
16

Manipulations of Graphs with a Visual
Query Language: Application to a
Geographical Information System

Brossier-Wansek A.*,** - M ainguenaud M. *
*France Telecom- Institut National des Telecommunications
9 rue Charles Fourier F91011 EVRY- FRANCE
**Cellule d'Etudes en Geographie Numerique
16bis A v. Prieur de Ia Cote d'Or F94114 ARCUEIL Cedex - FRANCE
+ 33 1 60 76 47 82 (tel) + 33 1 60 77 20 06 (fax)
Email: Anne. Wansek@int-evry.fr, Michel.Mainguenaud@int-evry.fr
http://etna.int-evry.fr/BasesDeDonnees/Cigales/cigales.html

Abstract
Operators for geographical databases can be classified into two categories: thematic-oriented
operators and network-oriented operators. Thematic-oriented operators are based on geometric
representations (e.g., intersection, inclusion, adjacency). Network-oriented operators are based
on graph manipulations whatever the geometric representation is (e.g., a transitive closure of a
graph).
In this paper we present network manipulations with a visual query language for a geographical
database. A query is defined with a visual expression defined with a Query-By-Example
approach. The user draws a graphic representing the properties results have to verify.

Keyword
Visual query language, Graph manipulations, Geographical Information System

I INTRODUCfiON

In current research toward the design of more powerful tools for urban planning and remote
sensing, different research groups are simultaneously concentrating their work on Geographical
Information Systems (GIS). GIS needs are very well known (Smith, 1987). Nevertheless,
several problems are still open.

The need for a spatial query language has been identified. Traditionnally, operators for
geographical databases are classified into two categories: thematic-oriented operators and network­
oriented operators. This distinction is due to the lack of common data structures (and operators).
Thematic-oriented operators are based on geometric representations (e.g., intersection, inclusion,
adjacency). Network-oriented operators are based on graph manipulations whatever the geometric
representation is (e.g., a transitive closure of a graph).
Visual languages are very promising. Propositions for such languages are detailed for example in
(Angelaccio,1990) (Cruz, 1987) (Kim, 1988) (Kirby, 1990) (Myers, 1992) (Shu, 1988). A query

S. Spaccapietra et al. (eds.), Visual Database Systems 3
© Springer Science+Business Media Dordrecht 1995

Manipulations of graphs with a visual query language 255

language is said to be visual whenever the semantics of a query is expressed by a drawing. It is
said to be declarative whenever a query specifics the properties to be verified by the results, but
not the way of obtaining them (i.e., imperative). This paper is based on the Cigales experiment.
Cigales (Calcinelli, 1991) (Calcinelli, 1994) is a visual and declarative query language for GIS.
We focus, here, on the design of a visual query language to handle networks in a GIS. This issue
is one of the most important to deal with when building spatial information systems. It will be
increasingly true since the geographic information is now affecting non-specialist users and
general applications such as tourism.

Part II presents a brief overview of the graph data model; Part III, the graph manipulation part of
a visual query language for GIS; Part IV, the conclusion.

II BRIEF OVERVIEW OF THE GRAPH DATA MODEL

The user graph data model is based on graph theory (Berge, 1983) and is similar to the definition
presented in (Angelaccio,1990) (Cruz, 1987). The database graph data model is based on the
graph data model defined in (Langou, 1994) (Mainguenaud, 1991). Nevertheless, this data
structuring is not visible from the user interface level. In this part, we present the user graph data
model, its associated operators and a toy database used along this paper.

11.1 User graph data model

The user graph data model (i.e., visible from the interface level) is based on the concepts of nodes
and edges. A graph is a triplet G (N, E, 1P) where N is a set of nodes, E is a subset of the
Cartesian product N x N and IJI is an incidence function mapping E to N x N. The formal
definition is presented in Figure 1.

