
12

Framework for formal methods in conformance testing

Prof. Dr. Dieter Hogrefe

Universitiit Bern, Institut fUr Infonnatik, Liinggassstrasse 51,

CH-3012 Bern, Switzerland, e-mail: hogrefe@iam.unibe.ch

This paper presents the latest developments in the Fonnal Methods in Confonnance
Testing (FMCT) project of ITU and ISO. The project has been initiated to study the role of
fonnal description techniques in the confonnance testing process. The goal is to develop a
standard that defines the meaning of confonnance in the context of FDTs. A general
framework which has been developed in the FMCT project will be presented.

1. INTRODUCTION
The primary objectives of standardization is to allow systems developed by different

vendors to work together, to exchange and handle infonnation. Confonnance testing, i.e. the
assessment of a product on confonnance with it's specification, is an important issue to
compatibility. To achieve this, a standard way has to be defined to look at products. This has
been done in a joint project of the standardization organizations ISO and ITU which has been
started around 1983. The effort resulted in a standard called "Confonnance Testing
Methodology and Framework (CTMF)" [9].

CTMF is a very general framework which should be applicable to the widest possible range
of specifications and products.

Recently, more and more specifications in the communications world are being made by use
of a fonnal description technique (FDT). This makes it necessary to define the meaning of
confonnance in this fonnal context.

ISO and ITU-T started another joint project around 1989, called project 1.21.54 in ISO and
question 8/10 in ITU-T. This new effort should result in a standard on "Fonnal Methods in
Confonnance Testing (FMCT)" [3]. The current planing of the project extends to May 1997.
At this date the pUblication of an International Standard in ISO and the respective standard in
ITU-T is desirable. This means that there needs to be a Committee Draft around middle of
1995 and a Draft International Standard around 1996. Two main meetings of the project are
planned per year, but there may be additional meetings in the subgroups.

Given a fonnal specification, how can one find out whether an implementation confonns to
this specification?

The motivation of this activity is the existence of fonnally described standards and therefore
the need to define the meaning of confonnance with respect to fonnal specifications.

T. Mizuno et al. (eds.), Protocol Test Systems
© Springer Science+Business Media Dordrecht 1995

174 Invited Adress 2

As FMCT is a very general problem in software engineering, it's principles should be
applicable to any application area, in particular any application area in communications, e.g.
OSI, ODP and mCN.

Since C1MF defines conformance in a very general informal sense, it serves as a natural
basis for the more formal work on FMCT. By nature there is a close relationship between
C1MF and FMCT. In particular, the concepts and their definitions ought to be compatible
between the two documents.

One has to distinguish between three different types of concepts:

a) concepts of C1MF not subject to FMCT

b) concepts of FMCT with no relationship to C1MF

c) concepts shared by FMCT and C1MF

Concepts of type a) of course remain valid in the FMCT framework. There is no additional
formal interpretation of these concepts.

Category b) contains concepts which exist due to the formal nature of FMCT. In many
cases these concepts have not been handled by C1MF because they have a generally agreed
upon informal meaning sufficient in the CTMF context and can be looked up in standard
dictionaries. Examples are the terms verification and validation. In a formal context, though,
these terms need further precision, specifically adapted to formal specification and testing of
communication protocols. .

Category c) contains those concepts which have been defined in the C1MF context but
need further interpretation in FMCT. Of course, the formal interpretation needs to be
consistent with the informal one. The following example shall illustrate the definition of
concepts in category c).

A protocol implementation conformance statement (PICS), according to CTMF, is a
statement made by the supplier of an OSI implementation or system, stating which capabilities
have been implemented, for a given OSI protocol.

In the formal context, PICS defines actual values for the parameters of the formal
specification S for a given implementation I. A particular PICS indirectly determines a subset
of the conformance requirements defined for S.

The FMCT project is currently maintaining a working document which ultimately should
become the standard or recommendation, respectively.

The main part of the document contains the definition of the terminology which is used to
define the framework for formal methods in conformance testing.

Besides the main part there are 2 rather elaborated annexes.

