
23

Navigation
Primitives

and Coordination
for Multidimensional

Visual Browsers*

Allison Woodruff, Alan Su, Michael Stonebraker, Caroline Paxson,
Jolly Chen, and Alexander Aiken
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley
Berkeley, CA 94720 USA
email: tioga@postgres.berkeley.edu

Peter Wisnovsky and Cimarron Taylort
Illustra Information Technologies, Inc.
1111 Broadway, Suite 2000
Oakland, CA 94607 USA

Abstract

This paper describes extensions to the Tioga flight-simulator browsing protocol presented by
Stonebraker et al. (1993a). These extensions allow users to navigate a multidimensional data
space using sophisticated zooming capabilities. This design also allows users to move easily
between different multidimensional spaces. Tunneling between different data spaces is shown to
be a substantial generalization of hyperlinks in a hypermedia system. Finally, our design
provides for the coordination of multiple browsers. This preserves context and allows users to
explore multiple paths simultaneously.

In concert, these extensions incorporate the functionality of many information management
paradigms as well as introducing new constructs. These powerful mechanisms for relating data
provide users with great flexibility. For example, users can create magnifying glasses which
show an enhanced view of the underlying data.

Keywords

Data browsing, hypermedia, magnifying glasses, user interfaces, visual databases, visual
programming, wormholes, zooming.

'Supported in part by CNRI grant #Ml717 and by NSF grant #FD94-00773.
t Presently with Automation Consultants Group, 650 California Street, 26th Aoor, San Francisco, CA 94108.

S. Spaccapietra et al. (eds.), Visual Database Systems 3
© Springer Science+Business Media Dordrecht 1995

Multidimensional visual browsers 361

1 INTRODUCTION

The design of user interfaces for database systems is an area in need of more attention
(Stonebraker et al., 1993c). Existing database user interfaces are often unfriendly and difficult
for nonexperts to use. Common database interfaces include textual programming languages or
forms-based interfaces oriented towards business applications.

In Stonebraker et al. (1993a), we presented Tioga, a new paradigm for user interaction with
a database management system (DBMS). Tioga is motivated by the needs of scientific DBMS
users in the SEQUOIA 2000 project (Stonebraker and Dozier, 1992; Stonebraker et al. 1993b).
Tioga uses the boxes and arrows notation popularized by scientific visualization systems
such as AVS (Upson et al. , 1989), Data Explorer (Lucas et al., 1992), and Khoros (Rasure and
Young, 1992). Tioga improves upon these systems by providing sophisticated data management
using the POSTGRES DBMS (Stonebraker and Kemnitz, 1991). In the Tioga programming
model, boxes represent user-defined database queries or browsers, and edges between boxes
represent flow of data. Although a limited number of boxes has currently been implemented,
additional boxes may be programmed by users. Nonexperts build visual programs called
recipes by interactively connecting boxes together using a graphical user interface. Current
recipes include a photographic 35mm slide library and a geoindexing system. The underlying
data manager is able to optimize and efficiently execute recipes.

The purpose of a recipe is to specify the data to be visualized, access the data through a
database management system, and then locate the data in a multidimensional browser display.
Figure 1 shows a typical recipe as constructed by a user. The recipe includes two browsers,
viewer! and viewer2, to display the data generated by the recipe. The default Tioga browsing
paradigm allows users to visualize data results in a multidimensional space. Users navigate
through their data using a flight-simulator interface. (Additional browsers may be implemented
by advanced users.) Figure 2 shows a browser displaying objects in a latitude/longitude
viewing space that contains California. One object, a digitized 35mm slide, has been selected and
displayed.

In the default Tioga browser, the user chooses two dimensions to be displayed on the
screen. Remaining dimensions appear as sliders which restrict the objects in the display to
those which have values matching the constraints indicated by the sliders. The original
navigational interface allows the user to pan over the two dimensions of the display or to zoom
by enlarging a certain portion of the display. Clearly, more sophisticated navigation is desirable.

In Stonebraker et a!. (1993a), we explored the basic constructs of Tioga and provided a
query execution model. Chen et a!. (1993)
expanded the Tioga model to interface to
foreign systems and provided a notion of
transactions for the Tioga environment.
Woodruff et a!. (1994) introduced
mechanisms to support navigation in
multidimensional space.

