
27 

A game-theoretical model for a 
controlled process of heat transfer 

O.A. Malafeyev 
Saint Petersburg University, Department of Applied 
Mathematics-Processes of Control 
Frunze street 6, flat 225, St. Petersburg 196070, Russia. 

M.S. Troeva 
Yakut Research Institute for Applied Mathematics and Informatic 
Petra Alekseeva 8/1, flat 16, Yakutsk 677000, Russia. 

Abstract 
The problem of finding an optimal technological mode for a controlled process of heat 
transfer is considered in this paper. This problem is formulated as a differential two­
person zero-sum game of a technologist against 'nature'. 

To solve the problem considered the numerical method based on the dynamic program­
ming method and the finite difference method is proposed. 
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The problem of finding an optimal technological mode for a controlled process of heat 
transfer is considered in this paper. 

A rectangular solid body in a medium with variable temperature is considered. The 
temperature field is controlled by heat (energy) supply in some way. The mathematical 
description of this action is described by a parameter w, controlled by the technologist. 
This parameter is an element of a set W of all control parameters. The temperature field 
of the body depends also on the state v of the medium. This is a "nature's" control 
parameter which belongs to a set V of all control parameters. 

The quality of the process's control is estimated by a payoff function H. 
The problem of choosing control function w = w(t), t E [0, TJ, w(t) E W, which 

guarantees the optimal value of the quality index H under any possible "nature's" function 
v arises. It is interesting for example to change the temperature field from initial state Uo to 
given final state UT with minimal energy expenses under uncertain "nature's" conditions 
by choosing control function w(·). 

So, the problem can be formulated as a differential two-person zero-sum game r( Uo, T) 
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with initial position Uo and duration T in the space CIT of continuous functions with the 
domain IT = [0,/1 ] x [0,/2]' 

The dynamics of the game r( uo, T) is described by the following boundary value prob­
lem for the heat transfer equation: 

au ~(A~) +~(A~) Xl E (O,/J), X2 E (0,/2), (1 ) c-
at aXl aXl aX2 aX2' 

A~ 
aXl 

al(u - v), Xl = 0, X2 E [0,12], t > 0, (2) 

-A~ 
aXl 

al(U - v), Xl = II, X2 E [0,/2], t > 0, (3) 

A~ 
aX2 

al(U - v), Xl E [0,/1], X2 = 0, t > 0, (4) 

-A~ 
aX2 

a2(u - w), Xl E [0, h], X2 = 12, t > 0, (5) 

U(XI, X2, 0) uo(xJ, X2), Xl E [0, h]' X2 E [0, h], t = 0, (6) 

where u(x, t) - the temperature at the point X = (Xl, X2) E IT at the moment t, c = 
c(x, t) - volume heat capacity, A = A(X, t) - heat conductivity coefficient, aI, a2 - heat 
~xchange coefficients; w, v - the control's parameters of the players, P (technologist) and 
E (nature), respectively; w EWe RP, v EVe Rq; Wand V - are compact sets in 
Euclidean spaces RP and Rq respectively. 

The continuous function w = w(t) (v = v(t)), satisfying the condition w(t) E W (v(t) E 
V) for all t E [0, T] is called the admissible control of the player P(E). 

It is known (Tichonov and Samarsky, 1977), that for any finite T < 00 for any admissible 
controls w(t), t E [0, T] and v(t), t E [0, T] there exists the unique solution u(t) = 

u(uo, t, w(t), v(t)) of the problem (1)-(6) under any Uo E CIT and t E [0, T]. 
At any moment t of the game the players are informed of the state of the game u(t), 

initial moment to = 0, terminal time T and the dynamics of the game. 
For definiteness we will consider the above formulated problem. At the moment T the 

player E gets the payoff H(·) from the player P: 

T 

H(u(·)) = J h(u(t),w(t),v(t),t)dt, (7) 
o 

where u(·) is a trajectory of the process, corresponding to admissible controls w(·) and 
v(.) on the interval [O,T], h(u,w,v,t) is a continuous function bounded on the bounded 
sets. This function characterizes the energy expenses. 

The aim of the player P is to minimize H(·) and the aim of the player E is contrary. 
Let us cite (Malafeyev, 1993) the definition of strategies of players P and E in the game 

r(uo,T). 