A graph G (N, E, 'P) is defined as follows:
N = {n1, ... , np}

E = { (ni, nj) I ni E N, ni E N }
l(ni is said to be the initial node and n· is said to be the end node for an edge (ni, n-))

Figure 1 - Formal definition of a graph

A node is used to model for example a town. An edge is used to model for example a link
between two towns. In this paper, a graph is considered as orientated (i.e., the order, initial node I
end node, is relevant). Nodes and edges are labelled. Several edges may be defined with the same
initial and end nodes. We do not limit this number but we do not allow an edge (ni, ni)· We
extend the graph definition with a labelling function, v, defined on nodes and with a labelling
function, t, defined on edges. Let D1, ... , Dn be database domains. Figure 2 presents the
complete definition of the user graph data model.

v : N -> Di X ••• X Dj

E : E -> Dk X .•. X Dm

A graph G is defined by: G (N, E, 1P, v, E)

Figure - Complete definition of a graph

11.2 Operators

Graph manipulations, accessible from the user interface, are divided into three classes: evaluation
of paths, inclusion and intersection.
The evaluation of path is performed with a Path operator. This evaluation corresponds to the
detection of acyclic paths between an origin and a destination. This path can be a direct link (i.e., a
successor in a graph) or a more complex path (i.e., a transitive closure of a graph).

256 Part Five GIS

Three operators are defined to handle the inclusion. The first operator is an extraction of nodes in
a path. The second operator is an inclusion between two sets of nodes. The third operator is an
inclusion between two sets of edges.
Two operators are defined to handle the intersection. The first operator is an intersection of two
sets of nodes. The second operator is an intersection of two sets of edges.

This paper deals with the Path operator. It presents the visual definition of a query involving this
operator. A formal signature (taking into account constraints) of this operator is presented in
(Mainguenaud, 1993a). Inclusion and intersection are handled as defined in (Calcinelli, 1991)
(Calcinelli, 1994).

11.3 Toy database

To simplify the presentation, let us use the relational model extended with Abstract Data Types
(Stemple, 1986) as the data model of the user interface (i.e., to model the labelling functions v and
E). The relational model is now widely accepted (Ullman,1988), but an object-oriented data model
or a semantic data model could have been used. An abstract data type,Spatial_representation _type,
models spatial representations (i.e., the domain of the Spatial_representation attribute). Figure 3
presents the conceptual level of a toy database borrowed from a tourism application.

User's schema

Town (Name, Population, Economical_ activity, Hotel_ cost, Spatial_representation)
Transport (Name, Company, Transport_ cost, Departure_hour, Arrival_ hour,

Spatial_representation)

Database schema

Town (Name, Population, Economical_ activity, Hotel_ cost, Spatial_representation)
Transport (Name, Origin, Destination,

Company, Transport_ cost, Departure_hour, Arrival_ hour,
Spatial representation)

J<'Jgure 3 - The conceptual database

Let us define a graph G (N, E, 1¥, v, E) modelled with the Town and Transport relations (i.e.,
the nodes and the edges). The user's schema is composed of two relations (i.e., the labelling
functions v and E). Visual queries are defined on this schema. The database schema is composed
of two relations. The Town relation models the node labelling function, v. The Transport relation
represents an element of the Cartesian Product, N x N, and the edge labelling function, E. The
formal modelling of a visual query is defined on this schema. To illustrate the query language, let
us define seven queries on this database (see (Boursier, 1992) for a logical benchmark to evaluate
the expressive power of a query language for GIS).
Let Q1 be the following query: "What are the direct flights with the AF company from Paris to
Lausanne such as the departure time is later than 10:00 am and earlier than 3:00pm and such as
the price is less than 500 FF?". Query Q1 requires evaluating the direct link operator. This query
is a relational selection on the Transport relation.
Let Q2 be the following query: "What are the routes from Paris to Lausanne with the AF company
such as the total transport cost is less than 800 FF and the total time of inter-connection is less
than 2 hours?". Query Q2 requires the computation of a path operator in graph G with constraints
on edges. This query is a transitive closure on relation Transport with two aggregate functions: the
sum of the Transport_ cost attribute and the sum of the differences between Departure_hour of
edge i+ 1 and Arrival_ hour of edge i.
Let Q3 be the following query: "What are the routes from Paris to Lausanne only visiting major
towns (i.e., for each town, the population is larger than 100 000 inhabitants or the economical
activity is tourism)?". Query Q3 requires a path operator with a constraint on nodes. This query is
a selection on the Town relation, a join with the Transport relation and a transitive closure.