In this companion paper, we extend
these ideas and present three mechanisms
which can be combined to support both
novel, powerful constructs and constructs
of proven worth. These extensions include:

enhanced detail. Our system must be
able to provide enhanced detail as a
result of a zoom operation. For
example, the Kodak PhotoCD
representation for digital images

.. " ' IR'MII - U ! •r·- .. ' ,..

supports five different resolution Figure 1
formats, ranging from a full size 2K by A Tioga Boxes and Arrows Diagram.

. ,,
,., -

362 Part Seven Text and Hypermedia

--·
Figure 2
Data Displayed in the Tioga Browser.

3K by 8-bit color image to a 128 by 192
by 8-bit abstract (Eastman, 1992). A
user would like the ability to see
abstracts on the screen and then zoom in
to view the images at a higher
resolution. A similar feature was
provided by SDMS (Herot, 1980), but
it was hard-coded into that execution
engine. Hence, retargeting SDMS
required a considerable amount of
customization.
movement to different multidimensional
spaces. Enhanced detail implies a
change in perspective within a
multidimensional space. Users also
want the ability to switch to a new
multidimensional space. For example, a
user could zoom in on a map of
Berkeley to find the Computer Science
building. Additional levels of detail
could yield documents corresponding to
Computer Science technical reports.
These documents should be displayed
in a different context than the

latitude/longitude coordinates appropriate for the map of Berkeley. When a document is
being viewed, a further zoom could yield the image of the author or the layout geometry of
his or her office. Again, a different multidimensional space should be used.
coordination of multiple browsers. Our system must support multiple levels of detail in the
same display. For example, it should be possible to place a magnifying glass on a portion of
the display and have a zoom operation performed only for the objects under the glass. The
remaining objects in the display should serve as a context for the magnified data and should
not change. Because the objects in the magnifying glass are shown with enhanced detail, this
function is considerably more complex than simply changing the number of pixels used for
display. For example, support for magnifying glasses requires that browsers be allowed to
share windows.

In the rest of this paper, we explore our design in detail. Specifically, in Section 2 we define
a zoom capability that allows enhanced detail. We proceed in Section 3 to define wormholes that
allow users to change multidimensional spaces. We tum in Sections 4 and 5 to our design for
coordination of multiple browsers. We present the execution model in Section 6. In Section 7 we
discuss potential applications, and in Section 8 we summarize our findings.

2 SHOWING ENHANCED DETAIL

To eliminate clutter in the display and to orient the user, data should have different
representations when seen from different distances in multidimensional space. Intuitively, we
wish to extend Tioga with the possibility of zooming into data to display more detail about
screen objects. Our notion of zooming is semantic in that it involves changing the data objects
being displayed, as opposed to simple graphical zooming. To support this functionality, we are
extending the original Tioga browsing protocol.

In our design, data objects can have different abstracts that are produced by separate recipes.
An elevation map relates these recipes to each other by specifying which recipes are valid at
what distance (elevation) from the object. The elevation map is used to control the invocation of

Multidimensional visual browsers 363

E
I
e
v
a
t

0

n

H
high Rl

low

Figure 3

R2 ...
I
I
I
I
I

-~
- - - • optional

- - exclusive

R3
T
I
I
1

Overlay Priority

An Example Elevation Map.

different recipes as the user zooms in and
out through the data space. Therefore, if the
user zooms into the elevation range of a
different recipe, the recipe providing input
to the browser is changed.

Figure 3 shows an elevation map
containing four recipes, Rl ("State
outline"), R2 ("Census tracts"), R3
("Rivers"), and R4 ("Highways"). Rl
produces output for the browser at high
elevations. When the user zooms to
elevation E1, Rl and R2 are both valid.
Further inward at £2 , Rl stops output and
only R2 may display data. Further zooming
can display output from recipes R3 and R4.

