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This paper presents the latest developments in the Fonnal Methods in Confonnance 
Testing (FMCT) project of ITU and ISO. The project has been initiated to study the role of 
fonnal description techniques in the confonnance testing process. The goal is to develop a 
standard that defines the meaning of confonnance in the context of FDTs. A general 
framework which has been developed in the FMCT project will be presented. 

1. INTRODUCTION 
The primary objectives of standardization is to allow systems developed by different 

vendors to work together, to exchange and handle infonnation. Confonnance testing, i.e. the 
assessment of a product on confonnance with it's specification, is an important issue to 
compatibility. To achieve this, a standard way has to be defined to look at products. This has 
been done in a joint project of the standardization organizations ISO and ITU which has been 
started around 1983. The effort resulted in a standard called "Confonnance Testing 
Methodology and Framework (CTMF)" [9]. 

CTMF is a very general framework which should be applicable to the widest possible range 
of specifications and products. 

Recently, more and more specifications in the communications world are being made by use 
of a fonnal description technique (FDT). This makes it necessary to define the meaning of 
confonnance in this fonnal context. 

ISO and ITU-T started another joint project around 1989, called project 1.21.54 in ISO and 
question 8/10 in ITU-T. This new effort should result in a standard on "Fonnal Methods in 
Confonnance Testing (FMCT)" [3]. The current planing of the project extends to May 1997. 
At this date the pUblication of an International Standard in ISO and the respective standard in 
ITU-T is desirable. This means that there needs to be a Committee Draft around middle of 
1995 and a Draft International Standard around 1996. Two main meetings of the project are 
planned per year, but there may be additional meetings in the subgroups. 

Given a fonnal specification, how can one find out whether an implementation confonns to 
this specification? 

The motivation of this activity is the existence of fonnally described standards and therefore 
the need to define the meaning of confonnance with respect to fonnal specifications. 
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As FMCT is a very general problem in software engineering, it's principles should be 
applicable to any application area, in particular any application area in communications, e.g. 
OSI, ODP and mCN. 

Since C1MF defines conformance in a very general informal sense, it serves as a natural 
basis for the more formal work on FMCT. By nature there is a close relationship between 
C1MF and FMCT. In particular, the concepts and their definitions ought to be compatible 
between the two documents. 

One has to distinguish between three different types of concepts: 

a) concepts of C1MF not subject to FMCT 

b) concepts of FMCT with no relationship to C1MF 

c) concepts shared by FMCT and C1MF 

Concepts of type a) of course remain valid in the FMCT framework. There is no additional 
formal interpretation of these concepts. 

Category b) contains concepts which exist due to the formal nature of FMCT. In many 
cases these concepts have not been handled by C1MF because they have a generally agreed 
upon informal meaning sufficient in the CTMF context and can be looked up in standard 
dictionaries. Examples are the terms verification and validation. In a formal context, though, 
these terms need further precision, specifically adapted to formal specification and testing of 
communication protocols. . 

Category c) contains those concepts which have been defined in the C1MF context but 
need further interpretation in FMCT. Of course, the formal interpretation needs to be 
consistent with the informal one. The following example shall illustrate the definition of 
concepts in category c). 

A protocol implementation conformance statement (PICS), according to CTMF, is a 
statement made by the supplier of an OSI implementation or system, stating which capabilities 
have been implemented, for a given OSI protocol. 

In the formal context, PICS defines actual values for the parameters of the formal 
specification S for a given implementation I. A particular PICS indirectly determines a subset 
of the conformance requirements defined for S. 

The FMCT project is currently maintaining a working document which ultimately should 
become the standard or recommendation, respectively. 

The main part of the document contains the definition of the terminology which is used to 
define the framework for formal methods in conformance testing. 

Besides the main part there are 2 rather elaborated annexes. 

Annex A explains the relationship between the FMCT concepts and the existing FDTs: 
Estelle [8], LOTOS [7] and SDL [10]. The annex explains for example the concept of the 
implementation relation w.r.t. the three languages and gives an interpretation of PICS 
proforma and PICS. 

