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Abstract 
Geographic Information Systems (GISs) store, analyze, and present spatial data and information 
about geographic space and geographic phenomena. Virtually all aspects of a GIS have inherent 
spatial, graphical, and visual characteristics. While the database and analytical aspects of GIS 
have enjoyed considerable advancement in recent areas, a user's access to and interaction with 
spatial information has not. For such a highly visual system, GIS is often characterized by its 
distinctly non-visual user interfaces, where command-line and window-icon-menu-pointer 
(WIMP) user interfaces are most common, whereas visual, direct-manipulation user interfaces 
are rare. Direct-manipulation user interfaces based on metaphor offer increased usability for GIS. 
This paper extends the Geographer's Desktop, an innovative direct-manipulation environment 
for viewing data in a GIS, by integrating a new method for GIS Map Algebra operations. Used 
by planners, geographers, and other spatial scientists, Map Algebra facilitates the analysis of 
geographic phenomena. Historically, Map Algebra was performed manually by overlaying 
thematic map layers, a process that offers a rich source domain for user interface metaphors. 
Visual Map Algebra is a direct-manipulation query language that allows users to construct 
arbitrarily complex combinations of map layers by stacking iconic representations of thematic 
map layers onto an interface object called the computational platform. Users visualize such 
calculated map layers by moving them onto an interface object called the viewing platform that 
manages cartographic display parameters and is associated with a viewing window. Visual Map 
Algebra enables exploratory analysis by changing parameters of the overlay and immediately 
observing the outcome, and adding or removing map layers on the fly. 
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1 INTRODUCTION 

Geographic Information Systems (GISs) store, analyze, and present spatial data and information 
about geographic space and geographic phenomena. GIS data are inherently visual, and graphical 
depictions of data's location-symbolized by some characteristic attribute-produce a powerful 
visual representation. GISs process spatial relations between spatial objects. Often, these 
relations are depicted visually as a fundamental and spanning set of spatial relations. While the 
data and processing of GIS have exhibited advanced visual characteristics, the access to these 
features has remained distinctly non-visual. The user interfaces for advanced GISs have so far 
been largely textual, and henceforth difficult to use. This paper presents the results of research to 
enhance the visual nature of GIS user interfaces, through the use of metaphor-based graphics and 
direct-manipulation. It focuses the design of a direct manipulation query language for GIS Map 
Algebra. This user interface was developed with an understanding of issues in two different 
domains: geographic information systems and human-computer interaction (HCI). GIS seeks to 
model spatial phenomena on a computer, whereas HCI seeks to model human behavior with a 
computer. A symbiosis of these disciplines brings together the necessary tools for effectively 
developing visual user interfaces for visual, spatial database systems. The direction here is 
primarily to bring HCI techniques to bear on GIS, in an effort to improve its usability. The 
reverse direction is conceivable, however. An understanding of how humans think and 
communicate about spatial phenomena is basic to human cognition, and may indeed have an 
impact on HCI. 

Various aspects of the world can be captured in a GIS to create a model of reality. Some 
models consider space full of discernible objects, and measure their attributes and relations 
(Mark and Frank 1989). Others represent space by the continuous measurement of several 
different properties, or themes, over the same area (Goodchild 1992). The choice of themes and 
how they are combined is highly dependent on the purpose of the analysis and modeling. By 
treating each theme as a variable in an algebra, Tomlin (1983, 1990) has formalized the 
combination of themes in a Map Algebra. These combinations reveal information that was 
unavailable in any component theme. Spatial scientists use Map Algebra to explore relationships 
in the data, and gain an understanding of processes that exist in the physical world. 

The techniques of Map Algebra are rooted in the history of GIS-for an overview see Chan 
and White (1987). The single most important concept is the overlay of thematic map layers. 
Computerized map overlay evolved from manual methods of thematic map overlay (Figure 1). 
Historically, map overlay was a strictly visual process, with limited analytical capabilities. Map 
Algebra is a completely generalized form of analytical map overlay, made possible by GIS 
technology. Layers of thematic data over the same geographic area are combined by some 
analytical operation, yielding a new thematic layer with integrated information. The analytical 
operations can be as simple as superimposing one layer over another, or any complex mapping 
expressed as a function or truth table over the values in the layers (Doren beck and Egenhofer, 
1991). 

Today, thematic map overlay in a GIS is a useful tool for market researchers, planners, social 
scientists, geologists, geographers, and other "spatially-aware" professionals; however, the true 
power of GIS Map Algebra is not fully exploited, because the implementations of GIS Map 
Algebra have not attained a level of usability to make the technology truly available to all that 
would benefit from its use. 



Visual map algebra 237 

Roads 

Hydrology 

Political 

Composite Overlay 

Figure 1 Thematic map overlay. 