Manipulations of graphs with a visual query language 257

Let Q4 be the following query: "What are the routes from Paris to Lausanne such as the total cost
(hotel+transport) is less than 1000 FF?". Query Q4 requires a path operator with constraints on
nodes and edges. This query is a transitive closure on relation Transport with an aggregate
function using a join on relation Town.
Let Qs be the following query: "What are the routes from Paris to Lausanne such as the total time
of transport is less than 4 hours". Query Qs requires a path operator (i.e., a transitive closure on
relation Transport) with a constraint involving the first and the last edges (i.e., the difference
between the departure hour from Paris and the arrival hour in Lausanne is less than 4 hours).
Let Q6 be the following query: "What are the routes from Paris to Lausanne (1) leaving Paris with
the AF company; (2) and then using the train up to Lausanne or using the bus up to Lausanne?".
Query Q6 requires a path operator (i.e., a transitive closure on relation Transport) with a regular
expression on edges (Cruz, 1987).
Let Q7 be the following query: "What are the routes from Paris to Lausanne (1) leaving Paris with
the AF company; (2) then using the train or the bus such as at each stop, the cost of a hotel is less
than 200 SF and (3) finally arriving to Lausanne by bus". Query Q7 requires a path operator (i.e.,
a transitive closure on relation Transport) with a regular expression involving nodes and edges.

III VISUAL QUERY LANGUAGE TO MANAGE GRAPHS

The first section presents some visual query languages to manage graphs. All of them are based at
the user level on the same definition of a graph. The second and third sections present the Cigales
query language from the user's point of view, to solve queries using either the direct link operator
(query Q1) or the path operator (queries Qz up to Q?).

111.1 Short overview

We present here a short overview of visual query languages to manage graphs. The two first one
(G+ and QBD*) are designed to query a conventional database. The third one (Cigales) is
designed to query a spatial database (i.e., with thematic-oriented operators).

III.l.l G+

G+ (Cruz, 1987) is a language derived from a language called G. In G, a graphical query Q on a
graph G is a set of labelled directed multi-graphs in which the node labels of Q may be either
variables or constants and the edge labels are regular expression defined over n-tuples of variables
and constants.
An edge which is labelled by a regular expression containing the positive closure operator (+) is
drawn as a dashed edge in Q. A query is extended with a summary graph and summary operators.
A summary graph tells the system how to restructure the answers before presenting them to the
user. Summary operators allow to compute aggregate functions over paths and sets of paths.
The semantics of the graph query language is based on the existence of mappings known as
homeomorphisms from query graphs to database graphs. Homeomorphisms formalize the idea of
a sub graph of the database graph being "similar" to the query graph. A query graph represents a
pattern; answering the query will require searching the database graph to find all subgraphs that
are "similar" to the pattern.
Query Q1 is represented by a graph composed of two nodes labelled Paris and Lausanne. The
edge is a tuple defined with constraints on the attributes (i.e., departure_ hour, arrival_ hour and
pric;.:e.t,;.). _______ _,

Paris Lausanne

a--.o
Paris

Bus+ I Train+ Lausanne

Nevertheless, the graphical visualisation of query Q6, for example, is not very intuitive (even if
the basic concept is a regular expression). A user defines a regular expression from the keyboard.
A Query-By-Example philosophy should be preferable.

258 Part Five GIS

Ill./.2 QBD*

The goal of QBD* (Query By Diagram*) (Angclaccio, 1990) is to achieve user friendliness for a
large amount of user types by means of a uniform graphical interface and a visual language. This
system is based on four basic ideas: (1) to represent the intentional part of the database by means
of a conceptual model (Entity-Relationship augmented by the introduction of generalization
abstractions); (2) to employ a fully graphical environment as a user friendly interface with the
system; (3) to study the formal properties of the graphical language by defining an isomorphic
textual language; and (4) to extend the graphical constructs of the language in order to easily
express a significant class of recursive queries (e.g., transitive closure).
QBD* is mainly a navigational language on ER diagrams. The operations of the relational algebra
may be expressed directly by picking up symbols (entities or relationships) in the diagram and
posing conditions on their attributes by means of a simple windowing mechanism. Recursive
queries are also expressed by the same mechanism, the difference being the preselection of a
particular icon that signals the beginning of a recursive session. In this way, the textual interaction
is completely eliminated and the complexity of some query is transparent to the user.
The general structure of the query is based on the location of a distinguished concept, call the main
concept (an entity or a relationship), that can be seen as the entry point of one or more subqueries.
These subqueries express possible navigations from the main concept to other concepts in the
schema. The subqueries can be combined by means of the usual union and intersection operators.
Once the main concept has been selected, two different types of primitives are available for
navigation in the schema. The first one allows the user to follow paths of concepts. The second
one is used for comparing two concepts which are not directly connected to each other. Two such
primitives can be arbitrarily nested.
Nevertheless, it is not clear how (1) queries involving conditions on the first and last edge are
handled (query Qs); (2) aggregate function involving nodes and/or edges are handled (Query Q3,
Q4).