Annex B deals with test generation methods as they have been developed for finite state 
machine and other models, in particular [1], [11], [2], [13], and [6]. A common example, the 
INRES protocol and service [5] is used to show the applicability of existing test generation 
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methods to an OSI protocol specification. INRES is not a real protocol, but it contains many 
features of OSI protocols. It is an abridged version of the Abracadabra protocol used in [12] 
for illustration. 

Besides these annexes there are two other activities reflected in Annex C and D on 
specification styles for testability and measures for test suite coverage respectively. These are 
activities for further study at the moment. 

The elements described in this paper have been carefully developed by investigation of a 
number of formal test case generation methods and tools some of which are briefly described in 
Annex B of [3]. 

The following sections will give an overview of the main ideas of [3]. 

2. BASELINE 

In order to be able to establish a formal relationship between a specification and an 
implementation under test it is necessary to have a complete and completely formal 
specification of an IUT. Usually this is not given. The normal case is to have a specification 
consisting of a mixture of description techniques, such as prose text, MSC, FDTs, ASN.1, etc. 
Furthermore the system specification may make reference to other specification, e.g. standards, 
without explicitly incorporating them. In these cases a formal specification of the IUT has to be 
developed before conformance can be checked by formal means. Fig. 1 shows that scenario. 

Fig.I: A formal and complete specification of the ruT is needed 

When we talk about a specification in the following, we always talk about a complete 
formal specification of the IUT. During the development process of this specification it may 
have been necessary to choose among options. If the FDT allows it, it may be possible to 
develop a more general parameterized specification. This does no longer specify one 
particular ruT but a set of ruTs according to the different combinations of options which are 
possible. In order to get the specification of a particular ruT it is necessary to instantiate the 
parameterized specification with actual values for the formal parameters. This is then called it 
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an instantiated specification. If in the following the term specification is used, usually an 
instantiated specification is meant 

Under these assumptions a formal meaning can be assigned to the term "conformance". 

3. FORMAL MEANING OF CONFORMANCE 

We will develop a framework in this section which can be used to characterize 
"conformance" precisely. We will see that there is not only a single "conformance" between a 
specification and an implementation, but that there are many different possibilities to define it, 
depending on what degree of similarity one wants between the specification and the 
implementation. 

The set of instantiated specifications is denoted by SPECS. 

An implementation consists of hardware devices or a combination of hardware and software 
that is executed by it. An implementation has physical connectors or programming interfaces 
for communication with other implementations. 

The set of implementations is called IMPS. 

The elements of SPECS are mathematical objects while the elements of IMPS are not. 
Therefore it is not possible to define a formal relation between specifications and 
implementations. 

We need to transform an implementation into a mathematical object. It is assumed (test 
assumption) that any implementation IUT can be modeled by an element mlUT in a formalism 
MODS (e.g. labeled transition systems, finite state machines). The model mlUT of an 
implementation IUT may simply be the set of traces that can be observed while experimenting 
withIUT. 

Usually it is not possible to actually calculate mlUT for a particular IUT. We only need this 
concept to define the meaning of conformance. The formalism MODS may be the same as 
IMPS. We will later see an example where for both SDL is used. This may facilitate the 
comparison of both. 

For a particular choice of MODS one implementation may have many different models in 
MODS. The test assumption implies that these cannot be distinguished by testing. Therefore it 
is sufficient to model an implementation IUT by a single model mllff E MODS. 

MODS 

IMPS 

mlUT 

• 

l modeled_by 

JUT 

Fig. 2: The relation between elements of IMPS and MODS 
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Confonnance between an implementation and a specification consists of two parts: static 
confonnance and dynamic confonnance. 

In the FMCT context static conformance involves the correct instantiation of a 
parameterized specification such that the actual values of the parameters are an allowed 
combination of implementation options according to the ICS profonna (see [9]). 