Annex A explains the relationship between the FMCT concepts and the existing FDTs:
Estelle [8], LOTOS [7] and SDL [10]. The annex explains for example the concept of the
implementation relation w.r.t. the three languages and gives an interpretation of PICS
proforma and PICS.

Annex B deals with test generation methods as they have been developed for finite state
machine and other models, in particular [1], [11], [2], [13], and [6]. A common example, the
INRES protocol and service [5] is used to show the applicability of existing test generation

Frameworkfor formal methods in conformance testing 175

methods to an OSI protocol specification. INRES is not a real protocol, but it contains many
features of OSI protocols. It is an abridged version of the Abracadabra protocol used in [12]
for illustration.

Besides these annexes there are two other activities reflected in Annex C and D on
specification styles for testability and measures for test suite coverage respectively. These are
activities for further study at the moment.

The elements described in this paper have been carefully developed by investigation of a
number of formal test case generation methods and tools some of which are briefly described in
Annex B of [3].

The following sections will give an overview of the main ideas of [3].

2. BASELINE

In order to be able to establish a formal relationship between a specification and an
implementation under test it is necessary to have a complete and completely formal
specification of an IUT. Usually this is not given. The normal case is to have a specification
consisting of a mixture of description techniques, such as prose text, MSC, FDTs, ASN.1, etc.
Furthermore the system specification may make reference to other specification, e.g. standards,
without explicitly incorporating them. In these cases a formal specification of the IUT has to be
developed before conformance can be checked by formal means. Fig. 1 shows that scenario.

Fig.I: A formal and complete specification of the ruT is needed

When we talk about a specification in the following, we always talk about a complete
formal specification of the IUT. During the development process of this specification it may
have been necessary to choose among options. If the FDT allows it, it may be possible to
develop a more general parameterized specification. This does no longer specify one
particular ruT but a set of ruTs according to the different combinations of options which are
possible. In order to get the specification of a particular ruT it is necessary to instantiate the
parameterized specification with actual values for the formal parameters. This is then called it

176 Invited Adress 2

an instantiated specification. If in the following the term specification is used, usually an
instantiated specification is meant

Under these assumptions a formal meaning can be assigned to the term "conformance".

3. FORMAL MEANING OF CONFORMANCE

We will develop a framework in this section which can be used to characterize
"conformance" precisely. We will see that there is not only a single "conformance" between a
specification and an implementation, but that there are many different possibilities to define it,
depending on what degree of similarity one wants between the specification and the
implementation.

The set of instantiated specifications is denoted by SPECS.

An implementation consists of hardware devices or a combination of hardware and software
that is executed by it. An implementation has physical connectors or programming interfaces
for communication with other implementations.

The set of implementations is called IMPS.

The elements of SPECS are mathematical objects while the elements of IMPS are not.
Therefore it is not possible to define a formal relation between specifications and
implementations.

We need to transform an implementation into a mathematical object. It is assumed (test
assumption) that any implementation IUT can be modeled by an element mlUT in a formalism
MODS (e.g. labeled transition systems, finite state machines). The model mlUT of an
implementation IUT may simply be the set of traces that can be observed while experimenting
withIUT.

Usually it is not possible to actually calculate mlUT for a particular IUT. We only need this
concept to define the meaning of conformance. The formalism MODS may be the same as
IMPS. We will later see an example where for both SDL is used. This may facilitate the
comparison of both.

For a particular choice of MODS one implementation may have many different models in
MODS. The test assumption implies that these cannot be distinguished by testing. Therefore it
is sufficient to model an implementation IUT by a single model mllff E MODS.

MODS

IMPS

mlUT

•

l modeled_by

JUT

Fig. 2: The relation between elements of IMPS and MODS

Frameworkfor formal methods in conformance testing 177

Confonnance between an implementation and a specification consists of two parts: static
confonnance and dynamic confonnance.

In the FMCT context static conformance involves the correct instantiation of a
parameterized specification such that the actual values of the parameters are an allowed
combination of implementation options according to the ICS profonna (see [9]).

