
31

Object-oriented design
bandwidth management

of a
system

T. Saydama, J.-P. Gaspoi, P.-A. Etiqui, J.-P. Hubauxb

VPN

a University of Delaware, Newark, DE. 19716, USA, tel. (1) 302 831
27 16,fax (1) 302 831 84 58, e-mail: saydam@cis.udel.edu

b Swiss Federal Institute of Technology (EPFL), Telecommunications
Laboratory, 1015 Lausanne, Switzerland, tel. (41) 21 693 5258, fax
(41) 21 693 2683, e-mail: gaspoz@tcom.epfl.ch

Abstract
This paper describes the application of a general purpose object-oriented software engineering
method to the design of a bandwidth management system for ATM-based virtual private
networks (VPNs). Such a system allows a VPN customer to dynamically modify the
bandwidth allocated to VPN connections. The design process has focused on the service
management information model and interfaces required to provide that service to the customer.
Object interaction graphs have been designed and class descriptions have been derived. Finally
the VPN customer, value added service provider and network providers service management
system interfaces have been designed and corresponding primitives are given.'

Keywords
VPN, ATM, TMN, object-oriented design, service management, bandwidth management

1 INTRODUCTION

One of the major trends in the evolution of current business information networking is an
increasing need for high performance data communications, especially in the wide area.
Provided as an alternative to dedicated leased lines networks, virtual private networks (VPNs)
are gaining more and more acceptance among customers and network providers. VPNs permit
to connect physically separated business sites without using dedicated resources.

The principal applications to be supported by future VPNs, that is, LAN interconnection
and emerging multimedia applications, require the use of a flexible networking technology
supporting a variety of services with very different quality of service requirements, in other

I Part of this work has been performed in the framework of the RACE project R2041 PRISM and thus has been
funded by the 'Office Federal de !'Education et de Ia Science' (OFES, Switzerland)

A. S. Sethi et al. (eds.), Integrated Network Management IV
© Springer Science+Business Media Dordrecht 1995

Object-oriented design of a VPN bandwidth management system 345

words ATM (Asynchronous Transfer Mode). This paper will thus focus on ATM-based VPNs
and more precisely on an open and very important issue in such an environment, namely
bandwidth management. Indeed, multimedia applications have very different and often
unpredictable bandwidth requirements which may vary over time. Moreover, ATM networks
require, in general, resources to be reserved for each connection established over the network.
Therefore, bandwidth management mechanisms would be very useful for the customer
subscribing to the VPN service over ATM as a way to optimize resources usage and cost.

The main goal of this paper is to design a bandwidth management service, provided as an
enhancement to the basic VPN service, and that allows the customer to dynamically modify the
bandwidth allocated to VPN connections. A second generation object-oriented method called
Fusion (Coleman, 1994) has been chosen for design purposes in order to provide a consistent
approach, promoting reusability and scalability along the system design process. This design is
based on the corresponding object-oriented analysis presented in (Gaspoz, 1994).

2 ATM-BASED VPN

A VPN allows to build a logical private network by using the physical public network
infrastructure instead of dedicated network resources (e.g. leased lines). The service is offered
as an extension and/or an alternative to a company's own network and aims at offering
economic advantages as well as meeting ever changing customer needs and requirements.

ATM is a packet oriented transfer mode based on fixed length cells. It provides a non­
hierarchical structure in which, cells belonging to different applications are transported
commonly, independent of bit rate and burstiness. Multiplexing and switching may be
performed at two levels: the virtual channel (VC) level and the virtual path (VP) level. As A1M
is intrinsically a connection oriented service, communications between VPN users will be
realized by Virtual Channel Connections (VCCs). This includes in general the allocation of the
required resources on the user access and within the network.

The concept of virtual path allows the grouping of a set of virtual channels into a 'pipe'. VP
cross-connects systems treat such bundled channels as an entity, regardless of the constituting
virtual channels. In these systems virtual path connections (VPCs) are semi-permanently
allocated between endpoints, thus allowing a simple and efficient management of network
resources. When the cross-connected network handles connections between end nodes
belonging to the same customer, it offers a virtual private network service.

The provision of VPN services over Virtual Path networks is mentioned several times in the
literature (Wernik, 1992), (Verbeeck, 1992), (Gaspoz, 1994). Most of these papers refer to
VPNs based on semi-permanent VPCs. In the same way, the broadband multimedia VPN
considered in this paper is built by connecting each customer premise network (CPN) to every
other, with the help of one or several semi-permanent virtual path connections, thus forming a
logically fully meshed virtual private network, based on one or more physical networks.