Dynamic conformance involves the pennitted observable behavior of an implementation in 
instances of communication as described by the specification. Dynamic confonnance between 
an implementation and a specification is fonnally characterized by a relation between the model 
of the implementation and the specification. This relation is called an implementation 
relation. It will be denoted as imI2 with the following signature: 

imI2 !: MODS x SPECS 

This relation is not a priori given just by the knowledge of MODS and SPECS. We will see 
in the following section by an example, that for one fonnalism, SDL in the example, there can 
be different meaningful implementation relations. Which one to choose may be application 
dependent There has been no implementation relation proposed so far which is accepted as the 
universal one under all circumstances. 

The lesson to learn from this is that it is not sufficient just to give a fonnal specification, but 
it is also necessary to give the implementation relation. An implementation IUT confonns 
dynamically to an instantiated specification s with respect to the relation imI2, if the model mlUT 

of IUT relates to s as mlUT imI2 s. In this case mlUT is a confonning model of s with respect to 
imI2. 

One specification can have many confonning implementations. For a specification s E 

SPECS and an implementation relation imI2 the set Ms denotes the set of all confonning models 
in MODS: 

Ms = {m E MODS I m imI2 s} 

Fig. 3 shows how an instantiated specification s E SPECS detennines a set of conforming 
implementations Is. The set Is denotes the set of implementations that can be modeled by 
models in Ms. Therefore the set Is is the set of implementations that implement s correctly. 

SPECS 

s _ . 
.... 

'. 

MODS 

correctly ..... .' 
implemen~Odelled _by 

IMPS ~ 

Fig. 3: Relations between IMPS, MODS and SPECS 
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4. EXAMPLE 

In this section we will give an example to illustrate some of the concepts introduced in the 
previous section. 

Figures 8-12 show an SDL specification. It is part of the initiator side of the INRES 
protocol [5]. the specification is not parameterized in order to keep the example simple. For an 
example of a parameterized specification see [3]. 

Only the external behavior is considered in the context of conformance. An SDL 
specification does not explicitly express the external behavior. Therefore to test for dynamic 
conformance a representation of the observable behavior derived from the SDL specification is 
needed. A suitable representation for the external behavior for an SDL specification is by an 
ACT (Asynchronous Communication Tree, see [4]) or an LTS (Labeled Transition System). 

If SDL is used for specification of systems the set SPECS is the set of all ACTs or LTSs 
which can be derived from any SDL specification. For the example a small part of an ACT 
representation of the observable behavior is illustrated in Fig. 4. The ACT representation 
associates to each state information signals in the different channels. In the figure only channels 
that convey a signal in the current state are shown. If all channels of the system are ernpty this 
is denoted Q = <>. The state information is however not needed when test cases are defined 
from the ACT representation. 

?ConReq 

53. <2u!AP -<CR> 

56. QISAP -<ConConf> 

IConCon! 

57.Qj-<> 

Figure 4: An ACT representation of part of the observable behavior 

The concepts of the form~l framework are now illustrated by giving three different 
implementations 11./2 and h The implementations are represented by their models from the set 
MODS for which SDL is used. Please note that the SDL specifications 110 12 and h actually 
define an ACT, i.e. a number of traces. SDL is only used to define these traces. 
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II is an implementation that has a model that coincide with the model of the specification. 
This means that the block description of the protocol shown in Figures 9 and 10 can be seen as 
a model for this implementation. 

12 implements the protocol as specified in Figure 10 as well, except for the behavior that can 
be expressed in SDL as shown in Figure 5. The implementation sends a signal DT instead of a 
CR when a connect request is received. 

h similarly implements the protocol as defined in the specification. In addition in state 
connected it may receive a new connect request and initiate again the connection phase as 
shown in Figure 5. 

Implementation 12 Implementation 13 

Figure 5: The changed behavior of implementations 12 and h 

The criterion for conformance of an implementation and an SDL specification is defined in 
terms of an implementation relation in:m between the model of an implementation and a 
specification. 