Dynamic conformance involves the pennitted observable behavior of an implementation in
instances of communication as described by the specification. Dynamic confonnance between
an implementation and a specification is fonnally characterized by a relation between the model
of the implementation and the specification. This relation is called an implementation
relation. It will be denoted as imI2 with the following signature:

imI2 !: MODS x SPECS

This relation is not a priori given just by the knowledge of MODS and SPECS. We will see
in the following section by an example, that for one fonnalism, SDL in the example, there can
be different meaningful implementation relations. Which one to choose may be application
dependent There has been no implementation relation proposed so far which is accepted as the
universal one under all circumstances.

The lesson to learn from this is that it is not sufficient just to give a fonnal specification, but
it is also necessary to give the implementation relation. An implementation IUT confonns
dynamically to an instantiated specification s with respect to the relation imI2, if the model mlUT

of IUT relates to s as mlUT imI2 s. In this case mlUT is a confonning model of s with respect to
imI2.

One specification can have many confonning implementations. For a specification s E

SPECS and an implementation relation imI2 the set Ms denotes the set of all confonning models
in MODS:

Ms = {m E MODS I m imI2 s}

Fig. 3 shows how an instantiated specification s E SPECS detennines a set of conforming
implementations Is. The set Is denotes the set of implementations that can be modeled by
models in Ms. Therefore the set Is is the set of implementations that implement s correctly.

SPECS

s _ .
....

'.

MODS

correctly'
implemen~Odelled _by

IMPS ~

Fig. 3: Relations between IMPS, MODS and SPECS

178 Invited Adress 2

4. EXAMPLE

In this section we will give an example to illustrate some of the concepts introduced in the
previous section.

Figures 8-12 show an SDL specification. It is part of the initiator side of the INRES
protocol [5]. the specification is not parameterized in order to keep the example simple. For an
example of a parameterized specification see [3].

Only the external behavior is considered in the context of conformance. An SDL
specification does not explicitly express the external behavior. Therefore to test for dynamic
conformance a representation of the observable behavior derived from the SDL specification is
needed. A suitable representation for the external behavior for an SDL specification is by an
ACT (Asynchronous Communication Tree, see [4]) or an LTS (Labeled Transition System).

If SDL is used for specification of systems the set SPECS is the set of all ACTs or LTSs
which can be derived from any SDL specification. For the example a small part of an ACT
representation of the observable behavior is illustrated in Fig. 4. The ACT representation
associates to each state information signals in the different channels. In the figure only channels
that convey a signal in the current state are shown. If all channels of the system are ernpty this
is denoted Q = <>. The state information is however not needed when test cases are defined
from the ACT representation.

?ConReq

53. <2u!AP -<CR>

56. QISAP -<ConConf>

IConCon!

57.Qj-<>

Figure 4: An ACT representation of part of the observable behavior

The concepts of the form~l framework are now illustrated by giving three different
implementations 11./2 and h The implementations are represented by their models from the set
MODS for which SDL is used. Please note that the SDL specifications 110 12 and h actually
define an ACT, i.e. a number of traces. SDL is only used to define these traces.

Frameworkfor formal methods in conformance testing 179

II is an implementation that has a model that coincide with the model of the specification.
This means that the block description of the protocol shown in Figures 9 and 10 can be seen as
a model for this implementation.

12 implements the protocol as specified in Figure 10 as well, except for the behavior that can
be expressed in SDL as shown in Figure 5. The implementation sends a signal DT instead of a
CR when a connect request is received.

h similarly implements the protocol as defined in the specification. In addition in state
connected it may receive a new connect request and initiate again the connection phase as
shown in Figure 5.

Implementation 12 Implementation 13

Figure 5: The changed behavior of implementations 12 and h

The criterion for conformance of an implementation and an SDL specification is defined in
terms of an implementation relation in:m between the model of an implementation and a
specification.

Several of the implementation relations defined are based on the existence of similar
sequences of events in the implementation and the specification. Sequences of observable
events can be derived from an ACT representation of an SDL specification. A sequence of
observable events is denoted a trace and a trace set Tr(S) denotes the set of all possible traces
of a specification S. A trace of the ACT shown in Figure 4 is <ConReq, CR, Cc, ConConf>.