While window-icon-menu-pointer (WIMP) and flowchart user interfaces for Map Algebra do 
employ graphical displays, they do so only in a very limited sense. The visual characteristics of 
the user interface are not fully exploited, because the interaction has been restricted to 
manipulating user interface widgets-primarily menus and dialog boxes-to create command 
lines. To improve the visual interaction with spatial data, it is necessary to exploit the spatial 
characteristics of a user interface: 

The location of an interface object can be made as significant as its appearance. 
How the user articulates the pointing devices can have as much meaning as to what the user 
points. 
Tapping in on the semantics of movement and location can free the user from the difficult 
task of constructing command lines. 

This paper presents the design of a Visual Map Algebra, which is high-level GIS query language 
that follows these guidelines. Visual Map Algebra minimizes not only the input from a keyboard, 
but also reduces the use of menu selections and dialog boxes, making it a truly direct
manipulation user interface. Aspects relating to the implementation of such a system, e.g., by 
translating Map Algebra expressions into an extended SQL syntax (Egenhofer 1991, 1994) have 
been discussed elsewhere. Also earlier work provides more detail about the limitations of 
traditional database query languages for geographic applications (Egenhofer and Kuhn 1991) and 
the motivation for this work (Frank 1992). 

The remainder of this paper continues with a survey of different implementations of user 
interfaces for Map Algebra. Section 3 discusses the Geographer's Desktop as a user interface 
framework for interaction with geographic data. Section 4 describes the source metaphor for 
Visual Map Algebra and Section 5 introduces the computational platform as the user interface 
object where one performs Visual Map Algebra. Section 6 shows how the computational 
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platform is integrated into the Geographer's Desktop to allow a user to perform Visual Map 
Algebra operations, and in Section 7 we draw our conclusions and discuss future work. 

2 IMPLEMENTATIONS OF MAP ALGEBRA 

There is a complex relationship between analytical software, the user, and the user's ability to 
create complex models, solve problems, and make decisions (Turk 1993). Users possess certain 
task knowledge, spatial abilities, and problem-solving skills that are brought to bear in the user's 
work environment (Nyerges 1993). The role of the user interface is to provide a structure 
consistent with this environment. User interfaces for GIS Map Algebra generally fall into the 
following categories: command-line user interfaces; WIMP user interfaces; and graphical user 
interfaces. 

2.1 Command-line user interfaces for Map Algebra 

With a command-line user interface, the user types in Map Algebra expressions, one at a time, at 
a command prompt. The syntax of the commands is highly significant, and the order of the 
commands is also sometimes important. Table 1 shows examples of a Map Algebra operation to 
create a 50 unit-wide buffer around streams in various Map Algebra command languages. 
Arc/Info is a full-featured, command line GIS (ESRI 1990). The software has literally thousands 
of commands, from which a user must select in order to find those that will fulfill any given task. 
MGE Grid Analysis (lntergraph 1993), Arc/Info GRID (ESRI 1992), and OSU-MAP (Sandhu et 
a/. 1987) are more direct implementations of Tomlin's Map Algebra. 

Table 1 Creating a buffer around streams in four different Map Algebra implementations 

Map Algebra command 

BUFFER streams streams_buf # # 50# LINE 

streams_buf =EXPAND (streams, 50, LIST, 1) 

streams_buf = FOCALPROXIMITY OF streams BY 50 

BUFFER streams BY 50 FOR streams buf 

GIS 

Arc/Info 

Arc/Info GRID 

MGE Grid Analyst 

OSU-MAP 

Command-line systems proliferated before graphical user interfaces were available. Their 
syntax can be formally defined, making command interpreters and compilers relatively easy to 
create. Developing macros or programs is easily accomplished by grouping commands and 
control statements in files. However, command-line user interfaces have very poor visual and 
physical characteristics. Users interact only with text, which has several shortcomings: a screen 
full of text has a density of information that is too high for most users; typing is an interaction 
that is tiring and error-prone; and command-line user interfaces force users to be aware of 
command names and syntax. The number of commands is so great at times that a user spends 
more time thinking about command tools to use than thinking about the task at hand (Gould 
1993). 



P
la

te
 1

 
E

xa
m

pl
e 

sh
a

p
e

 q
u

e
ry

. L
ef

t:
 fr

ee
ha

nd
 s

ke
tc

h 
of

 s
ha

pe
. 

R
ig

ht
: 

qu
er

y 
re

su
lts

 s
ho

w
in

g 
fir

st
 s

ix
 r

et
ur

ne
d 

ite
m

s.
 

P
la

te
 2

 
E

xa
m

pl
e 

co
lo

r 
hi

st
og

ra
m

 q
ue

ry
. 

Le
ft

: c
ol

or
 s

el
ec

tio
n 

sh
ow

 1
5

%
 y

el
lo

w
, 

1
3

%
 b

lu
e

. 
R

ig
ht

: 
q

u
e

ry
 r

es
ul

ts
 s

h
o

w
in

g
 

fir
st

 s
ix

 r
et

ur
ne

d 
ite

m
s

. 



