevation) -> elevation 

In this way, the slaved browser can be constrained to operate at a second elevation that is a 
function, ELEV _CALC, of the elevation of the master. 
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There are four interesting ways in which slaved browsers may be constrained: 
Slaved browsers may display data from different regions in a multidimensional space. For 
example, a user may need to examine all areas 5 miles north of a pipeline to ensure that a 
toxin carried by the pipeline has not affected these areas. In Tioga, the pipeline could be 
viewed in one browser. A second browser could be slaved with a function Lac CALC that 
mapped anN-space-point to a new point 5 miles north. -
Slaved browsers may display the same dataseenjrom different elevations. For example, the 
slave could show a detailed representation of what is seen in the display of the master. In 
effect, the slave would show the data of the first browser through a magnifying glass. 
Slaved browsers may display different data from the same points in a multidimensional 
space. For example, one browser could show color-coded precipitation data for an area 
while its slave displayed temperature data for the same area. 
Slaved browsers may display related data in different multidimensional viewing spaces. For 
example, a master browser could show a map of California while a slaved browser displayed 
a list of all seismographic sensor stations located in the area shown in the master browser. 
As the user looked at different parts of California, the slaved browser would automatically 
adjust the list of stations. 

The four examples above assume the existence of two browsers in the same recipe. If only 
one browser exists, it may be more convenient to clone it rather than to place explicitly a new 
browser in the recipe graph. Cloned browsers can be slaved or independent. The examples 
above demonstrate possible uses for slaved clones. For instance, to display the same data at 
different levels of detail, the user could clone and slave a viewer to act as the magnifying glass. 

Independent clones are appropriate in other situations. For example, it is easy for a user to 
become disoriented when navigating in a multidimensional space. Hence, the user would like to 
mark the position of something of interest and return to it at a later time. Cloning a browser 
allows one browser to remain stationary at the object of interest while the second one continues 
to browse the multidimensional space. 

To support this functionality, we propose the following design. The original browser 
becomes the originator and the new browser becomes the clone. The originator and the clone 
have exactly the same elevation map. During the cloning operation, the user must specify if the 
clone is to be slaved to the originator, and if so must specify LOC _CALC and ELEV _CALC. 

If the originator and the clone are independent (i.e. not slaved), then the second browser is 
initially assigned the same elevation and spatial location in multidimensional space as the first 
browser. The joystick of either browser can be moved arbitrarily, and the displays of the two 
browsers will typically diverge. As a result, cloning subsumes bookmarking features found in 
other systems. 

If the clone is slaved to the originator, then the clone is constrained to operate at an elevation 
and location offset relative to the originator; these offsets are determined by LOC_CALC and 
ELEV _CALC. In this case, the slaved browser operates at an elevation of 

ELEV_CALC (elevation of originator) 

and at a location given by 
LOC_CALC (N-space-region of originator) 

If LOC_CALC is the identity function, and ELEV_CALC specifies a zoom, then the clone will 
provide an automatic magnifying glass, without requiring the user to perform the zoom 
manually. 

Using slaving and cloning, a variety of offset displays and magnifying glass effects can be 
constructed. The next section describes mechanisms that allow two browsers to share the same 
screen area, thereby permitting a true magnifying glass effect to be implemented. 
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5 SHARING WINDOWS 

We would like to allow the user to place one browser inside another. For example, the user 
could place a magnifying glass browser inside another browser displaying a map of 
California. This is analogous to reading a map of California with the aid of a physical 
magnifying glass. Adding this functionality to Tioga allows users to combine the usefulness of 
effects such as Magic Lenses (Bier eta!., 1993) with the strength of a DBMS. To provide this 
functionality, we require that browsers be allowed to share their windows. If two browsers 
share the same multidimensional space, then it is permissible for them to share a browser 
window. Note that since a clone and its originator automatically share the same multidimensional 
space, they are able by definition to share a window. 

When two browsers are declared to share a window, they are referred to as the outer 
browser and the inner browser. Each browser has separate slider bars that determine the content 
of its display. The outer browser uses the complete window to display its objects. The inner 
browser magnifies a portion of the data shown in the outer browser. The display of the inner 
browser is then overlaid on the display of the outer one, thereby creating a single composite 
display which can be rendered on the screen by the window manager. 

To create this composite, Tioga finds the center of the inner browser's current viewing 
region, and then locates this point in the outer browser's window. Next, Tioga positions the 
inner browser's viewing region at this location within the outer browser. There are three cases of 
interest: 

case 1: the inner viewing region is completely inside the outer viewing region. In this case, 
the two regions are overlaid and displayed. 

Inner 
Browser 
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Figure 5 

Outer 
Browser 

Viewing Regions of Nested Browsers. 

case 2: the inner viewing region is 
completely disjoint from the outer 
viewing region. In this case, the inner 
viewing region cannot be seen, and 
only the outer viewing region is visible. 
case 3: the inner viewing region 
overlaps the outer viewing region. In 
this case, Tioga must clip the inner 
viewing region and then overlay the 
two displays as above. 

These behaviors can be illustrated in the 
following examples. The user can clone a 
browser and run both the originator and the 
clone in a common window. A zoom 
operation on the inner browser will allow 
the user to observe a magnifying glass 
effect, whereby one browser is providing a 
detailed blowup of the region displayed by 
the other. Figure 5 shows a magnifying 
glass (the inner browser) positioned above 
a window (the outer browser) which is in 
tum positioned above a map (the 
multidimensional space). 