Only a very limited class of SDL specifications specify a behavior that is expressed by a
finite set of traces. The reason is the unbounded queue property of an SDL channel. Even for
simple systems specified in SDL it should be possible to send any number of a signal conveyed
by the channel from the environment to the system. E.g. in the example specification it should

180 Invited Adress 2

be possible to send any number of the signal ConReq to the system. Hence in practice
exhaustive test of the observable behavior of an SDL system is not possible. Still the trace
models are useful in the definition of a formal requirement for conformance of the dynamic
behavior of an implementation.

A relation that is often used as an implementation relation is the trace inclusion relation ~
(trace preorder). Two trace sets Tl and T2 satisfy the relation Tl ~ T2 if and only if Tl is a
subset of T2 •

The trace inclusion relation may be used as an implementation relation in two ways
dependent on how the requirements of the specification are interpreted. If the specification is
assumed to specify the maximal allowed behavior of an implementation, the trace set of a
conforming implementation is a subset of the trace set of the specification. For a conforming
implementation I and a specification S this is denoted I ~ S or (I, S) E ~tr.

The other interpretation of requirements specified by an SDL specification is that it defines
the miPimal required behavior of an implementation. In this case the trace set of a specification
S is a subset of a conforming implementation I , I ;;:: tr S .

The maximal allowed behavior implementation relation implies a very weak requirement on
a conforming implementation. An implementation that cannot perform any external action is a
conforming implementation of any specification, as the empty set is a subset of any trace set. It
is not possible to test for the minimal requLred behavior implementation relation due to the
infinite trace sets of most SDL specifications.

In Table 1 it is shown which implementations are conform ant with respect to the specified
example (here denoted S) and the two implementation relations.

(Impl,spec) satisfies ;;::/r

·································(j~·sf .. ·············· tr;;:;; ~-;;

(h S) false false

false true

Table 1: Overview of the conformance of 11, 12 and h with respect to different
implementation relations

As the trace set of implementation 11 is identical to that of the specification both the
maximal allowed behavior and minimal required behavior relation are satisfied for 11•

Implementation 12 does not satisfy ~ as the trace <ConReq,DT> is not a member of the trace
set of the specification. Similarly, the implementation relation;;:: tr is not satisfied either, as the
trace set of 12 does not include the trace <ConReq,CR>. For implementation h the
implementation relation Str is not satisfied as the implementation can for example perform the
trace <ConReq,CR,CC,ConConf,ConReq,CR>, that is not a trace of the specification. As h
can perform every trace of the specification it conforms according to the implementation
relation;;:: tr •

Frameworkfor formal methods in conformance testing 181

The model of an implementation is not known in advance for conformance testing. It can
only be approximated by performing experiments on the implementation and observing
responses. Non-deterministic system specifications make it impossible to ensure that an
implementation model is a complete description of the possible behavior.

In the example specification it may not be possible to determine if an implementation can
perform a specific trace. This is the case for trace <ConReq .CR> . The unreliable channel may
always discard the signal CR such that it never occurs as an observable event in the
environment However it is not possible to derive from a number of experiments in which the
signal CR has not been observed whether the trace has been implemented. So the trace
preorder implementation relations may provide a sound basis as a conformance criterion only if
additional assumption are made on the specification and/or implementation. For instance it may
be assumed that information is provided on how non-determinism of the specification is
resolved in the implementation.

5. CONFORMANCE REQUIREMENTS
In the previous sections conformance has been defined in an abstract way by means of

implementation relations on the sets MODS and SPECS.

However. in [9j the definition of conformance is based on the more concrete concept of
conformance requirements. This second characterization of conformance is a possible
refinement of the previous definition. and both approaches define the same concept with the
same expressive power.

[9] distinguishes two types of conformance requirements: static and dynamic. The meaning
is analog to the distinction of static and dynamic conformance introduced above. In the FMCT
context static conformance requirements are requirements on the possible combinations of
values of the formal parameters of the specification. Dynamic conformance requirements are
requirements implied by the formal specification and the implementation relation. Both static
and dynamic conformance requirements are properties that need to be satisfied by (the model
of) an implementation in order to conform.