3 VPN MANAGEMENT ARCIDTECTURE

To support the provision of the bandwidth management service and more generally of VPN
related customer network management services in an heterogeneous environment, an open and
standardized management architecture based on the TMN layering principles has been
considered (Figure 1). Figure 1 shows how different management systems interact with each
other and with the underlying networks and network elements, to monitor and control the
network resources, as well as to provide, enhance and offer network services.

According to (M.3010, 1992) the element management layer manages subsets of network
elements on an individual basis and supports an abstraction of the functions provided by the

346 Part Two Perfonnance and Fault Management

network element layer. The network management layer has the responsibility for the
management of all the network elements both individually and as a set. Service management is
responsible for the implementation of the contractual aspects of services that are being provided
to customers. Management services are provided to the customer in a client/server way. The
VASP-SMS acts as a server with regards to the customer NMS (client) and as a client to the
services provided by the network providers NMSs.

In the following chapters, the design efforts will focus on the management systems in the
upper box, namely, the information model and the functionalities of the VASP-SMS as well as
its interactions and interfaces with the CPN- and NP-NMSs in a bandwidth management
perspective. To facilitate service layer information modeling, an abstract model of the VPN
service under study has been established (Gaspoz, 1994). Some of its constitutive concepts are
illustrated in Figure 1. For instance, a virtual private line is defined as a VPN end-to-end logical
link connecting two CPNs and supporting the connections established between these CPNs. A
segment is the part of a virtual private line belonging to one single management domain.

_______ _.....

• segment1 • segment2• segment3

virtual private line

IWU : lnterworkilg Unit CC : Cross·Connect
UNI : User-Netwolk lntertace VASP : Value Added Service Provider
NNI : Netwolk·Network lntertace NP : Network Provider

Figure 1 VPN Management Architecture.

4 VPN BANDWIDTH MANAGEMENT

4.1 Motivation

•

Element
Management

Layer
- --------

Nelv.Ork
Element

Layer

SMS : Sel'iice Management System
NMS : Network Management System
EMS : Element Management System

Our principal motivation in this paper is to specify and design a bandwidth management
system to allow the end-users manage their bandwidth requirements. Bandwidth management
plays a central role in ATM networks due to the great bandwidth access and transfer flexibility
offered by this technology. From the network operator's point of view, this issue often refers
to mechanisms used to protect the network against misbehaving users and avoid congestion.

Considered from the customer's point of view bandwidth management aims at optimizing
bandwidth utilization. This is particularly true in an ATM context where resources have to be
reserved for each connection to guarantee the required quality of service (QoS). A crucial issue
in this context is to achieve the dual, yet often contradictory, goal of ensuring a high utilization

Object-oriented design of a VPN bandwidth management system 347

of the reserved resources, while maintaining a sufficient QoS to the individual connections. The
use of a bandwidth allocation scheme providing an optimal compromise between statistical
multiplexing gain and loss rate is certainly of major importance in this respect. For this
purpose, dynamic bandwidth management allows the user to specify the resources needed by a
connection (VeC) as well as to renegotiate them during the lifetime of the connection.

4.2 Bandwidth allocation and enforcement

It results from the specification of the VPN and its related actors that bandwidth will be
allocated and enforced at two different levels, the VPe level and the vee level, in our example
under the responsibility of the network providers and the service provider, respectively.
Indeed, the network providers will sell VPe bandwidth to the service provider and will enforce
that bandwidth to ensure the contract agreements and prevent network congestion. The service
provider will in turn sell that bandwidth to the customer, but to ensure the QoS of the individual
connections, bandwidth enforcement will have to be performed at the vee level as well.
Normally three traffic descriptors parameters are required for bandwidth allocation at that level,
namely, peak rate, mean rate and maximum burst size.

5 OBJECT-ORIENTED BANDWIDTH MANAGEMENT DESIGN

The main focus of this study is to specify and primarily design the service management layer
object classes required to provide a dynamic bandwidth management service to the customer.
The interactions between the customer and the SMS (Service Management System) are only
considered from a bandwidth management point of view. The object-oriented specification and
design of the bandwidth management system follows the Fusion method (Coleman, 1994).