JIJ.l.3 Cigales approach

Cigales is a visual and declarative query language for GIS based on a Query-By-Example
approach. This language is visual because a query is defined by a drawing. This language is
declarative because a query only defines the properties to be verified by the results. A detailed
definition of the query language is presented in (Calcinelli, 1994). Cigales uses metaphores to
avoid visual overload. Thus a visual query is a symbolization of a textual query.
Cigales is designed to be an upper layer of a spatial Data Base Management System (DBMS).
Two metaphores, a zone and a line, represent database objects. Their semantics are defined by a
Data Model Function (i.e., the definition of selection criteria applied to the labelling functions v
and t). Five spatial operators are available at the user interface level: inclusion, intersection,
adjacency, straigth line and path. Several other operators are available such as union, difference
but the user is not awared of their existence. The drawing process automatically generates these
operators. A query is graphically built from a combination of metaphores and operators. This
query is, then, translated into a formal expression based on a functional language (Mainguenaud,
1993a), to be compiled into DBMS understandable orders. Figure 4 presents the graphical editor
used to define a query. Cigales offers a unique path operator at the user-interface level. This
operator stands either for the direct link operator and for the path operator. The relevant choice is
performed by the user before defining the Data Model Function (Figure 5).

111.2 Direct link queries

A direct link operator requires specifying alphanumeric properties on edges of a graph (i.e., for
the Transport relation in our example). The expressive power is equivalent to the From, Where,
Group By and Having clauses of SQL.

A selection criterion is defined by a triplet (attribute, operator, value). An implicit conjunction is
defined between triplets. Moreover, each attribute may also have a value defined as a conjunction
(e.g., the departure hour is later than 10:00 am and earlier than 3:00 pm - query Qt). The

Manipulations of graphs with a visual query language 259

disjunction is graphically defined with the notion of page (i.e., Page 1, Page 2, ... , Page i). Each
page has the same structure and allows one to define alphanumeric properties. A horizontal
scrollbar allows to move from one page to another. This disjunction may be defined on one
attribute (the departure hour is earlier than 10:00 am or later than 3:00 pm). It may also involve
several attributes (i.e., the population is greater than 100 000 inhabitants or the activity is tourism
-query 03). Details of other operators are presented in (Brossier-Wansek, 1994). Figure 6
presents the visualization of the Data Model Function associated with the direct link operator. This
formalism is more intuitive for a non-specialist end user than SOL-like syntaxes.

111.3 Path operator

Queries Qz, 03, 04, Qs, 06 and Q7 require computing a path operator. These queries illustrate
two kinds of constraints. Queries Q2, 03, Q4 and Qs define constraints involving a complete path.
Query 06 and Q7 define constraints involving an edge-by-edge definition of a path. Therefore, the
Data Model Function associated with the path operator is composed of two parts: a "Global
conditions" part and a "Transportation" part.

///.3.1 Constraints on a complete path ("Global conditions")

Three kinds of constraints can be defined on a complete path. A constraint may be defined on
edges (e.g., query 02), on nodes (e.g., query 03) or on both edges and nodes (e.g., query 04).
Thus, the window defining the global conditions is divided into three parts.

Two kinds of constraints can be defined on edges. A constraint may involve a unary function
(i.e., involving a unique parameter) or may involve a n-ary function (i.e., involving two or
several parameters). The constraint: "the total transport cost of a travel is less than 800 FF of
query Q2" is an example of a unary function (i.e., an aggregate function on the attribute
Transport_ cost). The constraint: "the total time of interconnection is less than two hours of query
Q2" is an example of a n-ary function (i.e., an aggregate function involving a binary relationship
between the attributes Arrival_ hour and Departure_ hour).
The constraint definition process involving a unary function is similar to the direct link definition
process. The only difference is the addition of an aggregate function. This function is defined for
each attribute depending on its type (i.e., alphanumeric, integer). Such a constraint is valid for
each edge of a path (i.e., Each qualification - query 03) or for the entire path (i.e., total cost of a
travel - query Qz). Figure 7 presents the Data Model Function for a unary function.
The constraint definition process involving a n-ary function relies on a visual sub-language. To
simplify the presentation, Jet us consider a binary relationship. Cigales defines a generic schema
of a path. This path presents four specific edges labelled 1, i, i+1, n. The user selects attributes
corresponding to these edges. The two icons modelling the retained attributes appear in the form
below the schema. The user defines the aggregate function (if it is needed), the mathematical
operator, the comparison operator and a value (i.e., the sum of differences between the departure
hour of edge i+ 1 and the arrival hour of edge i is less than two hours - query Q2 - or the difference
between Arrival_hour of edge nand Departure_hour of edge 1- Query Qs). Figure 8 presents the
Data Model Function for a n-ary function (Query 02).