To support this behavior, we begin by
associating with any browser in any recipe
an elevation range over which the browser
displays data from this recipe. A browser is
associated with a multidimensional
coordinate system as noted above. In this
presentation, we assume N dimensions
which we denote Ah ... , AN· We add an
N + 1st dimension, designated elevation,
which is used to indicate the user's
perspective. This does not represent a
physical elevation, but is rather a logical

representation of a user's viewing distance from theN-dimensional space.
The original Tioga implementation displays two user-selected dimensions, Ax and Ay, on

the screen. In this browser, the user can change the range of these dimensions by resizing the
window. The range is adjusted proportionally to the change in window size. Note that resizing
the window has no effect on elevation, as Figure 4 illustrates. Assume that the user's initial
position in a displayed dimension is ELEV1
with viewing angle e~. as shown in
TRIANGLE1. Adjusting the window size
while remaining at a constant elevation is
analogous to changing the user's viewing
angle, as shown in TRIANGLEw.

In our new design, the user is also
allowed to adjust the elevation of a
browser. When the user zooms to ELEV z,

81 remains constant, resulting in
TRIANGLEz. Because TRIANGLE1 and
TRIANGLEz are similar, RANGEz can be
recalculated as follows:

RANGEz = RANGE1 * (ELEV z I ELEV 1)

Adjusting the window size or zooming
may select the same range for display.
However, the two operations may have
very different results. Adjusting the
window size does not change the recipe

TRIANGLE 1 Window

e~, Resize
ELEV I

I I

RANGE 1

!Zoom

TRIANGLE

e,~.-··._z
ELEV ••• ••• .••

}<. .>:-.
RANGE

z

Figure 4

TRIANGLE w

.//~ew
.·: ... ~ELEV1

RANGEw

Changing Viewing Angle and Elevation.

364 Part Seven Text and Hypermedia

providing input to the browser. Conversely, zooming may place the user in the elevation range
of a different recipe. In this case, the recipe providing input to the browser is changed as
specified by the elevation map.

The data provided by each recipe must be supplied to the browser in a common,
multidimensional coordinate system. When more than one recipe at a given elevation may
provide output to the browser, the elevation map also specifies the overlay priority of the
recipes, which is shown on the horizontal axis. When conflicts occur in allocation of display
space, objects from recipes with higher priority are visible on the screen in preference to those
from recipes with lower priority.

In addition to specifying the elevations at which recipes are to be invoked and their overlay
priority, the elevation map also contains a collection of semantic restrictions on the display of
recipe output. Each recipe in an elevation map can be:
• required. In this case, recipe output must be displayed if the browser is at an elevation within

the elevation range.
optional. In this case, when the user enters the elevation range of the recipe, he or she is
prompted as to whether the output from this recipe should be visible. This behavior occurs if
the user zooms into the elevation range from above or zooms out from below. At any given
elevation range, a mechanism allows users to tum on or off optional recipes valid at the
current elevation. Using this interface, a user can change his or her mind about seeing (or not
seeing) the objects from optional recipes.
exclusive. A user can specify a radio button behavior for recipes that are valid at common
elevations. With this behavior, at most one of the recipes can be activated, and the user is
presented with a menu of radio buttons to indicate which one.

These semantics are illustrated in Figure 3. At higher elevations, R1 displays the outline of
California. Upon zooming to EJ, the user has the option to see also the census tracts in the state
as output by R2. At the next transition point, E2 , the outline of the state is no longer visible and
the census tracts are optionally visible. Further zooming shows either the rivers or the highways
of California (as generated by R3 and R4), but not both.

Previous work has identified the merits of zooming capabilities (Gorlick and Quilici, 1994;
Perlin and Fox, 1993). We contribute a dynamic, visual mechanism for specifying the behavior
of objects when viewed from different distances. Elevation maps allow a user to define easily the
semantics of the zoom operation, assuming that all recipes produce data in the same
multidimensional space. We now tum to a mechanism for changing from one multidimensional
space to another.

3 CHANGING MULTIDIMENSIONAL SPACES

Enhanced detail implies a change in perspective within a multidimensional space. Users also
want the ability to move to related multidimensional data spaces for new perspectives on the
data, a functionality similar to that provided by hyperlinks (Conklin, 1987). Consider the
following example in which Tioga presents information about the residents of Berkeley.
Initially, the application displays a map of Berkeley. Zooming inward gives more detail about
geographic objects, culminating with the outline of each individual residence. At this point, the
user may invoke a new type of browser, defined for each residence, that displays an image of
the people living there. Requesting detail on the residence therefore causes a different
multidimensional space to be explored.