5.1 Requirements of bandwidth management

The bandwidth management system will allow the customer to monitor and dynamically
control the bandwidth allocated to a VPN connection. In order for the service provider to satisfy
most of the customer requests directly (i.e. without requiring from the network providers to
update the virtual private line bandwidth, each time one of its connections is modified), as well
as to limit the frequency of network resources reservation and release requests, some spare
capacity is foreseen at the virtual private line level. Thus, when a connection is released or
when the bandwidth of a connection is decreased, the amount of aggregate bandwidth that will
actually be released will depend on the spare capacity available at that time.

The connection bandwidth may be increased directly if there is enough spare capacity on the
virtual private line supporting that connection. If the spare capacity is smaller than the requested
amount, the system transparently attempts to reserve more network resources for each segment
composing the virtual private line. A request will thus be issued to each corresponding network
provider to increase the bandwidth of the virtual path connection represented by each segment.
The virtual private line will only be updated if all the reservation requests have been accepted.

5.2 Object model

The object model defines the static structure of the information in the system, i.e., the classes
and their relationships specified to accomplish a certain task. The object model in Figure 2 is
centered on a connection bandwidth update request by the customer. Each class is represented
by a box with the name of the class at the top and the attributes in the lower part of the box.
Relationships are represented as diamonds joined to the participating classes by arcs.

348 Part Two Performance and Fault Management

Aggregation is represented by nesting the component class into the box of the aggregate class.
A number, a range, zero or more('*'), one or more('+') are allowed cardinality constraints.

As illustrated in Figure 2, both the VirtualPrivateLine and the Connection have a VplBw and
a ConnectionBw, respectively. This 'has a' relationship is modeled as an aggregation
representing a logical rather than a physical containment. For a complete treatment of object
models and other specification details please refer to (Gaspoz, 1994).

r------- - --------------- - --------------------
I VirtuaiPrivateNetwork
I
I
I + VirtuaiPrivateline
I max_connection_number
I

IBwAeportl I connection_number
I * Connection VpiBw

id total source_address spare
Customer dest_address min_ spare

monitors ConnectionBw

~
'-....._/ peak

mean
max_ burst_ size

1 BwHequest 1

I I I opens

close
system boundary __ j

Figure 2 System Object Model for Bandwidth Update.

5.3 System interface

The object models take into account both the system under study and its environment. The next
phase in the Fusion analysis process is to determine the boundary between the two, that is to
say, the system interface. A useful technique for that purpose is to consider scenarios of usage.

Customer I
I

I System I I vee

i>creas e_conn ection_bandv.idt h set_vcc_band,.;dt h
S 1 L wrren L bandwidth - - - - - - - ,..

. --. --. : ~- . :-. . --:. ::- :-:: . :-:: -:-. . --: ---. --. . -. ---. -. --..

I I VPC

ilcrease_connection_band"idth
_ _ _ _ _ _ _ _ r~rv..".-~-~n~dt...!:' 4

allocate_vpc:_bandwi:lth

52 confrm_reservatioo --------
w rren L bandwidth - ~et::...vc':::ba~~h- > -------

53

Figure 3 Scenario for Connection Bandwidth Allocation.

I

Object-oriented design of a VPN bandwidth management system 349

The Figure 3 shows a scenario for a connection bandwidth increase represented in timeline
diagrams. This scenario considers three different alternatives involving three external agents. In
the first one, Sl, the system has enough spare capacity to satisfy the request of the customer.
The other two alternatives deal with the case where the system tries to reserve additional
resources from the network, either successfully (S2) or not (S3). Similar scenarios can be
defined for bandwidth monitoring, bandwidth decrease, etc. One of the main benefits of these
scenarios is that they allow to draw the boundary of the system, by considering the classes
modeling the agents in these scenarios as external to the system (see Figure 2).

These scenarios may be generalized and formalized into life-cycle expressions, that is,
regular expressions allowing to express sequences, repetition, alternatives as well as optionality
and whose complete set constitutes the life-cycle model. This model specifies the allowable
sequence of system operations (i.e. the input events and the effects they can have) and output
events. The life-cycle model of the system under study has been developed in (Gaspoz, 1994).