Several of the implementation relations defined are based on the existence of similar 
sequences of events in the implementation and the specification. Sequences of observable 
events can be derived from an ACT representation of an SDL specification. A sequence of 
observable events is denoted a trace and a trace set Tr(S) denotes the set of all possible traces 
of a specification S. A trace of the ACT shown in Figure 4 is <ConReq, CR, Cc, ConConf>. 

Only a very limited class of SDL specifications specify a behavior that is expressed by a 
finite set of traces. The reason is the unbounded queue property of an SDL channel. Even for 
simple systems specified in SDL it should be possible to send any number of a signal conveyed 
by the channel from the environment to the system. E.g. in the example specification it should 



180 Invited Adress 2 

be possible to send any number of the signal ConReq to the system. Hence in practice 
exhaustive test of the observable behavior of an SDL system is not possible. Still the trace 
models are useful in the definition of a formal requirement for conformance of the dynamic 
behavior of an implementation. 

A relation that is often used as an implementation relation is the trace inclusion relation ~ 
(trace preorder). Two trace sets Tl and T2 satisfy the relation Tl ~ T2 if and only if Tl is a 
subset of T2 • 

The trace inclusion relation may be used as an implementation relation in two ways 
dependent on how the requirements of the specification are interpreted. If the specification is 
assumed to specify the maximal allowed behavior of an implementation, the trace set of a 
conforming implementation is a subset of the trace set of the specification. For a conforming 
implementation I and a specification S this is denoted I ~ S or (I, S) E ~tr. 

The other interpretation of requirements specified by an SDL specification is that it defines 
the miPimal required behavior of an implementation. In this case the trace set of a specification 
S is a subset of a conforming implementation I , I ;;:: tr S . 

The maximal allowed behavior implementation relation implies a very weak requirement on 
a conforming implementation. An implementation that cannot perform any external action is a 
conforming implementation of any specification, as the empty set is a subset of any trace set. It 
is not possible to test for the minimal requLred behavior implementation relation due to the 
infinite trace sets of most SDL specifications. 

In Table 1 it is shown which implementations are conform ant with respect to the specified 
example (here denoted S) and the two implementation relations. 

(Impl,spec) satisfies ;;::/r 

·································(j~·sf .. ·············· .................... tr;;:;; ................... ~-;; .... . 

(h S) false false 

false true 

Table 1: Overview of the conformance of 11, 12 and h with respect to different 
implementation relations 

As the trace set of implementation 11 is identical to that of the specification both the 
maximal allowed behavior and minimal required behavior relation are satisfied for 11• 

Implementation 12 does not satisfy ~ as the trace <ConReq,DT> is not a member of the trace 
set of the specification. Similarly, the implementation relation;;:: tr is not satisfied either, as the 
trace set of 12 does not include the trace <ConReq,CR>. For implementation h the 
implementation relation Str is not satisfied as the implementation can for example perform the 
trace <ConReq,CR,CC,ConConf,ConReq,CR>, that is not a trace of the specification. As h 
can perform every trace of the specification it conforms according to the implementation 
relation;;:: tr • 



Frameworkfor formal methods in conformance testing 181 

The model of an implementation is not known in advance for conformance testing. It can 
only be approximated by performing experiments on the implementation and observing 
responses. Non-deterministic system specifications make it impossible to ensure that an 
implementation model is a complete description of the possible behavior. 

In the example specification it may not be possible to determine if an implementation can 
perform a specific trace. This is the case for trace <ConReq .CR> . The unreliable channel may 
always discard the signal CR such that it never occurs as an observable event in the 
environment However it is not possible to derive from a number of experiments in which the 
signal CR has not been observed whether the trace has been implemented. So the trace 
preorder implementation relations may provide a sound basis as a conformance criterion only if 
additional assumption are made on the specification and/or implementation. For instance it may 
be assumed that information is provided on how non-determinism of the specification is 
resolved in the implementation. 