When a user changes to a new multidimensional space, objects have a spatial relationship
that is unrelated to the relationship in effect on the near side. This behavior should be
distinguished from a zoom operation where the same spatial relationship is present before and
after the zoom. Therefore, we denote this operation of changing from one multidimensional
space to another as tunneling through a wormhole, to differentiate it from zooming. A

Multidimensional visual browsers 365

wormhole is a connector between two disparate data spaces, and tunneling is the process of
travelling through a wormhole.

To construct a wormhole, the user must specify the following information:
the wormhole location. We associate the wormhole with objects displayed by some recipe in
some browser. Hence, the location is indicated by the three-tuple: (recipe name, browser
name, query).
the new application that should be run on the other side of the wormhole.
a tag associated with the wormhole. Because there may be multiple wormholes for a given
object in a given recipe, we require the tag field to allow a user to specify which wormhole
should be followed.

In practice, a user-interface gesture indicates the user's desire to tunnel through a wormhole.
The user then chooses a wormhole from the list of tags associated with the object(s) selected. At
this point, a new application is invoked taking the objcct(s) selected as a parameter(s). In the
example given above, the object identifier of the house would be passed to the new application to
allow it to display only the people living there. It is also possible to define the wormhole over a
collection of object identifiers. Specifically, we allow an arbitrary function to identify the objects
for which the wormhole is defined. One such function could be:

retrieve (House.oid)
where House.architect = "Wright"

in which case the wormhole would be defined only for houses designed by Wright.

4 SLAVING AND CLONING BROWSERS

It is difficult for users zooming and tunneling in single browsers to explore multiple paths
simultaneously. Additionally, when users arc zooming and tunneling in multidimensional space,
it is difficult for them to maintain a sense of context. A related problem may be observed in
traditional systems such as graphics packages, help systems, and hypermedia systems. In many
of these systems, users must repeatedly zoom in and out or backtrack. Somewhat more
sophisticated systems provide limited browser coordination in overview-detail browser pairs
(Plaisant et al., 1995). In the next two sections, we introduce mechanisms for browser
coordination which support simultaneous exploration of multiple paths through multidimensional
space and display context to the user.

Browsers in the same recipe can be independent of each other. In this case, movement in one
browser does not affect the others. This behavior is appropriate when the browsers arc
displaying independent objects.

On the other hand, one browser can be constrained to another in a master/slave relationship.
In this case, whenever the user changes the master's position in N-dimensional space, the
slave's position in M-dimcnsional space automatically changes as well. More specifically, during
the recipe definitions, the user defines a function, LOC_CALC, that translates requests in the
master into requests to the slave:

LOC_CALC(N-space-region) -> M-space-region

When the master is moved to REGION I> the slave will be instructed by Tioga to move to
LOC_CALC(REGION1). Both browsers must recalculate their visible rectangles and issue
commands to retrieve the objects which will be displayed. Further, when the master changes
elevation, the slave must automatically change elevation at the same time. Usually, slaved
browsers will be constrained to have the same elevation as their master; however, we allow the
user to specify optionally a second function, ELEV_CALc:

ELEV_CALC (elevation) -> elevation

In this way, the slaved browser can be constrained to operate at a second elevation that is a
function, ELEV _CALC, of the elevation of the master.

366 Part Seven Text and Hypennedia

There are four interesting ways in which slaved browsers may be constrained:
Slaved browsers may display data from different regions in a multidimensional space. For
example, a user may need to examine all areas 5 miles north of a pipeline to ensure that a
toxin carried by the pipeline has not affected these areas. In Tioga, the pipeline could be
viewed in one browser. A second browser could be slaved with a function Lac CALC that
mapped anN-space-point to a new point 5 miles north. -
Slaved browsers may display the same dataseenjrom different elevations. For example, the
slave could show a detailed representation of what is seen in the display of the master. In
effect, the slave would show the data of the first browser through a magnifying glass.
Slaved browsers may display different data from the same points in a multidimensional
space. For example, one browser could show color-coded precipitation data for an area
while its slave displayed temperature data for the same area.
Slaved browsers may display related data in different multidimensional viewing spaces. For
example, a master browser could show a map of California while a slaved browser displayed
a list of all seismographic sensor stations located in the area shown in the master browser.
As the user looked at different parts of California, the slaved browser would automatically
adjust the list of stations.