P
la

te
 3

 
E

xa
m

pl
e 

q
u

e
ry

 b
y 

sk
et

ch
. L

ef
t: 

fr
ee

ha
nd

 d
ra

w
n 

sk
et

ch
. R

ig
ht

: 
qu

er
y 

re
su

lts
 s

ho
w

in
g 

th
e 

fir
st

 s
ix

 r
et

ur
ne

d 
ite

m
s.

 

P
la

te
 4

 
E

xa
m

p
le

 'm
ul

ti
' q

ue
ry

. 
Le

ft:
 a

 v
is

ua
l 

qu
er

y 
sp

ec
ifi

ca
tio

n 
fo

r 
a 

sc
en

e 
co

nt
ai

ni
ng

 a
 r

ed
, r

ou
nd

 o
bj

ec
t 

(r
ed

 i
co

n)
 o

n 
a 

g
re

e
n

 b
a

ck
g

ro
u

n
d

 (
gr

ee
n 

ic
on

).
 R

ig
ht

: 
qu

er
y 

re
su

lts
 s

ho
w

in
g 

fir
st

 s
ix

 r
et

ur
ne

d 
ite

m
s.

 



P
la

te
 5

 
B

ro
w

si
ng

 
us

in
g 

th
e 

Q
ue

ry
/B

ro
w

se
r.

 

ad
lr

n
ag

e 

J
i$

n
e 

a 
b 

c 
d 

~a
mp

ai
gn

 
i 
~

~ C
a
m
~
 ~
>j

 
__

 J
~
~
-
~
~
 

p
ro

d
u

ct
 

; 
· *

t· .,r
od

:no
t -

>
 ! 

. 
.• 1

 
-
.:

t.
,:

:.
:.

~.
::

:.
:.

:,
,.

..
:.

..
.;

 
l 

a
d

 
j .

!]
 U

lu
st

ra
te

d.
A

d 
-;J

 
~
~

· 

n
am

e 
l
~
~
 

...!
:::

) 
l 
? 

l 
··-·

-·~·
-·-·

J-.~
-.. -.. -

.J
 

O
B

 
N

<
H

 
3 

+
I+

 G
SQ

L
 



a 

P
la

te
 6

 Q
ue

ry
in

g 
in

 t
he

 
Q

ue
ry

/B
ro

w
se

r.
 

d 

ltl
l~
 

b 

,C
us

to
m

iz
e 

,!
nf

o 
J!

el
p 

-
--

-
-· 

r
·
~
·
~
 

~
·

_-
,
·
-
~
-
·
,
 

~
-

na
m

e 
l
~

-
-
-

de
sc

ri
pt

io
n 

l-~
 ~ 

pr
ice

 
i
~
~
~
 

I 
--

.., ..
.....

... _
.-

..
·-
·
-
.
.
-
-
~
·
-
.
.
.
 ....

....
 -
~
-
-
·
-
·
-

"""
:·
-.

. 
.....

.. ~
--
:,

...
...

..-
·-

..
._

_.
..

..
, 

~1
1m

 

c 

e 

ad
v

t 
~

.~
.t:

:l 

ad
h:

na
ge

 

na
m

e 



[
"" 

P
la

te
 7

 
C

ol
or

 s
ca

le
s 

ge
ne

ra
te

d 
us

in
g 

di
ffe

re
nt

 c
ol

or
 m

od
el

s.
 

Y
el

lo
w

 

/ 
/ 

_ -
~ 
_ 

M
ag

em
a 

I }-
B~
c
t
 

B
lu

e 

G
re

en
 

C
ya

n 

I
I
 

. 

I 

R
G

B
 

H
S

I 

H
S

V
 

H
L

S
 



P
la

te
 8

 T
he

 S
pi

ra
l 

V
is

ua
liz

at
io

n 
T

ec
hn

iq
ue

. 



Q) 
::I 

-~ c 
CJ).S::. 
Q)U 
X Q) 
<(1-
Q)C 
.s::.O 
~--~ 
0) -~ 
G) til 
i~ 
0:> 



P
la

te
 1

0 
T

he
 G

ro
up

in
g 

V
is

ua
liz

at
io

n 
T

ec
hn

iq
ue

. 



Visual map algebra 239 

2.2 WIMP user interfaces for Map Algebra 

Window user interfaces for Map Algebra offer users a variety of menus and forms with which to 
interact. By selecting items from menus, clicking buttons and icons, and by filling in fields in a 
form, a user constructs a Map Algebra expression. MOE. Grid Analyst (MGGA), Intergraph's 
Map Algebra module, offers the user a form that is filled out to construct a Map Algebra 
statement (Intergraph 1993), as does Map II, a GIS for the Apple Macintosh (Pazner et al. 1989). 
With each, the user interacts with fields to select the desired functions and data, and the system 
generates a Map Algebra expression in another field of the form. 