Operation model
The operation model determines the system functionality as expected by the user. The behavior
of each system operation is specified in a declarative way, in particular by using preconditions
and postconditions. The preconditions express the conditions that must be satisfied whenever a
system operation is invoked. The postconditions describe how the state of the system (i.e. the
set of objects that participate in relationships as defined in the system object models) is changed
by an operation and which events are sent to the agents. The operation model consists of a set
of schemata, one for each system operation. The schema for the system operation
'increase_connection_bandwidth' is shown in Figure 4. The preconditions and postconditions
are expressed in the 'Assumes' and 'Result' clauses, respectively.

ra·;;~·~;;;;;~ .. ; ;·~~·~;~·~~~~·~~~;~:ti~·~=b;~:;;~;:;;;;;; .. !
! Description : Request the connection bandwidth to be increased by a given amount !
l Reads:

Changes:

Sends:

Assumes:

supplied peak_amount, mean_amount : BitRate
supplied max_burst : BurstSize, supplied conn_id : Connectionld

Connection with connection.id equal to conn_id, connectionbw, vplbw
new bwrequest, new bwreport, new reservation

virtual_channel_connection : {set_vcc_bandwidth}
virtual_path_connection : {reserve_vpc_bandwidth}
customer : {current_bandwidth}

conn_id is a valid connection identification

Result: a bwrequest has been created and initialized with the supplied values,
peak_amount, mean_amount and max_burst

If (initial vplbw.spare) is sufficient to support the requested bandwidth increase then
vplbw.spare has been decreased by a value computed from peak_amount,

mean_amount and max_burst
set_vcc_bandwidth has been sent to virtual_channel_connection
connectionbw.peak has been increased by peak_amount
connectionbw.mean has been increased by mean_amount
connectionbw.max_burst_size has been set to max_burst
a bwreport has been created and initialized with the final values of connectionbw
current_bandwidth(bwreport) has been sent to customer

Otherwise /* not enough bandwidth on the vpl
reserve_vpc_bandwidth has been sent to virtual_path_connection
a reservation has been created
reservation. status has been set to pending
reservation.pending_responses has been set to virtualprivateline.nb_of_segments !

~ ... ······ :

Figure 4 Operation Schema for 'increase_connection_bandwidth' system operation

350 Part Two Performance and Fault Management

The communication between the system and its environment is asynchronous, that is, the
sender does not wait for the event to be received (Coleman, 1994). This assumption has a
significant influence on the way system operations are specified, as, for instance, the response
to an output event has to be described in a different operation schema. Moreover, behavior
conditional on output events (e.g., the fact that each 'reserve_vpc_bw' should be followed by
either 'allocate_bandwidth' or 'deny_bandwidth') is difficult to express in these schemata.

5.4 Designing object interaction graphs

All the models described so far are part of the Fusion analysis process. Once this step
completed, the goal of the object-oriented design consists in defining how objects interact to
provide the system functionality specified in the operation model. The main scope of the design
phase is then to collect abstract definitions into concrete software structures, especially with
respect to implementation and distribution of functionality. This distribution is captured in an
object interaction graph. Each graph allows to define the sequences of messages exchanged
between a set of objects to realize a given operation. The system software architecture starts
then appearing as each system operation is designed. There is no unique way to design this
functional distribution. Certain assumptions, design tradeoffs and choices as well as the larger
system issues all influence the design process.

Object interactions are defined as procedural types of interactions. Indeed, when a message
is sent to a server object, the corresponding method of its interface is invoked. This method is
executed before the control is returned to the client. In other words, although the data flow may
be bi-directional or unidirectional depending if a value is returned as the result of the method
call, the control flow associated with such method calls is always bi-directional.

The Figure 5 shows the object interaction graph corresponding to the three system
operations 'increase_connection_bandwidth', 'allocate_bandwidth' and ' deny _bandwidth'.
Boxes and dashed boxes represent (design) objects and collections of objects, respectively. The
arrows represent the invocation of the corresponding method on an object. A selection predicate
(in square brackets) may be defined to send a message to one particular object in a collection.
By default, the message is sent to all objects in the collection. Numbers define the sequencing
of invocation. Method invocations labeled with the same sequence label occur in an unspecified
order. Letters appended to a sequence number define alternatives.

The vpn has been selected as controller object, that is, the object which takes the
responsibility for the given system operation. Its main role is to find out, among all the virtual
private lines it contains, the vpl on which the given connection has been established. The central
role played by the vpl in this design arises quite naturally from the data structures and
relationships defined during the analysis. Indeed, according to the system object models
specified previously (see Figure 3 and (Gaspoz, 1994)) a vpl object has relationships to both
the active connections it contains and the segments that constitute it.

