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Abstract 
The observability of discrete time nonlinear systems is studied. Criteria of observability 
are given in terms of codistributions. This leads naturally to decompositions similar to 
the ones known in the continuous time case. Some observability properties of invertible 
systems are also investigated. In particular, it is shown that, under regularity hypotheses, 
the weaker notion of forward-backward observability is equivalent to the one of (forward) 
observability, for these systems. 
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1 INTRODUCTION 

We deal with observability questions for nonlinear discrete-time systems of the form 

x(t + 1) 
y(t) 

f(x(t), u(t)), t == 0, 1,2, ... 
h(x(t)). 

We consider single input single output systems, since the general case involves only no­
tational changes. In ~ we assume that x(t) E M,y(t) E Y and u(t) E U, with M and Y 
connected, second countable, Hausdorff, differentiable manifolds, of dimensions nand 1, 
respectively. We also assume that the control space U is an open interval of 1R, such that 
o E U. Such a system is said to be of class Ck, if the manifolds M and Yare of class Ck, 
and the functions f: M x U ---> M and h: M ---> Y, are of class Ck. We shall often use 
the abbreviated notation fu(x):= f(x,u). 
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Definition 1 Two states Xl, X2 E M are said to be indistinguishable, and we write xII X2, 
if for each sequence of controls, UI, ... , Uj, with j ~ 0, we have 

Analogously Xl, X2 are said to be k-indistinguishable, and we write xIIkx2, if the previous 
condition holds for each 0 ::; j ::; k. 

Definition 2 One state Xo is said to be observable (k-observable), if, for each Xl E M, 
xoI Xl (xoIk xd implies Xo = Xl. 

Definition 3 One state Xo is said to be locally observable (k-observable), if there exists 
a neighborhood Wxo of Xo, such that, for each Xl E WXo ' XOIXI (xoIkxt) implies Xo = Xl. 

Definition 4 A system L; is (locally) (k-) observable, if each state X E M enjoys this 
property. 

In the following, if we say that Xe is an equilibrium point, we always mean that f(xe, 0) = 
Xe. We say that a subset of M is generic if its complement is contained in a proper analytic 
subset of M. Given a set L of Coo functions, defined on M, we shall denote by dL the 
codistribution spanned by all the differentials of these functions. By definition, these are 
exact differentials. 

A previous study on the observability of discrete time nonlinear systems can be found in 
Nijmeijer (1982), where the case of systems without controls is considered. The use of the 
differential geometric concepts of invariant distributions and codistributions (see below), 
in the discrete time setting, is introduced in Monaco and Normand-Cyrot (1986). The 
classical paper Hermann and Krener (1977) deals with questions of nonlinear observability 
in the continuous time context. A complete treatment of this case is given in the books 
lsidori (1989) and Nijmeijer and Van der Schaft (1990). 

2 OBSERVABILITY CRITERIA 

From now on, assume that a Coo system L; is given. Define 

8 = {h(fu) 0···0 fUIU) I ul, ... ,Uj E Uj j ~ OJ. (1) 

The previous set of functions will become the main object of our study. The following 
result holds: 

Theorem 5 If dim d8(xo) = n, then Xo is a locally observable state for L:. Conversely 
if L; is locally observable, then there exists an open subset of M, where this condition is 
verified. If in addition the system is analytic and locally observable, then this condition is 
verified in a generic subset of M. 

Proof. Assume dim d8(xo) = n. Then, there exist n functions in 8, H;(·) := h(fui 0···0 

fui (.)), i = 1, ... , n, whose differentials are linearly independent at Xo. By continuit~, they 
I 
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also are independent in a neighborhood Wxo of Xo. Therefore, HiC), i = 1, ... , n, define a 
smooth mapping from M to yn, which, restricted to WXo ' is injective. If, for Xl E WXo , it 
is xII xo, in particular, for all i = 1, ... , n, it must hold Hi(XO) = Hi(XI). By the injectivity 
of H i (·), i = 1, ... , n, it follows that Xo = Xl. 