5. CONFORMANCE REQUIREMENTS 
In the previous sections conformance has been defined in an abstract way by means of 

implementation relations on the sets MODS and SPECS. 

However. in [9j the definition of conformance is based on the more concrete concept of 
conformance requirements. This second characterization of conformance is a possible 
refinement of the previous definition. and both approaches define the same concept with the 
same expressive power. 

[9] distinguishes two types of conformance requirements: static and dynamic. The meaning 
is analog to the distinction of static and dynamic conformance introduced above. In the FMCT 
context static conformance requirements are requirements on the possible combinations of 
values of the formal parameters of the specification. Dynamic conformance requirements are 
requirements implied by the formal specification and the implementation relation. Both static 
and dynamic conformance requirements are properties that need to be satisfied by (the model 
of) an implementation in order to conform. 

In a formal context conformance requirements are expressed in a formal requirement 
language. This may for example be temporal logic. REQS denotes the set of all requirements 
that can be expressed in a particular language. In the requirements approach an instantiated 
specification S E SPECS is expressed as a set of requirements R. !: REQS. The set of all 
possible specifications is the powerset of the set of possible requirements: SPECS = P(REQS). 
One element r E R. represents a single dynamic conformance requirement. In general. the set 
R. can be infinite. 
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SPECS MODS 

S·--I-~.q 

Figure 6: Confonnance requirements and confonning implementations 

The approach using confonnance requirements to characterize confonnance is closer to the 
methodology defined in [9] than the approach using implementation relations. 

Dynamic confonnance between an implementation and a specification in the requirement 
approach is fonnally characterized by a relation between the model of the implementation and 
the specification. This relation is called a satisfaction relation. It will be denoted as sat, where 
mil has the signature: 

mil ~ MODS x SPECS 

An implementation IUT confonns dynamically to specification S E SPECS if the model m/uT 

satisfies all confonnance requirements in Rs. The set Ms of models of conforming 
implementations in the requirements approach is given by 

Ms = {m E MODS I \;IrE Rs: m sat r} 

For a particular confonnance requirement rj E R" the set Mri denotes the set of all models in 
MODS satisfying requirement rj, i.e. Mri = {m E MODS I m mil r;}. Figure 6 shows how 
intersection of the sets Mrj determines the set Ms of confonning implementations. 

6. TEST ARCHITECTURE 
Since confonnance testing involves experimenting with and observing the IUT it is 

necessary to consider the way how the IUT can be accessed. If, for example, the ruT can only 
be accessed by means of a channel that acts as a queue with delay the control and observation 
is different from as if the IUT could be accessed directly (synchronously, e.g. by function call). 
To take this into account, a test context has to be defined through which the ruT is accessed. 
We have to distinguish between the PCOs and IAPs as depicted in Fig. 7. 

tester test context 

-- point of control and observation (peO) 

• implementation access point (lAP) 

Figure 7: The test architecture 
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The tester is the implementation of a test suite. It is the entity that carries out the 
experiments by executing the test cases and obseIVing the results. The tester communicates 
with the test context via the peos, and indirectly with the IUT via the test context. It can be 
structured into an Upper Tester and a Lower Tester according to [9]. The experiments that 
constitute the test suite are called test cases. The execution of a test case leads to a verdict. 
The formal specification of a test case t is expressed in a formal language called the test 
notation and denoted by TESTS: t E TESTS. It follows that a test suite, being a set of test 
cases, is in P(TESTS), the powerset of TESTS. 

The test context is the system in which the JUT is embedded, and via which the IUT 
communicates with the tester. It relates events that occur at the peos in the communication 
between the test context and the tester, to events that occur at the lAPs in the communication 
between the test context and the IUT. The formal model of a test context is a transformation of 
behavior as it is modeled at the lAPs to behavior as it is modeled at the peos. It is here 
described as a function C on MODS: 

C: MODS ~ MODS 

It follows that the behavior of the JUT as observed at the peos is formally expressed as 
C(mIUT). 