The four examples above assume the existence of two browsers in the same recipe. If only
one browser exists, it may be more convenient to clone it rather than to place explicitly a new
browser in the recipe graph. Cloned browsers can be slaved or independent. The examples
above demonstrate possible uses for slaved clones. For instance, to display the same data at
different levels of detail, the user could clone and slave a viewer to act as the magnifying glass.

Independent clones are appropriate in other situations. For example, it is easy for a user to
become disoriented when navigating in a multidimensional space. Hence, the user would like to
mark the position of something of interest and return to it at a later time. Cloning a browser
allows one browser to remain stationary at the object of interest while the second one continues
to browse the multidimensional space.

To support this functionality, we propose the following design. The original browser
becomes the originator and the new browser becomes the clone. The originator and the clone
have exactly the same elevation map. During the cloning operation, the user must specify if the
clone is to be slaved to the originator, and if so must specify LOC _CALC and ELEV _CALC.

If the originator and the clone are independent (i.e. not slaved), then the second browser is
initially assigned the same elevation and spatial location in multidimensional space as the first
browser. The joystick of either browser can be moved arbitrarily, and the displays of the two
browsers will typically diverge. As a result, cloning subsumes bookmarking features found in
other systems.

If the clone is slaved to the originator, then the clone is constrained to operate at an elevation
and location offset relative to the originator; these offsets are determined by LOC_CALC and
ELEV _CALC. In this case, the slaved browser operates at an elevation of

ELEV_CALC (elevation of originator)

and at a location given by
LOC_CALC (N-space-region of originator)

If LOC_CALC is the identity function, and ELEV_CALC specifies a zoom, then the clone will
provide an automatic magnifying glass, without requiring the user to perform the zoom
manually.

Using slaving and cloning, a variety of offset displays and magnifying glass effects can be
constructed. The next section describes mechanisms that allow two browsers to share the same
screen area, thereby permitting a true magnifying glass effect to be implemented.

Multidimensional visual browsers 367

5 SHARING WINDOWS

We would like to allow the user to place one browser inside another. For example, the user
could place a magnifying glass browser inside another browser displaying a map of
California. This is analogous to reading a map of California with the aid of a physical
magnifying glass. Adding this functionality to Tioga allows users to combine the usefulness of
effects such as Magic Lenses (Bier eta!., 1993) with the strength of a DBMS. To provide this
functionality, we require that browsers be allowed to share their windows. If two browsers
share the same multidimensional space, then it is permissible for them to share a browser
window. Note that since a clone and its originator automatically share the same multidimensional
space, they are able by definition to share a window.

When two browsers are declared to share a window, they are referred to as the outer
browser and the inner browser. Each browser has separate slider bars that determine the content
of its display. The outer browser uses the complete window to display its objects. The inner
browser magnifies a portion of the data shown in the outer browser. The display of the inner
browser is then overlaid on the display of the outer one, thereby creating a single composite
display which can be rendered on the screen by the window manager.

To create this composite, Tioga finds the center of the inner browser's current viewing
region, and then locates this point in the outer browser's window. Next, Tioga positions the
inner browser's viewing region at this location within the outer browser. There are three cases of
interest:

case 1: the inner viewing region is completely inside the outer viewing region. In this case,
the two regions are overlaid and displayed.

Inner
Browser

/·~·:7 I .::::::c::• •

. ·'"'"'·'' ~

: : ~ : : 1 ~ ~
; ; ! :: : !

; : :: ; :
: :: ; :

Multidimensional Data Space

Figure 5

Outer
Browser

Viewing Regions of Nested Browsers.

case 2: the inner viewing region is
completely disjoint from the outer
viewing region. In this case, the inner
viewing region cannot be seen, and
only the outer viewing region is visible.
case 3: the inner viewing region
overlaps the outer viewing region. In
this case, Tioga must clip the inner
viewing region and then overlay the
two displays as above.

These behaviors can be illustrated in the
following examples. The user can clone a
browser and run both the originator and the
clone in a common window. A zoom
operation on the inner browser will allow
the user to observe a magnifying glass
effect, whereby one browser is providing a
detailed blowup of the region displayed by
the other. Figure 5 shows a magnifying
glass (the inner browser) positioned above
a window (the outer browser) which is in
tum positioned above a map (the
multidimensional space).