Definition 1 A strategy'P (1jJ) of player P(E) in the game r( uo, T) is the pair (0"1, /{"J 
((0"2, /{",)), where 0"1 (0"2) is an arbitrary finite par·tilion of the interval [0, T], while /{", 
(/{",) is a mapping which associates an admissible control Wi(T), T E [ti, ti+d (Vj(T), T E 
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[tj,tj+I)) with the information state of player peE) in the momentti E 0"1, i=O, ... ,N",-l 
(tjE0"2, j=0, ... ,N"2-1). 

The set of strategies of the player P( E) in the game r( Uo, T) is denoted by <T>(IlI). 
The trajectory of the game x( 'f', 'IjJ) is uniquely defined by the standard way for every 

strategy pair ('f', 'IjJ) E <T> x III under initial position uo. 
The payoff function of the player E for every strategy pair ('f', 'IjJ) is defined as follows: 

I«uo,'f','1f;) = H(X('f','IjJ)(')), (8) 

where X( 'f', 'IjJ )(.) is a trajectory of the game r( Uo, T), corresponding to the ('f', 'IjJ). 
Making use of the results of the dynamic games theory in complete metric spaces (Ma­

lafeyev, 1993), the existence of c:-equilibrium points in auxiliary approximate games of 
perfect information with discrimination of a player (upper and lower games F' (uo, T) and 
[" (uo, T) with discrimination of players P and E, respectively) is proved for the class of 
the piecewise-programmed strategies. 

To find the optimal mode for the controlled process of heat transfer the numerical 
method based on the dynamic programming method (Bellman, 1960) and the finite dif­
ference method (Samarsky, 1989) is proposed. 

On the domain IT = [0, III x [0, 12l we construct the uniform net with steps hI on XI and 
h2 on X2 

f;h = {x~i) = ihI, i = 0, ... , NI; x~o) = 0, x~N,) = h; 

X2(k) = kh2', k - ON' x(O)- ° x(N2)_/} - , ... , 2, 2 - , 2 - 2 , 

(9) 

where h = (hI, h2). 
On the interval [ts, t s+l ], S = 0, N" - 1 we construct the uniform net with step 8 

Here ts E 0", where 0" is the time interval partition 

0" = {to = O,tI, ... ,tNu = T}. 

Let us denote by ytk the function defined on the net [iho = Wh x wo. 
For approximate description of the attainability set at the moment tsH under any pair 

of admissible controls ws(t), vs(t), t E [ts) tsH) for the problem (1)-(6) we construct purely 
implicit locally one-dimensional difference scheme (Samarsky, 1989): 

jH/2 j 
jH/2 YO,k - Yo,k 

cO,k 8 
jH/2 j+I/2 

2)/H/2 YI,k - YO,k 
1/2,k hf 

jH/2 

2 
YO,k - vs 

- 0<1 hI ' i = 0, (10) 

j+I/2 j 
j+I/2 Yi,k - Yi,k 

ci,k 8 
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j+1/2 j+1/2 J+I/2 )+1/2 
= ,\j+1/2 Yi+I,k - Yi,k _ ,\j+1/2 Y"k - Y,-I,k i = 1, NI _ 1, 

,+1/2,k hi i-I/2,k hi 

j+1/2 j 
j+1/2 YN"k - YN"k 

CN , ,k Ii 
j+I/2 _ V S j+I/2 j+I/2 

2 YN"k _ 2,\j+1/2 YN"k - YN,-I,k ' N 
- al hI N,-1/2,k hi t = 1, 

j+1 j+I/2 
d+1 Yi,O - Yi,O 

i,O Ii 
j+1 j+1 

2,\j+1 Yi,1 - Yi,O 
i,I/2 h~ 

j+1 j+I/2 
d+1 Yi,k - Yi,k 
i,k {j 

j+1 _ V s 
2 _Y,-,-',o-:-__ 

- al h2 

k = o;N;, 
j=0,N3- I , 

k = 0, 

j+1 j+1 j+1 j+1 
,\j+1 Yi,k+1 - Yi,k _ ,\j+1 Yi,k - Yi,k-I k 1 N 1 

i,k+1/2 h~ i,k-I/2 h~ = , 2 - , 

j+1 j+1/2 
d+1 Yi,N2 - Yi,N2 
I,N2 Ii 

J+I j+1 j+1 
- 2a2 Yi,N2 - Ws _ 2,\1+1 Yi,N2 - Yi,N2-1 k N 

h2 i,N2 -1/2 h~ = 2, 

i = (f,"'M, 
j=0,N3- I , 

o N3 ,s· 0 N k 0 N '0 0 N 1 Yi,k = Yi,k , t = , 1, =, 2, J = , s = , ,,- , 

where 

YNS'O - u (x(i) x(k)); 0 N k - 0 N J' = 0, s = O. i,k - 0 I' 2 ," = , I, -, 2, 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