WIMP user interfaces have a much stronger visual component than command-line user 
interfaces. By viewing menus, buttons, and icons, a use is made aware of possible choices. 
Pointing to selections replaces remembering and typing commands. The bit-mapped graphics 
alone contribute to the creation of a more pleasant environment for users. While WIMP user 
interfaces do reduce the amount of memorization of command names a user must do, the process 
of mapping a task to a suite of commands remains. The user interfaces mentioned above replace 
typing with button pushing. Disabling certain controls at certain times can prevent the user from 
generating syntax errors. But command lines, and their syntax, still exist. For GIS Map Algebra, 
WIMP user interfaces offer little significant improvement over command-line user interfaces. 

2.3 Graphical user interfaces for Map Algebra 

For GIS Map Algebra, graphical user interfaces based on flowcharts are the most prevalent. 
Flowcharts have long been an aid in programming, and provide a means to logically structure a 
task in a format close to a user's mental representation (Myers 1990). Graphical flowcharts 
exceed command-languages in exploiting the human vision process, which is optimized for 
multi-dimensional data. Flowchart user interfaces have much richer visual and physical 
characteristics than WIMP user interfaces. 

Flowcharts have been used by GIS researchers to illustrate the structure of an environmental 
model (Tomlin and Berry 1979; Berry 1987; Laurini and Thompson 1992; Berry 1993). Lanter 
and Essinger (1991) developed a flowchart user interface to run on top of Arc/Info, with which 
GIS data is represented by icons, and functions by Jines connecting the icons. Kirby and Pazner's 
(1990) user interface of MAP II has both data and functions represented by icons, connected by 
graphical "pipes." The Erdas Imagine Model Maker (ERDAS 1993) allows users to manipulate 
icons for data and functions for structuring image processing operations. However, the focus of 
these systems is on the visualization of flowchart user interfaces, not on the interactions that 
underlie their creation. The placement of icons has no semantic significance to the model being 
constructed. These flowchart user interfaces do not eliminate the need for the user to be aware of 
and conform to certain command line syntax. The visual and physical characteristics inherent to 
GIS Map Algebra may be used to create more appropriate user interfaces. 

3 THE GEOGRAPHER'S DESKTOP 

Direct manipulation is an appropriate interaction style for GIS Map Algebra. Historically, the 
process of map overlay was a visual, tactile operation. Direct manipulation, accompanied with a 
visual, graphical representation of data, fosters exploratory data analysis. Exploration creates a 
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dynamic, absorbing, and satisfying task environment. Users will become less aware of the 
existence of the user interface while becoming engrossed in their tasks. Direct manipulation data 
analysis is desirable for spatially-aware scientists performing Map Algebra in a GIS. Direct 
manipulation affords an empowering environment for spatially-aware scientists performing Map 
Algebra in a GIS. 

Direct manipulation is a metaphor for touching and manipulating objects in our environment. 
This form of human-computer interaction became popular with full-screen text editors, like 
EMACS, and spreadsheets, like VISICALC, with which users could move directly to the text 
they wanted to edit and effect changes. Mapping movement or gesture to intent is very difficult. 
Mapping placement to command semantics, in a visual user interface, has more immediate, 
viable realizations. 

The Geographer's Desktop (Egenhofer and Richards 1993b) is a visual, direct manipulation 
environment for interacting with spatial databases and viewing their content. Two fundamental, 
and related, metaphors form the basis of this user interface (1) thematic map layers are 
represented by map layer icons, providing a visual link with the source domain of the user's task 
and (2) the stacking of map layers is metaphorically mapped to direct manipulation in the user 
interface. The user sees and stacks map layer icons to express visualization and analysis 
functions. This is a natural mapping from the user's domain, where mylar map sheets are 
physically stacked on a light table to construct views. Manipulation of map layers is 
complemented by the viewing platform (Egenhofer and Richards 1993a), which is a metaphor for 
a light table (Figure 2). It facilitates GIS database query and visualization operations. To 
visualize GIS data, users place data layer icons onto the viewing platform The generation of a 
map view is very visual, and the placement of icons has semantic significance. The result is a 
tightly coupled association between the execution and evaluation of a map view and database 
query. 

£ :/1 streams 

Figure 2 The Viewing Platform with a data layer on top, and another one off the platform. 

3.1 Thematic map layer visualization 

The icons are visualized as a perspective view of a map sheet. This perspective view gives the 
icons a 3D appearance, resembling actual map sheets. This metaphor is strengthened when 
several such icons coexist, and are stacked on top of each other (Figure 3). The visualization of 
the icons includes shadows, to enhance their 3D appearance. 