For the converse implication, assume that I; is locally observable and it does not exist an 
open subset of M where dim de(x) = n, which is equivalent to say that dim de(x) < n for 
all X E M. Let r = maxxEM dim de( x)( < n), and choose Xo EM, such that dim de( xo) = 
r. By continuity, there exists an open neighborhood Wxo of Xo, such that dimde(x) = r, 
for all X E Wxo. Therefore there exist HIC), ... , Hr (-), in e, whose differentials in Wxo are 
linearly independent. We may take these functions, HI (.), ... , Hr (·), along with a set of 
complementary independent functions, as partial coordinates in Wxo. Since every function 
in e only depends on the first r < n coordinates, points in Wxo , with the last n - r 
coordinates equal, cannot be distinguished. This contradicts the hypothesis of the local 
observabili ty of the system, and shows that there exists an open subset in M, such that 
dimde(x) = n is true. The last sentence of the theorem follows easily from the fact that, 
if the above is true in an open subset of M, and the system is analytic, then, it is true 
everywhere except for the set of zeros of an analytic function, namely an analytic set. It 
is therefore true in what we have called a generic subset of M. 0 

If de is constant dimensional in a neighborhood of Xo, then a stronger result about local 
observability can be derived (the result is easily proved by specializing to Xo the proof of 
Theorem 5). 

Corollary 6 Assume de is constant dimensional in a neighborhood Wxo of Xo. Then, Xo 
is locally observable if and only if dimde(xo) = n. 

Remark 7 Analogous criteria can be given for local k-observability, by considering, in 
the previous statements, the following set of functions 

The proofs follow the same lines as above. 

Remark 8 In view of Corollary 6, it is of interest to give criteria for the constant di­
mensionality of the codistribution de, in a neighborhood of a given point. This is also 
important because, as we will see in the sequel, it is possible, in this situation, to obtain 
a local state space decomposition (see Section 3 below). Moreover, under this assump­
tion, it is also possible to prove the equivalence between forward and forward-backward 
observability for invertible systems (see Section 4 below). In the continuous-time setting, 
the class of functions, used to characterize observability, gives raise to a constant dimen­
sional codistribution if analyticity and accessibility are verified (see Nijmeijer and Van 
der Schaft (1990) Proposition 3.38). This is not true in general for de or de k , in the 
discrete-time case. The following example illustrates this issue and clarifies what we mean 
for accessibility in our context. Later, we shall give a sufficient condition for local constant 
dimensionality of de (see Proposition 13). 
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Example 9 We recall (Jakubczyk and Sontag (1990) and Albertini and Sontag (1993)) 
that a point Xo E M is said to be forward accessible, if it is possible to reach from it an 
open subset of M. For the following system, ° is a forward accessible equilibrium point 

Xt(t + 1) 
X2(t + 1) 
y(t) 

Xt(t) + x~(t) + u2(t) 
Xt(t) 
Xt (t) 

In fact, if Xt(O) = 0, and X2(0) = 0, it is xt(2) = u 2(0) + u 2(1) and x2(2) = u 2(0). 
Therefore, it is possible to reach, in two steps, any point such that Xt 2: 0, X2 2: 0. 
The codistribution de has not constant dimension in a neighborhood of 0. In fact, it is 
~h(x) = [1,0], dh(!ul(x)) = [l,2x2], and for j 2: 2, defined fI(.):= h(!u, 0···0 f U2(·))' it 
IS 

ah(fu, 0·· ·0 JUl (x)) 

aX2 
afI(!Ul (x)) afUl (x) 

ax 

This shows that de has dimension 1 for any point such that X2 = 0, and 2 elsewhere. 

3 STATE SPACE DECOMPOSITION 

The study of the observability for nonlinear discrete time systems, using standard differ­
ential geometric tools, leads naturally to consider the notion of invariant distribution, as 
a natural generalization of the concept of invariant subspace, used in the study of linear 
systems. This concept has been widely used in characterizing structural properties of non­
linear continuous time systems and its importance, in the study of the discrete time case, 
seems to have been first pointed out in Monaco and Normand-Cyrot (1984). We will use 
the dual concept of invariant codistribution to perform a state space decomposition, in 
a neighborhood of an equilibrium point. The theory very much resembles the continuous 
time one presented in Isidori (1989). 