Consider the case in which the inner
and outer browsers are independent. In this
situation, the position and elevation of each
browser can be changed independently.
Moving the inner browser will change its
position above the map, and therefore, its
contents. Because it moves independently,

368 Part Seven Text and Hypennedia

moving it will also change its position relative to the outer browser. This will allow the user to
magnify various areas of the map. If the user moves the magnifying glass completely out of the
region displayed by the outer browser, then case 2 above applies and the detail will not be
shown. If the magnifying glass is partly outside this region, then case 3 above applies and only a
portion of the inner browser will be displayed. Similarly, if the user moves the outer browser,
the content of the inner browser will not automatically change, although its position relative to
the outer browser will change.

To achieve different behavior, we can slave the clone to the originator. Since the inner
browser is slaved to the outer browser, moving the outer browser will change the area displayed
in both browsers. However, the position of the magnifying glass within the outer browser will
remain constant. Moreover, if the user zooms the outer browser to blow up the map of interest,
say to a map of a specific county, then the magnifying glass will also zoom.

The definitions presented above may be recursively extended so that an inner browser may in
tum serve as an outer browser. This allows an arbitrary number of browsers to share a window,
with a pairwise inner-outer relationship between them. Thus, a hierarchical collection of
browsers can be defined. For example, a user may choose to have a magnifying glass on top of
another magnifying glass, providing even more detail.

6 EXECUTION MODEL

The original Tioga executor considered the execution of single recipes. However, zooming
requires that multiple recipes execute concurrently to supply data to a browser. We have
extended our design to include an abstract manager which controls the execution of recipes and
coordinates their communication with browsers.

In a naive implementation of zooming, all browsers in a recipe would be displayed when the
user zoomed to the elevation at which the recipe became valid. However, different recipes in an
elevation map may contain different types and numbers of browsers. Therefore, the naive
implementation would result in arbitrary browsers appearing and disappearing as the user
adjusted elevation. To provide a more intuitive semantics, we introduce the notion of a base
recipe which defines the visual environment which the user can explore. The visual environment
is made up of one or more browsers which appear in the base recipe. Each of these browsers is
associated with an elevation map that specifies which recipes may provide data to it.

Execution begins when a base recipe is passed to the abstract manager. The abstract manager
examines the elevation maps of all browsers in the base recipe to determine the set of all recipes
which may be accessed through the visual environment. The abstract manager then starts an
executor for each of these recipes, as well as a process for each browser in the base recipe. The
abstract manager establishes communication channels between executors and browsers. These
are distinct from the dataflow edges which exist in the recipe graphs. At any given time, a
browser has a communication channel to every recipe in its elevation map which is currently
active (i.e. valid at the current elevation). The browser uses these channels to request data from
the executors. When the user adjusts elevation, the abstract manager updates the communication
channels between the browsers and executors, adding and deleting connections as appropriate.

Since abstracts allow movement in a single multidimensional space, the appearance of new
browsers might be disorienting. However, since tunneling by definition involves viewing a new
multidimensional space, we allow the recipe invoked by a wormhole to serve as a base recipe
and start a new visual environment. The invocation is similar to a fork operation; both the
original browser and the new browser continue to exist as independent processes, each with a
base recipe.

Multidimensional visual browsers 369

7 APPLICATIONS

In the preceding sections, we have defined semantics for zooming, tunneling, and the
coordination of multiple browsers. The resulting model unites constructs which have proved
useful in many types of information management systems.

For example, the reader can readily observe that wormholes are a substantial generalization
of hyperlinks in a hypermedia system. A traditional hyperlink is a wormhole in which there is a
prespecified object or collection of objects on each side of the hole. Wormholes allow a run-time
specified set of objects to be on each side. Further, classical hypermedia systems only provide a
two-dimensional display space composed of the X and Y screen dimensions. The Tioga
paradigm extends such systems by supporting the display of objects in user-specified
dimensions.