Two kinds of constraints can be defined on nodes: a constraint may involve a unary function or
a n-ary function.
The constraint definition process involving a unary function is similar to the constraint definition
process involving a unary function for an edge.
The constraint definition process involving a n-ary function is similar to the constraint definition
process involving a n-ary function for an edge. The only difference relies on labels associated
with the generic schema of a path. They are defined on nodes instead of on edges. Figure 9
presents the Data Model Function associated with query Q3 "What are the routes from Paris to
Lausanne only visiting major towns (i.e., for each town, the population is larger than 100,000
inhabitants or the economical activity is tourism)?".

The constraints involving both edges and nodes are similar to a n-ary function (at least one
attribute for an edge and one for a node). The generic schema of a path is made of four

260 Part Five GIS

components labelled edge i, node i, edge i+1, node i+l. The philosophy of the constraint
definition process is similar to the previous definitions of n-ary functions. Figure 10 presents the
Data Model Function associated with query 04 "What are the routes from Paris to Lausanne such
as the cost (hotel+transport) is less than 1000 FF?".

One can remark that results of queries involving aggregate functions can not be defined as the
union of paths. As soon as a node (except the origin of the path and the destination of a path)
belongs to two paths, the definition of the results as the union of paths leads to ambiguities
(Mainguenaud, 1993b) since results must be graphically presented.

///.3.2 Constraints edge-by-edge ("Transportation")

This second kind of constraints requires specifying a regular expression associated with a path.
This edge-by-edge definition provides a very strong expressive power. As shown in (Mendelzon,
1989), some classes of queries lead to a NP-complete problem. We restrict the expressive power
to a sub-set of computable queries (Garey, 1979). This part defines the retained expressive power
and presents the graphical definition of these constraints.

Required expressive power

To simplify the presentation, let us consider a unique domain called Do. Let Do be {do, ... , dn}.
Let v be a one-to-one node labelling function that associates with each node a distinct value drawn
from domain Do. Let • be an edge labelling function which associates with each edge a distinct
value drawn from domain Do.
An edge-by-edge constraint is defined with a regular expression. This expression is built from a
triplet (Ni, Ek, Ni) label. Let N; be the label associated with a node n; (a disjunction of elements of
Do). Let Nj be the label associated with a node nj (a disjunction of elements of Do). Let Ek be the
label associated with an edge ek defined between n; and nj (a disjunction of elements of Do). Let­
(the hyphen) be any value of Do. The following rules define a query label:

(1) (Ni, Ek, Ni) is a query label (2) (Ni, Ek, -)is a query label
(3) (-, Ek, Nj) is a query label (4) (-, Ek, -) is a query label
(5) (Ni,-, Ni) is a query label (6) (Ni, -,-)is a query label
(7) (-,-,Ni) is a query label (8) (-,-,-) is a query label
(9) If A is a query label then [A]* is a query label (the repetition)
(10) If A and Bare query labels then AAB is a query label (the sequence)

(11) If A and Bare query labels then (AvB) is a query label (the alternative)

An edge-by-edge constraint is built from a recursive application of properties (1) to (11). For the
time, we limit the expressive power of a regular expression modelling a path. At least one of the
two properties (a) or (b) must be verified:

(a) The first node label is not a hyphen (i.e., a selection criterion is defined on a key)
(b) The last node label is not a hyphen (i.e., a selection criterion is defined on a key).

Let us define a node label (Ni) or an edge label {Ek) as a disjunction of triplets (attribute operator
value). Figure 11 (respectively Figure 12) presents the edge-by-edge constraint of query 06
(respectively query 07).