The constructed difference scheme (9)-(15) is solved by the sweep method (Samarsky, 
1989), 

The operator form of the difference scheme (9)-(15) is following: 

v!,,+1/2yocx + A~+CX/2yj+CX/2 = 'P~+CX/2, a = 1,2; j = 0, N3 - 1, 
Y?,k = Y~tS, i = O,NI, k = 0,N2, j = 0, s = O,N" -1, 

where 

yj+a/2 _ y j +(cx-I)/2 
Yocx = Ii 

N 3 ,0 _ (i) (k)) , 0 N k 0 N '0 0 Yi,k - Uo XI ,X2 , t = , I, =, 2, J = , s = , 

(17) 
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The following statements about the stability and the convergence of the difference 
scheme (9)-(15) are valid. 

Theorem 1 Let us consider the operators v!,,+cx/2 2: coE and A~+cx/2 = A~+cx/20 2: ctA 
that are positive defined and the operator A~+cx/2 that satisfies the Lipschitz condition 

Then locally one-dimensional difference scheme (9)-{15) is absolutely stable and the a 
priori estimate is valid: 

(18) 

Theorem 2 For Ihl-> 0, 6 -> ° the solution of the difference scheme (9)-(15) converges 
to the solution of the problem (1)-(6) by the rate of order 0(6 + Ih12

) and the following 
estimate is valid: 

(19) 

where Ihl 2 = h~ + h~, M2 = const. 

Example. Let us consider the differential two-person zero-sum game f( uo, T) which 
describes the process of heating of the bar in a medium with variable temperature. 

The temperature w on the left side of the bar is controlled by the technologist (the player 
P). The control parameter w is an element of a set [WI, W2) of all control parameters. The 
heat exchange between the bar and the medium of temperature v (where v is a "nature's" 
(the player E) control parameter) takes place on the right side of the bar. The control 
parameter v is an element of a set [Vi, V2) of all control parameters. 

The dynamics of the game f( Uo, T) is described by the following boundary value prob­
lem for the heat transfer equation: 

au a (au) (20) c- ox >.. ox ,x E (0,1), t > 0, at 
u(O, t) w, x = 0, t> 0, (21) 
_>.. au 

ox 
a(u-v), x=l, t>O, (22) 

u(x,O) uo(x), x E [0,1), t = 0, (23) 

The problem is to support given temperature U{(t), t E [0, T) at the fixed bar point 
~ E (0, I) under any uncertain "nature's" conditions by means of choosing a control 
function w = w(·). 
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Thus, the player E gets the following payoff from the player P at the terminal moment 
T of the game: 

T 

H = ~ J (u(e,t) - ue(t))2 dt, (24) 

° 
where u(e, t) is a temperature at the bar point e E (0,1) at the moment t E [0, T]. 

The aim of the player P is to minimize H and the aim of the player E is contrary. 
The method suggested above is used for numerical solving for the described problem. 
We assume the bar being uniform. Then one may consider the coefficients c, >. as con-

stants. The numerical experiments were realized for the following input data: WI = lOoC, 
W2 = 20°C; Vi = 1°C, V2 = 20°C; the length of bar 1 = 1m, e = 1/2; heat conductivi­
ty coefficient >.=45.400 W /(m'oC), density p=7900 kg/m3

, specific heat capacity cp =462 
J /(kg.oC); heat exchange coefficient a = 50 W /(m2.OC); the initial temperature distribu­
tion uo(x) = 12°C; the time of heating T = 10 hour. 

The following function ue(t) has been considered at the fixed bar point e: 

(25) 

The value functions of the upper and lower games are: 

Val(F(uo,T)) = 0.149, 

Val([""(uo,T)) = 0.111. 

The results of numerical experiments are given on the Figures 1-3. 
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u,"C 

, '" time, (hour] 

Figure 1 The Temperature at the Bar Point e. 

U,oe 

Figure 2 The Upper Game: The Optimal Control of the Players. 
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Figure 3 The Lower Game: The Optimal Control of the Players. 