The decision as to whether the increase request may be satisfied directly or requires further
resources from the network providers, is taken by the vplbw. For this purpose, this object has
to perform a statistical computing taking into account not only the current request but also the
bandwidth parameters of all the existing connections as well as the admissible loss probability.
As the goal of this paper is not to elaborate on such issues, the method 'compute_bw_inc_req'
is supposed to encompass this statistical computation and will not be developed further.

Careful readers have certainly noted that three operation schemata have been designed into
one single object interaction graph, which is clearly not in-line with the approach recommended
by Fusion. The reason why there is not a one-to-one mapping comes from the different ways
objects are supposed to communicate within the system and with external agents. Indeed
objects exchange messages within the system in a synchronous request/response style of
interaction called sometimes interrogation (ODP, 1993). On the other hand, the system -and
thus the objects that constitute it- communicates with its environment in a fire-and-forget style
of interaction called announcement (ODP, 1993).

Object-oriented design of a VPN bandwidth management system 351

increa':"_conoection_bandwldlh vpn: (3) vpn_monitor:
(conn_rd, peak_amounl, mean_ amount, max_burs'l. VirtuaJPrivateNetwork notify_resull (r9$ull: BwRepo~) lnterfaceMonitor

(t)
""which_vpl (conn_id) : Vplld

restJit = ircrease_~l.nectioo_bandwidlh
(conn_ld, peak__amotr~t, mean_ amount, max_bursl) : BwReport

(vpLid = n)
(2.6)

creale(pending, nb of segments) , - - - -

(2.1)

create(peak__arnot~~t, · lnew I mean_am011nt, max..bursl) bwrequest

--~BwRequest
I . .) ·-- ------~

new
reservation:
Reservation

12.81 . : vpls:
seLslatus (denied) I VirtuaJPrivaleline

1 12.4) (id = oonn_id] : connections: 1

I cb = read bw : ConneclionBw I Connection 1
~--=-~~~(~ld~o~oo~nn~id]~~> l 1 (2.9) I

is_nul = decr_pend_resp 0 : Soot : : (2.6' / 2.13) - I :

1 increase bw(bwrequesl: ComplexBw) : 1 (2.10) I
is _pendilg () : Boo! I

I
: (2.7'/2.14) rrd=OOM_id) ;>: :

~:~~;~~~~ ' ~~:u;.~J
new
result :

(2.8' / 2.15a)
report_bw (mal_bw : ComplexBw)

BwReport
(2.t5b)

report_failure(failed: Status,
(L--------~~~instJ~ffic=i=~~L~bw~:~F~ai~lu~reC~a=u~se~)_J

(2.7)
allocated= reserve_bw(suppl_bw: Bitflate): Boot

(2.7.1)

\\ cb : col C<lmplexBw) : BiiRate
vptbw:

12_ 1 1) VpiBw

mease_bw (suppl_bw : BijRate)

(2.t2a)
confirm_reservalkm (suppl_bw: B~Rate)

(2.1 1.2)
allocated= reserve_vpc_bw (seg_id: Segm~lld,

(2.t2b)
discard_reservalion 0

suppl_bw: BitRale) : Bool 1- - - - ,
set_ new _spare 0

vpc_interface
_monitor:
lnterfaceMonitor

(2.12a.1) I segments: : (2. 12a.2)
confirm_reservalioo (seg_ld) : Segment 1 increase_bw (suwt_bw: B~Rate)

segmentbw:
SegmentBw

(2.t2b.1) : :
cfrscard_reser.~alion (seg_id) ~ ______ J

---..........

~ocate_bandwidth ~

Desc..,lion :

operation VirtuaiPnvateNetworl< : ilcrease_connectioo_bandwidlh
(conn_id : ConnectO>nld, peak_amount, mean_ amount BitRale,
ma11_burst : BurstSize)

checks that the oonneclioo exists by retrieving lhe virtual
private line lo which the given OOMeclion belongs

II~ does then
gel this vplto increase the bw of lhe given connection
notify the vpn monitor aboulthe bandWidth report

method VlnuaiPrivateline : ircrease_conneclion_bandwidlh (oonn_id :
Connectjonld, peak_amount, mean_am011nt Bitflate, ma~~_burst :
BurstSize) : BwReport

create a new bw request Initialized with lhe supplied values
create a bandwidth report
retrieve the bandwidth of the given connectioo
retrieve fhe bw of tile remailling connectioos on the vpl
gel the vpl bandwidth 1o compute the SIJpplemenlary bw

needed to ruffillthe request,~ any

(I)

!~!