Consider the case in which the inner 
and outer browsers are independent. In this 
situation, the position and elevation of each 
browser can be changed independently. 
Moving the inner browser will change its 
position above the map, and therefore, its 
contents. Because it moves independently, 
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moving it will also change its position relative to the outer browser. This will allow the user to 
magnify various areas of the map. If the user moves the magnifying glass completely out of the 
region displayed by the outer browser, then case 2 above applies and the detail will not be 
shown. If the magnifying glass is partly outside this region, then case 3 above applies and only a 
portion of the inner browser will be displayed. Similarly, if the user moves the outer browser, 
the content of the inner browser will not automatically change, although its position relative to 
the outer browser will change. 

To achieve different behavior, we can slave the clone to the originator. Since the inner 
browser is slaved to the outer browser, moving the outer browser will change the area displayed 
in both browsers. However, the position of the magnifying glass within the outer browser will 
remain constant. Moreover, if the user zooms the outer browser to blow up the map of interest, 
say to a map of a specific county, then the magnifying glass will also zoom. 

The definitions presented above may be recursively extended so that an inner browser may in 
tum serve as an outer browser. This allows an arbitrary number of browsers to share a window, 
with a pairwise inner-outer relationship between them. Thus, a hierarchical collection of 
browsers can be defined. For example, a user may choose to have a magnifying glass on top of 
another magnifying glass, providing even more detail. 

6 EXECUTION MODEL 

The original Tioga executor considered the execution of single recipes. However, zooming 
requires that multiple recipes execute concurrently to supply data to a browser. We have 
extended our design to include an abstract manager which controls the execution of recipes and 
coordinates their communication with browsers. 

In a naive implementation of zooming, all browsers in a recipe would be displayed when the 
user zoomed to the elevation at which the recipe became valid. However, different recipes in an 
elevation map may contain different types and numbers of browsers. Therefore, the naive 
implementation would result in arbitrary browsers appearing and disappearing as the user 
adjusted elevation. To provide a more intuitive semantics, we introduce the notion of a base 
recipe which defines the visual environment which the user can explore. The visual environment 
is made up of one or more browsers which appear in the base recipe. Each of these browsers is 
associated with an elevation map that specifies which recipes may provide data to it. 

Execution begins when a base recipe is passed to the abstract manager. The abstract manager 
examines the elevation maps of all browsers in the base recipe to determine the set of all recipes 
which may be accessed through the visual environment. The abstract manager then starts an 
executor for each of these recipes, as well as a process for each browser in the base recipe. The 
abstract manager establishes communication channels between executors and browsers. These 
are distinct from the dataflow edges which exist in the recipe graphs. At any given time, a 
browser has a communication channel to every recipe in its elevation map which is currently 
active (i.e. valid at the current elevation). The browser uses these channels to request data from 
the executors. When the user adjusts elevation, the abstract manager updates the communication 
channels between the browsers and executors, adding and deleting connections as appropriate. 

Since abstracts allow movement in a single multidimensional space, the appearance of new 
browsers might be disorienting. However, since tunneling by definition involves viewing a new 
multidimensional space, we allow the recipe invoked by a wormhole to serve as a base recipe 
and start a new visual environment. The invocation is similar to a fork operation; both the 
original browser and the new browser continue to exist as independent processes, each with a 
base recipe. 
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7 APPLICATIONS 

In the preceding sections, we have defined semantics for zooming, tunneling, and the 
coordination of multiple browsers. The resulting model unites constructs which have proved 
useful in many types of information management systems. 

For example, the reader can readily observe that wormholes are a substantial generalization 
of hyperlinks in a hypermedia system. A traditional hyperlink is a wormhole in which there is a 
prespecified object or collection of objects on each side of the hole. Wormholes allow a run-time 
specified set of objects to be on each side. Further, classical hypermedia systems only provide a 
two-dimensional display space composed of the X and Y screen dimensions. The Tioga 
paradigm extends such systems by supporting the display of objects in user-specified 
dimensions. 

Similarly, abstracts generalize the notion of layers as used in many Geographic Information 
Systems (GISs). In many such systems, data is stored in separate layers representing categories 
such as species distribution, land use, or political boundaries. Layers may be viewed 
independently or displayed together in one window. Abstracts provide a mechanism for the 
application developer to define the levels at which each layer will be visible. Further, while some 
GISs support browsing in 2 or 3 dimensions representing the physical dimensions of the Earth, 
they do not incorporate browsing in arbitrary multidimensional spaces. Such browsers could be 
used to provide additional data. For example, selecting a city might offer the option to tunnel to a 
browser containing people objects displayed according to the dimensions age, income, and 
consumption of a product. 

Scientific visualization systems could also take advantage of the constructs supported in the 
Tioga model. Many existing scientific visualization systems provide users the option of 
browsing through data in multidimensional space. However, many scientists would like to 
perform data lineage queries in which they trace the history of the operations that have been 
performed on their data. Slaved browsers could be used to simultaneously display different 
versions of data. In this case, navigation in one browser would cause the slaved browser to 
automatically display the corresponding data. 

The model presented in this paper incorporates multiple concepts of proven worth. This 
model can be used both to enhance existing systems and to create new information management 
applications. 

8 CONCLUSIONS 

In this paper we have detailed mechanisms that support navigation in multidimensional space. 
We first outlined a zoom capability that allows users to view data at different levels of detail. We 
next introduced the concept of wormholes. Tunneling through a wormhole allows users to view 
their data in the context of a new multidimensional viewing space. We then proposed 
mechanisms for linking browsers together as well as for creating new browsers. We detailed the 
behavior of multiple browsers sharing a portion of the screen. The resulting data management 
and browsing model is a generalization of many existing systems. In combination, the ideas 
presented not only add functionality to existing paradigms but support new constructs such as 
magnifying glasses as well. We are currently extending the original Tioga system to support the 
features discussed in this paper. 
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