Graphics can be placed on the icons to allude to the theme of the layer (Egenhofer and 
Richards 1993a). The design of the graphics depends on its contents. For some layers the 
graphics can be established by the system, l:iut after some analysis, they would no longer be 
appropriate. It is also possible to put a graphic representation of the layer's data type on the icon 
(Lanter 1991). It is likely that a visualization of both theme and data type would be of use, 
helping the user select data layers for both viewing and analysis. Egenhofer and Richards 
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(1993b) divide the face of the icons into two parts, data area and map legend, to access 
respectively the database query and visualization parameters for each theme. 

n===77 roads: 

Figure 3 Stacked map layers. 

3.2 Thematic map layer interaction 

boundaries: 
streams: 
soils: 
vegetation 
slope 

Data layer icons respond to standard point-and-click, drag-and-drop interactions. The user places 
a data layer icon on any interface object, or on the data stack. The visualization of the layer icons 
changes in response to a user's manipulations. Layers highlight when selected with the mouse. 
An outline or shadow of the layer follows the cursor when it is being moved. If there is an error 
or an ill-defined function, the appearance of the icon changes to alert the user. 

3.3 Thematic map layer organization 

Data layers can also be grouped into classes by sharing some visual characteristic, such as color 
or texture, or grouped spatially in different stacks on the Geographer's Desktop. Employing 
graphical enhancements generally increases the size of the icons, and the separation between 
stacked icons. The appearance of stacked icons is crucial for maintaining the map overlay 
metaphor of stacked thematic data maps. If the layer icons must be vertically separated to reveal 
added graphics, the effect of this metaphor will diminish. In the visualizations presented here, no 
such graphics are used, and the data layers are distinguished only by their names. 

Layers can be associated in another way, by project, and stored in a map cabinet (Figure 4). 

,__/_--(/ 
!sample Data I ~ 

f' 4':: st~eams: 
~-F=~c~SOllS 
# 5:z vegetation 

Tom•s Cabinet,... 

W:==:=~=:=:=~a=1 ==:I i v 
slope 

/ VJ 
I Erosion Proj.r/ 

Figure 4 Map filing cabinet, with open drawer. 
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The user can select from the many drawers of the cabinet, opening by clicking on it with the 
mouse, and pulling it out. Once opened, the layers associated with that drawer appear stacked in 
the drawer and can be manipulated. Several drawers could be open at once, and layers can be 
moved between them, or multiple copies could be stored in different project drawers. 

4. VISUAL MAP ALGEBRA ON THE GEOGRAPHER'S DESKTOP 

The viewing platform is a highly usable user interface for visualizing thematic map layers and 
combining them in a particular way. Egenhofer and Richards (l993a) chose superimposition as 
the operation to combine those layers that are stacked up on the viewing platform, i.e., the top 
layer overrides the value of the non-empty value in the bottom layer (Table 2). 

Table 2 The truth table for superimposition of layers A and B (a and b are values in the 
respective layers A and B) 

A 

empty 

a 

empty 

a 

B 

empty 

empty 

b 

b 

A on top ofB 

empty 

a 

b 

a 

Bon top of A 

empty 

a 

b 

b 

While this combination is sufficient to do simple spatial analysis, it is far from the power 
Map Algebra provides with a much larger variety of analytical operations to combine map layers. 
For example, one may want to combine layers such that the result contains their intersection, 
determine the Voronoi regions, i.e., the neighborhoods around points in a layer, or create buffer 
zones (Table 3). 

Table 3 The truth table for the intersection of layers A and B (a and b are respective values in 
layers A and B; cis the value in the resulting layer) and the formation of a 50ft buffer around the 
intersection of the two layers. 

A B A intersects B 50ft-buffer (A intersects B) 

empty empty empty } c if cell is less than 50 ft 

a empty empty from a non-empty cell; 

empty b empty otherwise empty 

a b c c 

While both employ the map overlay metaphor, and direct manipulation of map layer icons, 
the differences between these operations make it awkward. to use the viewing platform for 
computational overlay. It might be considered also to use the viewing platform for the selection 
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of the analytical operation to combine the layers; however, such a choice would have some 
serious drawbacks, because the viewing platform would now incorporate an additional 
functionality. Users may be confused as to what to choose--display parameters or computation 
formula. More importantly however, is that not every computational overlay results in something 
a user wants to be displayed graphically. Frequently, intermediate computational results may be 
constructed which in turn are used as input for the next calculation. With a viewing platform that 
handles the specification of the analytical formula as well as the display parameters, it would 
become difficult to implement intuitive mechanisms to use the result of one map overlay 
operation in another map overlay. To resolve these conflicts, it is necessary to introduce another 
concept into the Geographer's Desktop in the form of a dedicated interface object where 
computational map overlay will be performed. 