The peo is an interaction point in the test architecture where the tester interacts with the 
test context, and via the test context (indirectly) with the IUT. The test events are controlled 
and observed via the peos. 

The lAP is an interaction point in the test architecture where the IUT interacts with it's 
environment, i.e. the test context, and via the test context (indirectly) with the tester. 

Ideally the peos and lAPs coincide and the test context is empty. In this case the tester 
interacts directly with the JUT and C(mllf[') = mlUT. 

peos and lAPs are formally modeled as interaction points of mlUT. Their concrete 
representation depends on the formalism used for MODS. 

7. TEST EXECUTION 
During the run of a test case t E T ~ TESTS, where T is a test suite, observations are made. 

An observation is an element from a set of all possible observations OBS. It can include a log 
of occurring interactions, a (preliminary) verdict, or anything which is considered important for 
determining the result of the test case execution. The result of a test case execution which 
leads to an observation a E OBS is defined by a verdict assignment verdI which must exist for 
each test case t E T: 

verdt : OBS ~ {pass, fail} 

The assignment of pass to an execution of a test case indicates that the test purpose could 
be achieved. It does not imply that the IUT is conforming under all circumstances. For 
example, execution of the same test case at a different occasion may yield the verdict fail. Test 
cases have to be designed in such a way that the test verdict pass implies with a high 
probability that the IUT conforms to the specification from which the test case has been 
derived. 
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A test suite T passes if all test case executions of test cases t E T yield the verdict pass. It 
fails otherwise. 

8. HOW TO COMPLY WITH THIS STANDARD 

To comply with this standard the parties involved in the formal conformance testing process 
shall identify the following items: 

- a formalism of instantiated specifications SPECS; 

- a parameterized standardized specification S; 

- a modelling formalism MODS; 

- an implementation relation imp and/or satisfaction relation SlIt; 

- if both imp and sat are given, m imp s <=> VrE Rs: m sat r must be demonstrated; 

- a tester, an IUT and a test context and their mutual interfaces lAP and PCO in MODS; 

- a test suite T!;;; TESTS, where TESTS is a test notation; 

- a function C : MODS -? MODS modelling the test context; 

- a set of observations OBS; 

- for each t ETa verdict assignment 

If automatic test generation is done, there is a need to identify a limiting function for the test 
suite and a coverage function that identifies the degree to which the specified functionality of 
the IUT is tested by the test suite. 

9. CONCLUSIONS 

The paper describes a framework for formal methods in conformance testing as it is in the 
process of standardization within ITU-T and ISO. It identifies a number of issues which are 
important when defining a formal method for conformance testing. The implementation 
relation and the testing context are two of them. Being a framework it does not describe a 
concrete method. Therefore the user is anyone who develops tools or formal methods for 
conformance testing. The framework gives some guidance on which important issues exist. 
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System Example 
~conCOnf] 

1(1) 

ISAP 

[(User)] 
signal e:, 
ConReq, DatReq, Dis, 
ConConf, CR, DT, CC, Ack; 

Protocol_M signallist 
User - ConReq, DatReq, Dis; 

~CC,ACk] 

MSAP 

[CR,DT] 

Medium_M 

[CC,Ack] 
/ 

LSAP 

[CR,DT] 

Figure 8: The system diagram for the protocol 
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Block Protocol_M 
[ConConf] 

1(1) 

I~onnect ISAP and u;_~ 
connect MSAP and L; 

U 

[(User)] 

(1,1) 

Protocol_B 

[CR,DT] 

L 

[CC,Ack] 

Figure 9: The block of the sending process 
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Process ProtocoCB 1(1) 

Figure 10: The sending process 
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Block Medium_M 1(1) 

I~OM.CI MSAP and E; 'I 
COMocl LSAP and L; 

[ec, Ack] 

E 

[CR,DT] 

(1,1) 

Medium_B 

[ee,Ack] 

L 

[eR,DT] 

Figure 11: The block modeling the unreliable medium 

Process Medium_B 1(1) 

Figure 12: The behavior of the unreliable medium 