!~1!
(2.3)
(2.4)

(2.5)

If the spare capacity on the vpl is suHicient then r suppl_bw = 0
get the connectjon lo update its bandwidth with the

values olthe bandwidth request
~tthe new connection batldwidth
Vlitialise the bw report with the new connect;on bw

Otherwise
aeale a new reserval;on Initialized with status pending

and with the number of segments composing the vpl
reseNe supplementary bw for each segment of the vpt
If the reservation has ~ denied then

set the reservation status to denied
check rr all responses have be~ received
If they have then r pending_responses =0

check rr the reservation status is sun setlo pending
If it is then

update the vpl bw ~;th the allocated amount
gel each segment to confirm the reservatioo
get the given connection to updale its batldwldth
gel the new connection bandwidth
Initialize the bw report wijh the new connection bw

Otherwise
gel each segm~lto discard the reservatoo
Initialize the bw report with failure and cause

Figure 5 Object Interaction Graph for 'increase_connection_bandwidth' operation.

(2.6')
(2.7)
(2.8')

(2.6)
(2.7)

(2.8)
(2.9)

(2.10)

(2.11)
(2.12a)

(2.13)
(2.14)

(2.t5a)'

(2.12b)
(2.15b)

352 Part Two Performance and Fault Management

To keep analysis and design consistent, as well as to preserve the semantics of the object
interaction graphs, this duality has been maintained. The mapping between these two types of
interactions has thus to be performed at the boundary of the system by the so-called
InterfaceMonitors. These objects get thus a more active role than initially described in the
Fusion method. Concretely, they have to map each interrogation invoked on their interface into
an announcement to the corresponding agent. The asynchronous response to this
announcement, if any, is on its tum converted back into the result part of the initial
interrogation. For instance, the two system operations 'allocate_bandwidth' and
'deny_bandwidth' are encapsulated in the boolean result of the method 'reserve_vpc_bw'
invoked at the vpc_interface_monitor. A special notation has been introduced in Figure 5 to
illustrate this situation. Thanks to these mappings, the Interface_monitors hide to the system
objects the announcement-based style of communication of the system with its environment.
Consequently, objects may communicate transparently with other objects inside or outside the
system in a consistent interrogation-based way.

The previously mentioned design choices are trade-offs between simplicity and efficiency.
The choice of a sequential approach which, by waiting for the network providers responses,
prevents the system to process a new customer's request before the previous one is completed
-according on this point to the life-cycle developed in the analysis (Gaspoz, 1994)- is certainly
not the most efficient. However, it offers great advantages with respect to error handling and
concurrency issues, thus leading to a much simpler design. For instance, missing responses or
error messages may be considered as implementation issues of the lnterface_monitors, i.e.,
dealt with by some kind of transaction processing mechanism, and need not be considered
further. In the same way, two consecutive customer's requests addressing the same virtual
private line will not give rise to any conflict.

On the other hand, a good improvement that is consistent with the life-cycle, would be to
allow parallelism to the bandwidth requests going to the different network providers. This issue
is left for further study.

5.5 Designing visibility graphs

In the previous design phase, all objects were assumed to be mutually visible. The goal of this
second design step is then to determine for each class which objects the instances of the class
need to reference as well as the type of reference required (Coleman, 1994).

The visibility graph for the VirtualPrivateLine class is shown in Figure 6. All server objects
-or collections of server objects (in dashed boxes)- whose lifetime is bound to that of the
virtualprivateline client are shown inside the class box. A dashed arrow and a double border
box denote a dynamic reference (e.g. bwrequest) and an exclusive reference (e.g. segments),
respectively. Constant mutability (i.e. the reference is not reassignable after initialization) is
explicitly shown by prefixing the server object with the keyword 'constant'.