Recall that, given a covector field wand a mapping f(-), on a manifold M, f*w := 
w(!(-))~(.). Notice that, in particular, if w is an exact differential, i.e. w = d>.., for a 
function A(.), it is f*w = d(A 0 f(-)). We have the following definition: 

Definition 10 A codistribution n is said to be invariant under Ju, if 

J~n <:;:: n, for each u E U. 

Theorem 11 Suppose that there exists a constant dimensional fu - invariant codistribu­
tion of dimension r, containing dh, and spanned by exact differentials, in a neighborhood 
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of an equilibrium point Xe' Then there exists a coordinate change, such that for (x, u) In 

a suitable neighborhood Wx • x Uo of (xe, 0), the system 2; reads as 

zl(t+l) 
2;' Z2(t + 1) 

y(t) 

](ZI(t),Z2(t),U(t)), t = 0,1,2, ... , 
j(Z2(t), u(t)) 
h(z2(t)), 

where ZI and Z2 have dimensions n - l' and l' respectively. 

Proof. Under the stated hypotheses, there exist l' functions Al (.), ... , Ar (') on M, such that 
dAI (xe), ... , dAr(xe) form a basis of l1(xe). These functions, along with a complementary set 
of n - l' linearly independent functions, give a coordinate change, T( x), in a neighborhood 
Wx• of Xe' We write h(-), ](-), ~i(')' for h(·), f(·) and Ai('), i = 1, ... ,1', respectively, in these 
coordinates. In particular, if Z = T(x) denotes the new coordinates, we can as well assume 
that ~i = Zn-r+i, i = 1, ... ,1'. Notice that, since dh is in l1, h(.) only depends on the last 
l' coordinates. By continuity, we can choose a neighborhood Wx • x Uo of (X., 0), such 
that fu(x) E Wx", for all pairs (x,u) E Wx • x Uo. Choosing x and u in this way, and 
remembering that, by the invariance property, dAi(fu), for i = 1, ... ,1', is still in l1, we 
also have 

i = 1, ... ,1', j = 1, ... , n - r. This shows that the last l' components of ](-) are independent 
of the first n - l' components of z. Therefore, locally the system can be written in the 
form 2;'. 0 

If de is constant dimensional in a neighborhood of X e , it is a good candidate to be 
used to perform the change of coordinates described above. de is, in fact, ju-invariant, 
it is spanned by exact differentials, and it contains dh. Moreover de is the smallest 
codistribution which enjoys these properties. The proof of this fact follows the same lines 
of the one given for the observability codistribution in the continuous time case Isidori 
(1989). The only modification consists in replacing the definition of invariance, given in 
the continuous time context, with the one given here. Notice that the only if part of 
Corollary 6 also holds if we consider an arbitrary constant dimensional codistribution 
which properly contains de. In view of this fact, in the hypotheses of Theorem 11, since 
l1 must contain de, if l' < n, Xe is not locally observable. 

4 PROPERTIES OF INVERTIBLE SYSTEMS 

In this section, we will deal with a particular class of discrete time nonlinear systems. 

Definition 12 A system 2; is said to be invertible, iffor all u E U, the function fu : M --4 

M, is a diffeomorphism (we denote by f;;1 the inverse function of fu). 
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Invertible systems arise, for example, when a continuous-time model is controlled under 
digital control, via sampling. Further motivations for the study of this class of systems 
are given in Jakubczyk and Sontag (1990). For invertible systems, it is possible to define 
an inverse system by 

X(t + 1) 
y(t) 

f-I(X(t), u(t)), t = 0,1,2, ... 
h(x(t)). 

Using this system one can define backward indistinguishability and observability, following 
the same lines of Definitions 1-4. It is also possible to define (see example 9 and Jakubczyk 
and Sontag (1990), Albertini and Sontag (1993)) backward accessibility. These definitions 
extend to forward-backward indistinguishability, observability and accessibility in an ob­
vious manner. We state now a sufficient condition for the constant dimensionality of the 
codistribution d0 defined in (1) 

Proposition 13 Consider an invertible system 1: and an equilibrium point Xe. Assume 
that the following rank condition is verified 

(2) 

Then, the codistribution d0 is constant dimensional, in a neighborhood of Xe. 