(Name= Paris, Company= AF, Hotel_ cost< 200) A

[(Hotel_cost < 200, Company= Train v Company= Bus, Hotel_ cost< 200)]* A
(Hotel cost< 200, Company = Bus, Name= Lausanne)

Figure 12 - Edge-by-edge constraint of query 07: "What are the routes from Paris to Lausanne
(1) leaving Paris with the AF company; (2) then using the train or the bus such as at each stop, the
cost of a hotel is less than 200 SF and finally arriving to Lausanne by bus"

Manipulations of graphs with a visual query language 261

(Name= Paris, Company= AF, -)"

(((-,Company=Train,-)" [(-,Company=Train,-)]* "(-,Company=Train, Name=Lausanne) v

(-,Company=Train, Name=Lausanne)) v

((-,Company= Bus,-)" [(-,Company= Bus,-)]* "(-,Company= Bus, Name= Lausanne) v
(-,Company= Bus, Name= Lausanne)))

Figure 11 - Edge-by-edge constraint of query Q6: "What are the routes from Paris to Lausanne
(1) leaving Paris with the AF company; (2) and then using the train up to Lausanne or using the
bus up to Lausanne?"

Figure 13 presents the Finite State Automaton (FSA) associated with query Q6. The conflict on
Train (or Bus) is resolved since the choice of an edge determines an end node. Figure 14 presents
the FSA associated with query Q7.

Train v Bus

~~Lausanne
Hotel cost < 200

Figure 13 - FSA for query Q6 Figure 14 - FSA for query Q7

Graphical representation

A visual query language must provide a visual representation of a regular expression. Thus, the
interface must provide a graph drawing mechanism. The objectives are (1) to draw an edge-by­
edge path; (2) to specify alphanumeric properties on nodes and edges according to the user's
selection criteria.
The graphical definition of an edge-by-edge constraint is provided by a graph editor. This editor
adopts the same look as the main query editor. Two areas are defined. A working area is located at
the bottom. This area is used to build step-by-step sub-queries. A query area, located on the top,
is used to merge sub-queries and to build a final query. Two metaphores (a zone and an arrow)
obey to the same Data Model Function as for Cigales. This editor takes full advantage of the
context in which a regular expression is defined: a path defined between an origin and a
destination. Therefore, no operator is provided since the path definition process is on. Figure 15
presents the graph editor.
The graphical edge-by-edge constraint is built step by step. A step defined in the working area
corresponds to a sequence of query labels and must be validated (i.e., with a click on the
validation button). The validation mechanism allows (1) the definition of the repetition factor (rule
9) and (2) the display of the graph drawing into the query area. The conjunction (rule 10) is
implicit by a sequence of edges in the query area. The disjunction, while defining the Ni/j
(respectively Ek) part of a label is provided by the Data Model Function with the mechanism of
pages (i.e., company = Train v company = Bus - query Q7). The disjunction in a regular
expression (rule 11) is guided by the following assumption: "An end user thinks in term of
disjunctive form". This disjunction is provided by a mechanism of pages for a complete path (i.e.,
each page represents a complete path - query Q6).
By this way, the graphical build up of a path provides a Query-By-Example definition process.
Therefore a novice user easily handles a complex selection criteria (i.e., with multiple and/or
conditions- query 06). Moreover, the similitude between the Cigales editor and the graph editor

262 Part Five GIS

about the query definition process facilitates the definition of a complex regular expression for a
path. Figure 16 (respectively Figure 17) presents the graph editor for query Q6 (respectively Q7).

IV. CONCLUSION

The number of applications using a Geographical Information System (GIS) is considerable.
Therefore it is of prime importance to offer a powerful and friendly interface for end-users. By
end-users, we mean people who may be experts in some domains other than programming (or
querying) language and who want to use a GIS to meet their particular needs. Our focus is not so
much on the spatial analysis itself, but on the computational environment in which it is embedded
(i.e., query language expressive power, management of visual ambiguities). Visual programming
languages are very promising since they are more natural than textual query languages (i.e.,
extended SQL) and they offer a higher level of abstraction. The interaction with a DBMS is more
complex since this level of abstraction is higher. The implementation is still going on since the
design of a user interface is an iterative process. The prototype is developed using OSF/Motif (for
the user interface), Yacc (for the analysis of the internal functional expression modelling a query),
C programming language (for the query management) and an object-oriented DBMS, 02
(Bancilhon, 1991), (to manage network-oriented queries) on Sun workstations.

This paper presents a brief overview of the user interface graph data model and the query
definition process to manage network-oriented queries. Future work is to handle query results
since several visual ambiguities may appear (Mainguenaud, l993b) as soon as an aggregate
function is involved in the query.