VirtuaiPrivateline
r=======l'

constant I: connections : 1:
___,. vplbw: ~ 1 Connection :1 -- *

VpiBw II II
1l.~~~~~~-" I

1 7~~~~~~~11 r-------1

1: segments : 11 1 cb: I

______,..: 1 Segment :: - _ ->: ConnectionBw : --*
II II I I
II "I I !

Figure 6 Visibility graph for the Virtua!PrivateLine class.

new
bwrequest:
BwRequest

new
reservation :
Reservation

-- ~

new
bw_report:
BwReport

Object-oriented design of a VPN bandwidth management system 353

5. 6 Designing inheritance graphs

The inheritance considered in this document is a subtyping inheritance in the sense that objects
of a subtype can only extend the properties of the supertype but not alter them. Unlike in
programming languages, the focus is not on efficiency and code reuse but on simplicity of
reasoning. A very useful consequence is that instances of a subclass may always be freely
substituted for instances of a superclass.

A good starting point for deriving inheritance graphs is provided by the generalization and
specialization relationships identified during the analysis. For instance, the classes
ConnectionBw, VplBw, and SegmentBw have been identified as subclasses of an abstract
class Bandwidth. During the design phase, it has been felt useful to partition the class
Bandwidth into a ComplexBw (to deal with sustained rate allocation scheme) and a SimpleBw
(for peak rate allocation). On the other hand, the two classes BwReport and BwRequest are
used to encapsulate bandwidth related information. Using multiple inheritance, these classes
may be defined as subtypes of the class ComplexBw and of the classes Report and Request,
respectively. Thanks to this structure, it has been possible to reference objects of type
ComplexBw and substitute them by instances of either of its subtypes (see Figure 5).

5.7 Deriving complete class descriptions

The individual design steps described in the previous sections are now all integrated into
class descriptions. The complete class descriptions are final software design structures upon
which implementation is based. They provide a specification of the class interface, i.e., the
externally visible data attributes, object reference attributes and methods signatures, as well as
of the inheritance relationship, if any. The description of the class ConnectionBw is presented
below as an example.

r-------------------------------~ class ConnectionBw is_a ComplexBw
attribute peak : BitRate

attribute mean : BitRate
attribute roax_burst_size : BurstSize
method create ()
method delete ()
method add_bw (bw_chg : ComplexBw)
method remove_bw (bw_chg : ComplexBw} Bool

method get_peak () : BitRate
method get_mean () : BitRate

method get_mbs {) : BurstSize
endclass

5. 8 Designing the system communication interfaces

The aim of this last step is to collect all the messages exchanged between the V ASP-SMS and
the NMSs that constitute its environment (see Figure 1). Mainly derived from the scenarios and
the different object interaction graphs, this information allows to specify the different interfaces
between these management systems in terms of the primitives exchanged (Figure 7).

On the CPN-NMS side, the interface specifies the management service offered to the
customer in terms of the management functions he may invoke to perform bandwidth related
management operations on his ATM-based VPN. The set of primitives that are part of the SMS
- NP-NMS interface represent the service that the VASP has to request from the network
providers NMS in order to provide the bandwidth management service to the customer.

A TMN conformant specification of these interfaces (X interfaces) would imply the
mapping of these high level primitives into CMIP (Common Management Information
Protocol) ones and would above all require a GDMO specification (X.722, 1991) of the

354 Part Two Perfonnance and Fault Management

information exchanged across the interfaces. These issues imply a level of design detail that
goes beyond the scope of this paper and have not been considered further.

I ~ I ~] I ~
VASP-SMS

I
I

I
I

I
I

I VirtuaiPrivateNetwork llvpn_monitor I
vee_ interface vpc_interface I
- monitor _monitor

{ . t . {setup_ vee, I establish_connectlon, release_vcc,
release_connection, set_vcc_bw,
check_bandwidth, {notily_result} reserve_vpc_bw,

{allocate_bandwidth,

increase_connection_bandwidth, decrease_vpc_bw,
deny_bandwidth}

decrease_connection_bandwidth} confirm_reservation,

I I discard_reservation}

lvpn_monitor I 'I vcc_i~terface I vpc_interface I
_momtor _momtor

CPN-NMS NP-NMS

Figure 7 SMS - NMSs communication interfaces.

6 CONCLUSION

Bandwidth management is of critical importance in ATM-based networks due to the great
bandwidth flexibility it offers to end-users. This paper has described the software structures
that need to be implemented in the V ASP-SMS to support the provision of a bandwidth
management service to customers. In addition, the corresponding service required from the
underlying network providers' NMSs for that purpose has also been brought into light.
However, even if the work has focused on VPN bandwidth management based on cross­
connected ATM networks, the model developed at the service management layer is quite
abstract and general enough to be applied to other service management cases.