In a formal context conformance requirements are expressed in a formal requirement
language. This may for example be temporal logic. REQS denotes the set of all requirements
that can be expressed in a particular language. In the requirements approach an instantiated
specification S E SPECS is expressed as a set of requirements R. !: REQS. The set of all
possible specifications is the powerset of the set of possible requirements: SPECS = P(REQS).
One element r E R. represents a single dynamic conformance requirement. In general. the set
R. can be infinite.

182 Invited Adress 2

SPECS MODS

S·--I-~.q

Figure 6: Confonnance requirements and confonning implementations

The approach using confonnance requirements to characterize confonnance is closer to the
methodology defined in [9] than the approach using implementation relations.

Dynamic confonnance between an implementation and a specification in the requirement
approach is fonnally characterized by a relation between the model of the implementation and
the specification. This relation is called a satisfaction relation. It will be denoted as sat, where
mil has the signature:

mil ~ MODS x SPECS

An implementation IUT confonns dynamically to specification S E SPECS if the model m/uT

satisfies all confonnance requirements in Rs. The set Ms of models of conforming
implementations in the requirements approach is given by

Ms = {m E MODS I \;IrE Rs: m sat r}

For a particular confonnance requirement rj E R" the set Mri denotes the set of all models in
MODS satisfying requirement rj, i.e. Mri = {m E MODS I m mil r;}. Figure 6 shows how
intersection of the sets Mrj determines the set Ms of confonning implementations.

6. TEST ARCHITECTURE
Since confonnance testing involves experimenting with and observing the IUT it is

necessary to consider the way how the IUT can be accessed. If, for example, the ruT can only
be accessed by means of a channel that acts as a queue with delay the control and observation
is different from as if the IUT could be accessed directly (synchronously, e.g. by function call).
To take this into account, a test context has to be defined through which the ruT is accessed.
We have to distinguish between the PCOs and IAPs as depicted in Fig. 7.

tester test context

-- point of control and observation (peO)

• implementation access point (lAP)

Figure 7: The test architecture

Frameworkfor formal methods in conformance testing 183

The tester is the implementation of a test suite. It is the entity that carries out the
experiments by executing the test cases and obseIVing the results. The tester communicates
with the test context via the peos, and indirectly with the IUT via the test context. It can be
structured into an Upper Tester and a Lower Tester according to [9]. The experiments that
constitute the test suite are called test cases. The execution of a test case leads to a verdict.
The formal specification of a test case t is expressed in a formal language called the test
notation and denoted by TESTS: t E TESTS. It follows that a test suite, being a set of test
cases, is in P(TESTS), the powerset of TESTS.

The test context is the system in which the JUT is embedded, and via which the IUT
communicates with the tester. It relates events that occur at the peos in the communication
between the test context and the tester, to events that occur at the lAPs in the communication
between the test context and the IUT. The formal model of a test context is a transformation of
behavior as it is modeled at the lAPs to behavior as it is modeled at the peos. It is here
described as a function C on MODS:

C: MODS ~ MODS

It follows that the behavior of the JUT as observed at the peos is formally expressed as
C(mIUT).

The peo is an interaction point in the test architecture where the tester interacts with the
test context, and via the test context (indirectly) with the IUT. The test events are controlled
and observed via the peos.

The lAP is an interaction point in the test architecture where the IUT interacts with it's
environment, i.e. the test context, and via the test context (indirectly) with the tester.

Ideally the peos and lAPs coincide and the test context is empty. In this case the tester
interacts directly with the JUT and C(mllf[') = mlUT.

peos and lAPs are formally modeled as interaction points of mlUT. Their concrete
representation depends on the formalism used for MODS.

7. TEST EXECUTION
During the run of a test case t E T ~ TESTS, where T is a test suite, observations are made.

An observation is an element from a set of all possible observations OBS. It can include a log
of occurring interactions, a (preliminary) verdict, or anything which is considered important for
determining the result of the test case execution. The result of a test case execution which
leads to an observation a E OBS is defined by a verdict assignment verdI which must exist for
each test case t E T:

verdt : OBS ~ {pass, fail}

The assignment of pass to an execution of a test case indicates that the test purpose could
be achieved. It does not imply that the IUT is conforming under all circumstances. For
example, execution of the same test case at a different occasion may yield the verdict fail. Test
cases have to be designed in such a way that the test verdict pass implies with a high
probability that the IUT conforms to the specification from which the test case has been
derived.