Similarly, abstracts generalize the notion of layers as used in many Geographic Information
Systems (GISs). In many such systems, data is stored in separate layers representing categories
such as species distribution, land use, or political boundaries. Layers may be viewed
independently or displayed together in one window. Abstracts provide a mechanism for the
application developer to define the levels at which each layer will be visible. Further, while some
GISs support browsing in 2 or 3 dimensions representing the physical dimensions of the Earth,
they do not incorporate browsing in arbitrary multidimensional spaces. Such browsers could be
used to provide additional data. For example, selecting a city might offer the option to tunnel to a
browser containing people objects displayed according to the dimensions age, income, and
consumption of a product.

Scientific visualization systems could also take advantage of the constructs supported in the
Tioga model. Many existing scientific visualization systems provide users the option of
browsing through data in multidimensional space. However, many scientists would like to
perform data lineage queries in which they trace the history of the operations that have been
performed on their data. Slaved browsers could be used to simultaneously display different
versions of data. In this case, navigation in one browser would cause the slaved browser to
automatically display the corresponding data.

The model presented in this paper incorporates multiple concepts of proven worth. This
model can be used both to enhance existing systems and to create new information management
applications.

8 CONCLUSIONS

In this paper we have detailed mechanisms that support navigation in multidimensional space.
We first outlined a zoom capability that allows users to view data at different levels of detail. We
next introduced the concept of wormholes. Tunneling through a wormhole allows users to view
their data in the context of a new multidimensional viewing space. We then proposed
mechanisms for linking browsers together as well as for creating new browsers. We detailed the
behavior of multiple browsers sharing a portion of the screen. The resulting data management
and browsing model is a generalization of many existing systems. In combination, the ideas
presented not only add functionality to existing paradigms but support new constructs such as
magnifying glasses as well. We are currently extending the original Tioga system to support the
features discussed in this paper.

9 REFERENCES

Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. (1993) Toolglass and Magic Lenses: The
See-Through Interface. Proceedings of SIGGRAPH 93, Anaheim, California.

370 Part Seven Text and Hypermedia

Chen, J., et al. (1993) Extending a Graphical Query Language to Support Updates, Foreign
Systems, and Transactions. SEQUOIA 2000 Technical Report 93/38, University of California at
Berkeley.

Conklin, J. (1987) Hypertext: An Introduction and Survey. Computer, 20:9, pp. 17-41.
Eastman Kodak Company (1992) Programmer's Guide for UNIX Systems. Kodak PhotoCD Access

Developer Toolkit.
Gorlick, M. and Quilici, A. (1994) Visual Programming-in-the-Large versus Visual Programming­

in-the-Small. Proceedings of the 1994 IEEE Symposium on Visual Languages, St. Louis,
Missouri.

Herot, C. (1980) Spatial Management of Data. ACM Transactions on Database Systems, 5:4, pp.
493-513.

Lucas, B. et al. (1992) An Architecture for a Scientific Visualization System. Proceedings of the
1992 IEEE Visualization Conference, Boston, Massachusetts.

Perlin, K. and Fox, D. (1993) Pad: An Alternative Approach to the Computer Interface.
Proceedings of SIGGRAPH 93, Anaheim, California.

Plaisant, C., Carr, D., and Shneiderman, S. (1995) Image-Browser Taxonomy and Guidelines for
Designers. IEEE Software, 12:2, pp. 21-32.

Rasure, J. and Young, M. (1992) An Open Environment for Image Processing Software
Development. Proceedings of the 1992 SPIE Symposium on Electronic Image Processing.

Stonebraker, M. and Kemnitz, G. (1991) The POSTGRES Next-Generation Database Management
System. Communications of the ACM, 4: l 0, pp. 78-92.

Stonebraker, M. and Dozier, J. (1992) SEQUOIA 2000: Large Capacity Object Servers to Support
Global Change Research. SEQUOIA 2000 Technical Report 9111, University of California at
Berkeley.

Stonebraker, M., Chen, J., Nathan, N., Paxson, C., and Wu, J. (l993a) Tioga: Providing Data
Management for Scientific Visualization Applications. Proceedings of the 1993 VLDB
Conference, Dublin, Ireland.

Stonebraker, M., et al. (l993b) The SEQUOIA 2000 Architecture and Implementation Strategy,
SEQUOIA 2000 Technical Report 93/23, University of California at Berkeley.

Stonebraker, M., et al. (1993c) DBMS Research at a Crossroads: The Vienna Update. Proceedings
of the 1993 VLDB Conference, Dublin, Ireland.