Figure 4 - The graphical editor

Manipulations of graphs with a visual query language

/ ('TillcOM] /

[§]~
~IY-
[i]-

~·­
~
~.., ... "..,

Figure 5 - Direct link or Path operator?

~ s; . .~ __ ._, t

Figure 6a - The Data Model Function - conjunction
(the departure hour is later than 10:00 am and earlier than 3:00pm- query Q1)

263

264 Part Five GIS

Figure 6b - The Data Model Function - disjunction
(the departure hour is earlier than 10:00 am or later than 3:00pm)

Figure 7 - The Data Model Function - a unary function
(the total cost of a travel is less than 800 units - query Q2)

Manipulations of graphs with a visual query language 265

Figure Sa - Labelling of edge i+ I -departure hour of edge i+ I
(the sum of differences between the departure hour of edge i+ I and the arrival hour of edge i is

less than two hours - query Q2)

- o""''

--·····110-01
Ca..ic..ll\1-]EJ -1,_, ..

8~- ~ ~ [.... ~·-[CE:J [3 El §
~ 8 [1]'- ~

!~ ~ 8~ ·-

o--o 8~--
I 0~_.. _,_
I
i [!] ~ ls..•••.--.--1

i
""'' I

EJ ~ o-- ··----o

I[Q 8[IJ ~.~[gj.rn 0 B
~ 8 EJ

r-- .,.~

LbJ Ldl (_) I

Figure Sb - Labelling of edge i - arrival hour of edge i
(the sum of differences between the departure hour of edge i+ 1 and the arrival hour of edge i is

less than two hours- query Q2)

266 Part Five GIS

~ ': d '} ::.>~'fli •
. '' 7' "'·· .••

...

Figure Sc - Definition of an aggregate function - the sum of differences
(the sum of differences between the departure hour of edge i+ 1 and the arrival hour of edge i is

less than two hours - query Q2)

Figure 9 - Query Q3
"What are the routes from Paris to Lausanne only visiting major towns (i.e., for each town, the

population is larger than 100 000 inhabitants or the economical activity is tourism)?"

Manipulations of graphs with a visual query language 267

Figure lOa - Labelling of edge i+ I -Transport_ cost
What are the routes from Paris to Lausanne such as the cost (hotel+transport) is less than 1000 F?

Figure lOb - Labelling of node i - Hotel_ cost

268 Part Five GIS

Figure lOc - Definition of an aggregate function - Sum

Figure 15 - The graph editor

Manipulations of graphs with a visual query language

Figure 16a - Query Q6- Page I
"What are the routes from Paris to Lausanne (I) leaving Paris with the AF company;

then using the train up to Lausanne"

Figure 16b - Query Q6 - Page 2
"What are the routes from Paris to Lausanne (I) leaving Paris with the AF company;

then using the bus up to Lausanne?"

269

270 Part Five GIS

Figure 17a- Starting representation (a path from Paris to Lausanne- (Calcinelli, 1994))
What are the routes from Paris to Lausanne (1) leaving Paris with the AF company; (2) then using

the train or the bus such as at each stop, the cost of a hotel is less than 200 SF and (3) finally
arriving to Lausanne by bus

Figure 17b- The choice of an edge (labelled Company= AF)

Manipulations of graphs with a visual query language 271

Figure 17c - After the validation (first part of the path: leaving Paris with AF)

Figure 17d - The choice of an edge (labelled Company= Train / Company= Bus) and a node
(labelled Hotel_ cost < 200)

272 Part Five GIS

Figure 17e- After the validation with a repetition factor (dashed lines)

Figure 17f - After the choice of an edge (labelled Company = Bus) and the validation

Manipulations of graphs with a visual query language 273

REFERENCES

Angelaccio M., Catarci T. and Santucci G. (1990) QBD*: A Graphical Query Language with
Recursion, IEEE Transaction on Software Engineering, Vol16 (10), 1150-1163.

Bancilhon F., Barbedette G., Benzaken V., Delobel C., Gamerman S., Lecluse C., Pfeffer P.,
Richard P. and Velez F. (1991) The Design and Implementation of 02, an Object Oriented
Database System, Proceedings of the 2nd Int. Workshop on Object-Oriented Data Base
Systems, 02 Book, Morgan Kaufmann.