The design goal of this extension is (I) to perform the task of computational map overlay by 
using some computation metaphor and (2) to integrate with the existing concepts and structure of 
the Geographer's Desktop, particularly the viewing platform, allowing users to exploit 
previously learned behavior, and allow users to elicit knowledge from the their task domain. 

Three computation metaphors have been considered: (I) horizontal equations, (2) flowcharts, 
and (3) vertical equations. Horizontal equations, when read from left to right, are sentences in an 
abstract, mathematical language. The horizontal equation metaphor can be implemented directly 
with a command-line user interface when the equation language is completely defined. A 
language including GIS Map Algebra functions, then, creates a command-line user interface for 
GIS Map Algebra. Such a user interface, however, does not use visual map layers, or the visual 
and physical aspects of the map overlay metaphor. Flowcharts are a more visual computation 
metaphor, but they also do not employ the map overlay metaphor. Instead, they use a linking 
metaphor to establish connections between data and functions. A computation metaphor with 
which the link between data and function is accomplished with stacking is desirable. 

A vertical equation generates expressions with operands in an arrangement similar to the 
stacking of layers onto the viewing platform. Making those operands thematic map layers yields 
a computation metaphor employing the map overlay metaphor. This is called the addition line, 
since the structure of vertical equations has its roots in the mathematical tool typically used to 
teach children addition, or used by adults when adding a column of numbers. This structure 
metaphorically evolves into the interface object for GIS Map Algebra, called the computational 
platform (Figure 5). 

1 A 
~ ~ 

A 

+ 2 B B 
Add Add •I ____. .... 

3 c L. 7 c 

Figure 5 Evolution from addition line for numbers to computational platform for layers. 

The operands are placed above a line that separates the result of the computation. The 
operation also appears above this line, to the left of the operands. The line that separates the 
"inputs" from the "output" is called the platform because the inputs are stacked on top. The 
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platform can be thought to physically support the inputs. This is an application of the SURFACE 
image schema, a basic cognitive structure (Johnson 1987), where inputs are either on or off the 
platform. The strength of the metaphor lies in the fact that this is the same image schema used in 
the physical process of map overlay, as well in the viewing platform. The computational platform 
evolves from replacing the fixed numbers and symbols to a more generalized form, with variable 
names and a named operation. Finally, replacing the variable names with named icons 
representing thematic data layers, and by enclosing the operation within a pop-up menu, forms 
the final visualization of the computational platform. 

5. THE COMPUTATIONAL PLATFORM 

The interaction with the computational platform is consistent with the direct manipulation 
environment of the Geographer's Desktop. To create a complete Map Algebra expression 
requires several interactions: (1) creating a computational platform, (2) selecting a platform 
function, (3) choosing the layers to be combined, and if necessary (4) setting the parameters of 
the operation. To formulate a complete Map Algebra model will likely require the creation of 
several computational platforms, which can coexist on the Geographer's Desktop, be aggregated 
into a single platform, or be abstracted and represented by a new data layer icon. 

5.1 Creating a computational platform 

A new, empty computational platform consists of the horizontal line onto which layers will be 
stacked, and a pop-up menu for the selection of the platform parameters. To provide the user 
with guidance as to what to do with platform and layers, the computational platform features 
templates for input layers. These input slots have a dual purpose as they provide feedback to the 
user on where to put input layers and how many are needed, and they allow the user to specify, 
for multiple input functions, which layer is associated with which variable. Only for 
commutative operations, such as add and multiply, the order of the inputs on the platform can be 
ignored. 

There are many ways to create a computational platform on the Geographer's Desktop. A 
platform can be created by selecting its icon from an interface tool box, or by activating a 
Create Computational Platform operation from a pull-down menu. A more natural way of 
making a new platform is achieved by drawing a horizontal line, much like drawing an addition 
line to add some numbers. This interaction can be mapped onto direct manipulations in the user 
interface, such that the user sketches a line representing the platform, and the system recognizes 
this gesture and compiles the line into a new computational platform. The sequence of creating a 
computational platform and assigning the layers is actually up to the user: one can first draw a 
platform and then stack the layers on top, or one could stack layers somewhere on the 
Geographer's Desktop and then draw a line underneath them. 

5.2 Selecting platform function 

Each computational platform is associated with one computational operation. To set the 
platform's operation, the platform has a popup menu, which allows the user to change its 
function at any time, even after the input layers have been added. The visualization of the 
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computational platform changes dynamically, as the user walks through the function menu, to 
provide additional information about the function. For example, the number of empty input slots 
on top of the platform changes to reflect the number of inputs required by the function currently 
being pointed at in the menu (Figure 6). Functions that require less layers than already placed 
onto the platform are dimmed and disabled for selection. 

Multiply 
Divide 
Nodulus 

4; •. · ........ ....,7,·· output 

Figure 6 Platform function popup menu. 