Upson, C., et al. (1989) The Application Visualization System. IEEE Computer Graphics and
Applications, 9:4, pp. 32-40.

Woodruff, A., Wisnovsky, P., Taylor, C., Stonebraker, M., Paxson, C., Chen, J., and Aiken, A. (1994)
Zooming and Tunneling in Tioga: Supporting Navigation in Multidimensional Space.
Proceedings of the IEEE Symposium on Visual Languages, St. Louis, Missouri.

10 BIOGRAPHIES

Allison Woodruff is a Ph.D. student in Computer Science at the University of California at
Berkeley. She received the Bachelors degree in English from California State University, Chico in
1987. She received the Masters degree in Linguistics in 1989 and the Masters degree in Computer
Science in 1993 from the University of California, Davis. She has worked as a student assistant and
as a geographic information systems analyst at the California Department of Water Resources. Her
research interests include user interfaces for databases and implementation issues for visual
languages.

Alan Su is a Bachelors degree candidate majoring in Electrical Engineering and Computer Science
at the University of California at Berkeley. He plans to enroll in the Computer Science Ph.D.
program at the University of California at San Diego in the Fall of 1996.

Michael Stonebraker is a professor of Electrical Engineering and Computer Sciences at the
University of California at Berkeley, where he has been employed since 1971. He was one of the
principal architects of the INGRES relational database management system which was developed
during the period 1973-77. Subsequently, he constructed Distributed INGRES, one of the first
working distributed database systems. Then, he turned his attention to developing a next
generation DBMS, POSTGRES, that can effectively manage not only data but also objects and rules
as well. POSTGRES formed one of the cornerstones of the SEQUOIA 2000 project, the DEC

Multidimensional visual browsers 371

flagship research project of the 1990s for which Dr. Stonebraker has served as co-project director.
SEQUOIA 2000 is striving to build a new computer environment for Earth science researchers and
encompasses networking, storage, DBMS, and visualization activities. Currently, he is focusing on
the DBMS support for visualization environments and on next-generation distributed DBMSs.

Dr. Stonebraker is a founder of INGRES Corp (now the lNG RES Products Division of ASK
Computer Systems), the founder of Illustra Information Technologies, Inc., a past chairman of the
ACM Special Interest Group on Management of Data, and the author of many papers on DBMS
technology. He lectures widely, has been the keynote speaker at several recent conferences, and was
the winner of the first ACM SIGMOD innovations award in 1992.

Caroline Paxson is a Ph.D. student in Art History at the University of California at Berkeley. She
received the Bachelors degree in German Literature from Harvard. She received the Masters
degree in Computer Science from the University of California at Berkeley in 1993.

Jolly Chen is a doctoral candidate in Computer Science at the University of California at Berkeley.
He received the Bachelors degree in Computer Science and Masters degree in Electrical
Engineering and Computer Science from the Massachusetts Institute of Technology in 1990. His
research interests include query optimization and user interfaces for databases. Jolly Chen is a
student member of ACM.

Alexander Aiken received his Bachelors degree in Computer Science and Music from Bowling
Green State University in 1983 and his Ph.D. from Cornell University in 1988. He was a Research
Staff Member at the IBM Almaden Research Center before joining the Berkeley faculty in 1993.

Peter Wisnovsky has worked in the database industry for the last six years, for the Sharebase
Corporation (formerly Britton-Lee) and Illustra Information Technologies, the leader in object­
relational database technology. At Illustra he has worked on the Object Knowledge database
visualization system and its visual programming language development environment, the Project
Editor. He is currently working on interface technology at Illustra. He received the Bachelors
degree in Computer Science from Princeton in 1989.

Cimarron Taylor is Chief Scientist at Automation Consultants Group. While at the University of
California at Berkeley from 1987 to 1990, he contributed to the query executor, access methods
and transaction system of POSTGRES. After graduating, he went to Scopus Technology where he
turned Scopus's workflow prototype into a commercial product. He joined Illustra when it was
founded in 1992 to build client software tools. He developed and implemented the compilation
algorithms in the Object Knowledge Toolkit to translate visual programs into Illustra's dialect of
SQL3. He is now responsible for the information architecture of ACG's manufacturing enterprise
automation system.