Berge C. (1983) Graphes, Gauthier-Villars, Paris.

Boursier P. and Mainguenaud M. (1992) Spatial Query Languages: Extended SQL vs. Visual
Languages vs. Hypermaps, 5th Symposium on Spatial Data Handling, Charleston, USA.

Brossier-Wansek A. (1994) La Semantique d'une Metaphore dans un Langage Visuel:
Application a un Systeme d'Information Gcographique, ERGO/lA, Biarritz, France.

Calcinelli D. and Mainguenaud M. (1991) The Management of the Ambiguities in a Graphical
Query Language for Geographical Information Systems, 2nd Symposium on Large Spatial
Databases, Zurich, Switzerland, Lecture Notes in Computer Science n° 525 (LNCS).

Calcinelli D. and Mainguenaud M. (1994) CIGALES: A Visual Query Language for Geographical
Information System: the User Interface, Int. Journal of Visual Languages and Compwing, 5,
113-132.

Cruz I.F., Mendelzon A.O. and Wood P.T. (1987) A Graphical Query Language Supporting
Recursion, Proc. SIGMOD Conference, San-Francisco, USA.
and G+: Recursive Queries Without Recursion, Expert Database Systems, 645-666.

Garey M.R. and Johnson D.S. (1979) Computers and Imractability A Guide to the Theory of NP­
Completeness, W.H. Freeman and Company, New York.

Kim H.Y. and al (1988) PICASSO: A Graphical Query Language, Software-Practice and
Experience, Ed. J. Wiley and Sons Ltd, Vol 18 (3), 169-203.

Kirby K.C. and Pazner M. (1990) Graphic Map Algebra, 4th Symposium on Spatial Data
Handling, Zurich, Switzerland.

Langou B. and Mainguenaud M. (1994) Graph Data Operations for Network Facilities in a
Geographical Information System, 6th Symposium on Spatial Data Handling, Edinburgh, UK.

Mainguenaud M. (1993a) From the User Interface to the Database Management System:
Application to a Geographical Information System, 5th Int. Conference on Human Computer
Interaction, Orlando, USA.

Mainguenaud M. (1993b) The Results of Geographical Information System Queries, IEEE!CS
Visual Languages'93, Bergen, Norway.

Mainguenaud M. and Simatic X.T. (1991) A Data Model to Deal with Multi-scaled Networks,
I.G.U.-U.G.I. Conference on Multi-scales Multi-uses, Brno, Czechoslovakia and Computer
Environment and Urban System, Vol 16 (4), 1992, 281-288.

Mcndelzon A.O. and Wood P.T. (1989) Finding Regular Paths in Graph Databases, 15th Int.
Very Large Data Base Conference, Amsterdam, The Netherlands.

Myers B.A. (Ed.) (1992) Languages for Developing User Interfaces, Jones and Bartlett
Publishers, Boston.

274 Part Five GIS

Shu N.C. (1988) Visual Programming, Van Nostrand Reinhold Cie, New York.

Smith T.R., Menon S., Star J.L. and Ester J.E. (1987) Requirements and Principles for the
Implementation and Construction of Large Scale GIS, Int. Journal of Geographical
Information System, Vol 1 (1), 13-31.

Stemple D., Sheard T. and Bunker R. (1986) Abstract Data Types in Databases: Specification,
Manipulation and Access, Int. Conference on Data Engeneering, Los Angeles, USA.

Ullman J.D. (1988) Principles of Database and Knowledge-base Systems, Computer Science
Press, Maryland.

BIOGRAPHY

Anne Brossier-Wansek received the Engineer degree in 1992 from the Institut National des
Telecommunications (INT), a state engineer school.
She is presently working on her PhD in the CEGN and in the computer science department
(database group) of the INT. Her research interets include data models and visual query languages
for Geographical Information Systems and Hypertext and Hypermedia Systems.

Michel Mainguenaud received the Engineer degree from the Institut d'Informatique
d'Entreprise (1985), a DEA in computer science (1985) and a PhD in computer science (1989).
He is presently an associate professor at the Institut National des Telecommunications in the
computer science department (database group). His research interests are data models and query
languages for multimedia databases (Geographical Information Systems -GIS- and Document
Management Systems).
His main contributions are a data model and its operators to manipulate graph based data in a GIS;
a visual language, Cigales, and a study on the query resolution mechanisms to address GIS
databases; and a data model for multimedia hypertext like documents.