Although the VPN management architecture considered is based on TMN principles, the
modeling approach selected in this paper provides an interesting alternative to the TMN
methodology where both a functional and an object-oriented approach coexist (M.3020, 1992).
Indeed, management services fulftlling the customer requirements are decomposed into
management service components and management functions according to a top-down functional
decomposition. Conversely, the modeling of the managed system is object-oriented, namely, all
network resources are modeled as managed objects. Therefore, the mapping between the
management functions and the managed objects is far from being straightforward.

On the other hand, the Fusion method retained in this paper models the entire problem
domain in a consistent object-oriented way. The functionality of the system as expected by the
customer is defined quite formally in the operation model, thanks to the use of pre- and post­
conditions. System operations specified in this model, which are in fact similar to TMN
management functions in our example, are implemented in the design phase as a set of
interacting objects. The mapping of the functionality expected by the user into the object model
representing the system is then realized in a very consistent and straightforward way.

The problem domain addressed in this paper involves several actors and different systems
that work in parallel and interact to constitute a distributed bandwidth management system.
Although this study has focused on one specific part of this distributed system, namely the
V ASP-SMS, the functionality needed to provide the final service is clearly distributed in the
different management systems. As a software engineering method that has been developed for

Object-oriented design of a VPN bandwidth management system 355

sequential and centralized systems, Fusion is not very well-suited to deal with the specification
and design of distributed systems. Issues such as the conflict between system internal
communications based on interrogation and external communications based on announcement
could be dealt with in a more elegant way by using a distributed systems conformant approach
all along the development process. However, the integration of some of the models advocated
by Fusion into the ODP viewpoints could be a very interesting topic of further study.

7 REFERENCES

Coleman, D. et al. (1994) Object-Oriented Development: The Fusion Method, Prentice Hall.
Gaspoz, J.P., Saydam, T. and Hubaux J.P. (1994) Object-Oriented Specification of a

Bandwidth Management System for ATM-based Virtual Private Networks, proceedings of
the third ICCCN conference.

M.3010 (1992) Principles for a Telecommunications Management Network, CCITF
Recommendation M.30I 0.

M.3020 (1992) TMN Interface Specification Methodology, CCITF Recommendation M.3020.
ODP (1993) Basic Reference Model of Open Distributed Processing (ODP), parts 1-3,

ISO/ITU-T Draft Recommendations X.901, X.902, X.903.
Rumbaugh, J. et al., (1991) Object-Oriented Modeling and Design, Prentice Hall.
X. 722 (1991) Guidelines for the Definition of Managed Objects, ITU Recommendation X. 722.
Verbeeck, P. et al., (1992) Introduction Strategies Towards B-ISDN for Business and

Residential Subscribers Based on ATM, IEEE JSAC, December edition.
Wernik, M. et al. (1992) Traffic Management for B-ISDN Services, IEEE Network, November

edition.

8 BIOGRAPHY

Tuncay Saydam has been a professor of computer science at the University of Delaware since
1979. He has received his graduate degrees at Istanbul Technical University and The University
of Texas at Austin. His current research interests include network management, network
interconnections and object-oriented software design. Member of IEEE, Sigma XI and New­
York Academy of Sciences, Dr. Saydam is author of over fifty technical articles.

Jean-Paul Gaspoz graduated in electrical engineering at the Swiss Federal Institute of
Technology in Lausanne. He then worked three years at Ascom, a Swiss telecom company
where he contributed to the development of an ISDN PABX. He is currently doing a Ph.D. at
the Swiss Federal Institute of Technology in Lausanne and his research interests include virtual
private networks, services management and distributed systems specification.

Pierre-Alain Etique graduated in computer science at the Swiss Federal Institute of Technology
in Zurich. He then joined Ascom, a Swiss telecom company were he worked 3 112 years on the
development of a PBX. He is currently with the Swiss Federal Institute of Technology in
Lausanne where he is working on his Ph.D.

Jean-Pierre Hubaux graduated in computer science at the Institute of Technology of Milan. He
then joined Alcatel where he worked ten years as development engineer, consultant and project
manager. He has been a professor at the Swiss Federal Institute of Technology of Lausanne
since 1990.