5.3 Choosing layers as platform inputs 

To add a data layer to a computational platform, the user drags and drops the data layer icon onto 
a computational platform (Figure 7). Rather than moving the original onto the platform, this 
action produces a link to the original ("alias") so that the same layer can be used on different 
platforms at the same time. The use of links also allows changes in the original data set to be 
propagated through any subsequent analysis. 

roads 
boundaries 
11111!1 
soils 
vegetation 
slope 

I Buffer T I 

Figure 7 Adding the streams layer to buffer platform. 
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When a layer appears over a platform, the bottom of the platform highlights, as does the next 
available input slot. When the platform highlights, the user may release the layer, and it will 
"fall" onto the platform. For platforms with multiple inputs, the user can guide the layer outline 
to the desired input slot, which highlights as the layer outline intersects it. Like moving 
individual layers onto a computational platform, multiple layers can be selected and dragged as a 
group. All manipulations to drag layers onto a computational platform are reversed to correct 
mistakes or make changes. 
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While input slots guide users, they also make it difficult to support functions with an 
indefinite number of inputs. On the viewing platform, a user can continue to add additional data 
layers at will, although the resulting graphical representation may begin to look cluttered. For 
associative operations, this behavior is also possible on the computational platform. 

Another aspect of input slots becomes clear if customized functions are considered. Such 
functions may integrate different algebraic operations into a single Map Overlay operation and, 
depending on the layers' positions in the stack, different results may be obtained; therefore, input 
slots must be related with specific function variables. Figure 8 shows a computational platform 
visualized with a custom function beneath. The names of the variables in the formula expression 
match those in the input slots. When the user drags a data layer icon over an input slot, the name 
of the corresponding variable in the formula expression would highlight, reinforcing the 
connection between the input and the variable. 

/ 7 

Figure 8 Custom function with labeled input slots. 

5.4 Setting platform parameters 

Besides the standard operations of intersection or union there are parametrized Map Algebra 
operations, which require a user to specify the overlay operation and its parameters. For 
example, making a buffer zone-a parametrized, unary operation-also requires the user to 
determine the extent of the buffer. While it could be convenient to choose from different buffer 
operations, each with a different extend such as lOm_Buffer, 50m_Buffer, lOOm_Buffer, it is 
still necessary to offer a generic buffer that can be customized and modified on the fly. 
Unfortunately, the specification of values does not fit with the selection of an item from a menu. 
Some operations may have a parameter, others may have several parameters, and many have 
none. Since the parameters of such operations vary considerably with the function and the data 
model, the interaction is consequently hard to generalize. A small number of parameters can be 
located near or in the computational platform. For example, parameters can be placed under the 
popup menu (Figure 9a), but then interaction with the popup would block the parameters, and the 
user would be unable to see them change dynamically with the selection function. If the 
parameters are built into an extended platform, but the platform starts to look less and less like its 
metaphorical origins (Figure 9b). Alternatively, setting parameters may be relegated to a dialog 
box that can be accessed by double-clicking the operation. 
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Figure 9 Platform with function parameters (a) beneath and (b) in the platform bar. 

5.5 Platform nesting and aggregates 

The appearance of the platform output layer icon is virtually the same as the data layer icons. 
This similarity affords the nesting of functions. A user interface for Map Algebra must have a 
mechanism allowing the output of one function to be used as the input to another. The 
computational platform accomplishes this by treating the output layer like any other data layer. 
Functions can be nested by dragging the output layer of one platform to the input slot of another. 
After creating and populating several computational platforms, the user has effectively created a 
formula or model. These platforms can be aggregated together to create a single, custom formula 
platform. This formula is then available in the function popup, and can be used repeatedly with 
other data. A simple method of creating a formula is by "example." The user proceeds with the 
analysis in a step-by-step fashion, creating and nesting multiple platforms. Other methods of 
creating a formula are possible. Expert users can create an empty formula platform, and then type 
in the function in the box below the platform bar. Figure 10 shows how the expression A+(B*C) 

is produced. The Multiply platform is created, and the layers B and C are placed on it. The R d d 
platform is then created, and the layer A is placed on it. Finally, the output layer of the multiply 
platform is manipulated in the same fashion as the other data layers: dragged and dropped onto 
the Rdd platform. 

. . . . . . . . . . . . . 
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Figure 10 Using one platform's output as an input to another. 

Reversely, compound layers may be expanded, either into multiple computational platforms 
or into atomic layers on a single platform with a complex platform function. Figure 11a shows a 
platform aggregate consisting of one data layer, and two platform output layers, added as inputs. 
Each of the platform output layers can be expanded, leaving their component layers in their 
place. In Figure 11 b, the layer streams_ buf has been expanded: streams_ buf is replaced by the 
data layer streams, and the function Multiply becomes a formula, in which the Buffer 
operation is a part. Since the streams_ buf layer was the output of another computational 
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platform, which performed a buffer on streams, the computational platforms in Figures 11a and 
11 b are equivalent. 