Proof. Using the rank condition (2), it is easy to show that there exist an open subset of 
M, F(xe), which contains Xe, and such that each point of F(xe) can be reached by Xe. 

Also it can be shown that there exists an open subset B(xe), which contains Xn and such 
that from any point in it, it is possible to reach Xe. (The proof of these facts follows from 
the one of the accessibility criterion given in Proposition 2.3 of Jakubczyk and Sontag 
(1990).) We consider the set L(xe) = B(xe) n F(xe). L(xe) is an open set and contains 
Xe. Moreover, for a point Xl in L(xe), there exist two sequences of controls such that 

and (3) 

Consider now kF functions, ht), i = 1, ... ,kF, such that dhi(xtJ, i 1, ... ,kF, form a 
basis for d0(xl). The functions hi(fuF 0···0 fuF(·)), i = 1, ... , kF are in 0; moreover, 

jF 1 

using (3) (left hand side), 

of F o···of F(Xe) 

By the invertibility of fuF 0···0 fuF(·), u
JF 

0 "1 is nonsingular, so, by the linear 
. jF 1 x 

independence of dhi(xIJ, we have that dhi(fuF 0···0 fuF )(xe) also are linearly independent. 
,F 1 

Therefore they can be included in a basis of d0(xe), and this shows that 

dimd0(xl) ~ dirnd0(xe). (4) 
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Analogously, if we choose a set of functions h t), i = 1, ... , kB , such that dh i (xe) form a 
basis for d8(xe), we have that hi(JuB 0···0 fuB(·)), i = 1, ... , kB , is still in 8. By the 

,B 1 

invertibility of fuB 0···0 fuB(·) and using (3) (right hand side), we have, as above, 
jB 1 

Combining (4) and (5), we have that 8 is constant dimensional in L(xe). 0 

We conclude showing that, under regularity hypotheses, locally forward observability 
(!.f.o) and locally forward-backward observability (!.f.b.o) are equivalent for equilibrium 
points of invertible systems. 

Theorem 14 Let ~ be an analytic invertible system, and Xe E M be an equilibrium point. 
Assume that d8 has constant dimension in a neighborhood W"" of Xe. Then, Xe is l.f.o. 
if and only if it is l.f.b.o. 

Proof. It is obvious that if Xe is !.f.o. it is also !.f.b.o. Conversely, assume that Xe is not !.f.o. 
Under the stated hypotheses and using Corollary 6, we know that dimd8(x) = r < n, in a 
neighborhood W"" of Xe. We can therefore perform a change of coordinates as in Theorem 
11. System ~ reads as ~', as long as, x is in a suitable neighborhood W"" ~ W"" and u 
is in a suitable neighborhood Uo of o. It is straightforward to verify that also the inverse 
system ~- can be put in a triangular form, again for x E W",,,_ and u E Uo. 

Assume, by contradiction, that Xe is !.f.b.o, and let V"" ~ W",,, be a neighborhood of 
x" where the !.f.b.o. holds. Then choose any x E V"" such that, in the z-coordinate, the 
last r components of Xe and of x are equal. Since x E Vx" there exists k, ih, . .. ,Uk E U, 
Cl, •.• ,Ck, with Ci = ±1, i = 1, ... ,k, such that: 

(6) 

By continuity, there exists Uo ~ Uo neighborhood of 0 such that, for i = 1, ... , k: 

(7) 

From (6), and by analyticity, there exists Ul, ... , Uk, with Ui E Uo, such that 

h(J~: 0 .•. 0 f~: (Xe)) =J h(J~: 0 ... 0 f~: (x)). (8) 

However, since Ui E Uo, equation (7) implies that, Vi = 1, ... , k, f~: 0 •.• 0 f~: (Xe) = 
x~ E W",. and also f~: 0 •.. 0 f~: (x) = xi E W"". Thus, by the triangular form, in the 
z-coordinate, the last r components of x~ and of xi are equal. So, also h(x~) = h(xk ), 

which contradicts equation (8). 0 
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