I Multiply ""'I 

Y~soils 

sn-e~ms...buf 
skipe 

41,rlio __ ..,7. erosion 

Figure 11 (a) Platform aggregate and (b) partially converted to a formula. 

Figure 11 b shows the platform visualized with the formula expression. The variable names 
illustrate the relation between the inputs and the formula. Alternatively, the names of the actual 
data layers can be substituted into the formula, and then the input layer names would not be 
needed. Figure 12a shows the same platform further expanded to the lowest possible level, 
showing nothing but data layer icons. Once created, the user can assign a name to the formula, 
which will then appear as one of the choices in the function pop-up menu, allowing it to be used 
again easily. In Figure 12b, the function name appears on the platform, along with brackets to 
show the groupings between the functional elements. 
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Figure 12 Platform aggregate (a) reduced to custom formula with all data layer inputs and (b) 
with named custom formula and functional groupings visualized. 

6 INTEGRATION OF THE COMPUTATIONAL PLATFORM ON THE 
GEOGRAPHER'S DESKTOP 

The computational platform integrates well on the Geographer's Desktop. Both the viewing 
platform (Egenhofer and Richards 1993a) and the computational platform (Egenhofer and Bruns 
1994) are based on the direct manipulation of thematic data layers. The appearances of the 
viewing and computational platforms are different, driven by their respective metaphors, because 
their functionality are also significantly different. These interface objects can coexist on the 
desktop, and layers can be moved from one to the other at will. Intermediate and end results of 
Map Algebra expressions can be visualized by placing the respective output layers on a viewing 
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platform, and with several viewing platforms open at the same time, users will be able to analyze 
visually different Map Algebra models at the same time and to compare them. If the Map 
Algebra model is then changed in any way, these changes propagate through the model and are 
immediately visualized. There is, however, some redundancy in the Visual Map Algebra, 
because combining several layers on the computational platform with an operation 
"superimpose" or "add," and placing the resulting layer onto a viewing platform is equivalent to 
stacking the initial layers onto the viewing platform. Since the results do not contradict each 
other, no interaction problems are foreseen. 

Figure 13 shows a snapshot of a Geographer's Desktop. From the map layers available in the 
map cabinet (in the lower left comer), the user created with the Visual Map Algebra an erosion 
model on the computational platform in the left top, and a buffer zone around streams on the 
computational platform in the right top. 

; File Edit Layer Platform Table 

D Buffer ..,. 

Buffer Distance: 

Figure 13 An erosion model created and analyzed with Visual Map Algebra on the Geographer's 
Desktop. 

The results of the two Visual Map Algebra operations were placed on a viewing platform 
(bottom center) and the corresponding map view is shown in the window on the right. The user 
now analyzes the relationship between areas of high erosion potential and a flood wne by 
varying the width parameter of the stream buffer. Any change of this parameter is immediately 
propagated into the stream buffer layer and displayed in the viewing window. 
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6 CONCLUSIONS 

GIS Map Algebra embodies a range of tools and techniques for spatial analysis. It is generally 
independent of data model, system type, or implementation. The investigation of GIS Map 
Algebra yields useful metaphors for user interface design. The map overlay metaphor and the 
addition-line metaphor formed the foundation for the design of the Visual Map Algebra. Map 
overlay has visual and physical components. The visual components are mapped onto the 
appearance and function of interface icons, and the physical component is mapped to the direct 
manipulation of these icons to form Map Algebra expressions. 

A prototype mockup of Visual Map Algebra has been implemented on a Macintosh using 
Macromind Director as an animation tool. Frequent user feedback from such demonstrations was 
critical during its design. Several issues are subject to further investigations. Obvious steps are a 
prototype implementation on top of a GIS, systematic user testing, and performance comparisons 
with other Map Algebra implementations, or such alternatives as moveable filters (Stone et al. 
1994). For a limited set of tasks, some analytical comparisons, using cognitive walkthrough 
analysis (Polson et al. 1992), have been made between Visual Map Algebra and a flowchart 
model (Bruns 1994). 

Open questions for future work include: 

The integration of multiple representations into a single user interface. There are tasks like 
examining the lineage of a compound layer, which may be easier with a flowchart user 
interface than with nested computational platforms. How can the two user interfaces be 
integrated seamlessly? 
So far, (carto)graphic aspects have been deferred exclusively to the viewing platform, though 
an earlier version of layer icons integrated the data with their presentations (Egenhofer and 
Richards 1993b). Can one infer a reasonable graphical presentation of a compound layer 
from knowledge about the graphical presentation of the individual layers and the algebraic 
properties of the operation combining them? 
Can GIS operations that manipulate date be integrated with the Geographer's Desktop, 
without resorting to selections from pull-down menus and toolboxes? 
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