184 Invited Adress 2

A test suite T passes if all test case executions of test cases t E T yield the verdict pass. It
fails otherwise.

8. HOW TO COMPLY WITH THIS STANDARD

To comply with this standard the parties involved in the formal conformance testing process
shall identify the following items:

- a formalism of instantiated specifications SPECS;

- a parameterized standardized specification S;

- a modelling formalism MODS;

- an implementation relation imp and/or satisfaction relation SlIt;

- if both imp and sat are given, m imp s <=> VrE Rs: m sat r must be demonstrated;

- a tester, an IUT and a test context and their mutual interfaces lAP and PCO in MODS;

- a test suite T!;;; TESTS, where TESTS is a test notation;

- a function C : MODS -? MODS modelling the test context;

- a set of observations OBS;

- for each t ETa verdict assignment

If automatic test generation is done, there is a need to identify a limiting function for the test
suite and a coverage function that identifies the degree to which the specified functionality of
the IUT is tested by the test suite.

9. CONCLUSIONS

The paper describes a framework for formal methods in conformance testing as it is in the
process of standardization within ITU-T and ISO. It identifies a number of issues which are
important when defining a formal method for conformance testing. The implementation
relation and the testing context are two of them. Being a framework it does not describe a
concrete method. Therefore the user is anyone who develops tools or formal methods for
conformance testing. The framework gives some guidance on which important issues exist.

10. ACKNOWLEDGMENTS

The contents of this paper is not the work of a single person. TIle ideas and some of the text
are taken from the FMCT working document [3] which has been developed by the joint
lTU/ISO project on FMCT. Numerous persons were and are still involved in this work. In
particular I want to mention Ana Cavalli, Anne Rouger, Jan Ellesberger, Jean-Philippe
Favreau, Lex Herink, Pim Kars, Finn Kristoffersen, Jan Kroon, Marc Phalippou, Thomas
Robles, Jan Tretmans and Umit Uyar who built the core of the project and supplied major
contributions to the current version of the document.

Frameworkfor formal methods in conformance testing 185

REFERENCES

[1] Cavalli, A, et al: Automated Protocol Confonnance Test Generation Based on Formal
Methods for LOTOS Specifications, Proceedings of the IFIP 5th International Workshop on
Protocol Test Systems, Montreal, Canada, September 1992.

[2] Ek, A., Ellesberger, J., Wiles, A.: Computer supported Test Generation from SDL
Specifications, Technical Report, Telia Research, Sweden, 1993.

[3] ISO/ITU-T: Fonnal Methods in Confonnance Testing, Working Draft, July 1994.

[4] Hogrefe, D.: Automatic generation of test cases from SDL specifications, SDL Newsletter,
no.12,1988.

[5] Hogrefe, D.: OSI fonnal specification case study: the INRES protocol and service, report
IAM-91-012, University of Bern, 1991.

[6] Hogrefe, D., Grabowski, J., Nahm, R: Test case generation with test purpose specification
by MSCs, (in O. Faergemand: 6th SDL Forum, SDL'93), North-Holland, 1993.

[7] ISO TC97/SC21: LOTOS: Language for the temporal ordering specification of
observational behavior, 1991.

[8] ISO TC97/SC21: ESTELLE: A fonnal description technique based on an extended state
transition model, 1991.

[9] ISO/lEC: Infonnation Technology - OSI confonnance testing methodology and
framework, IS 9646,1989.

[10] ITU-T SG 10: Recommendation Z.100: Specification and Description Language SDL,
1992.

[11] Phalippou, M., Groz, R: From Estelle specifications to industrial test suites, (in J.
Quemada: FORTE'90), North-Holland, 1991.

[12] ISO TC97/SC21: Guidelines for the application of Estelle, LOTOS and SDL, technical
report TR 10167, 1990.

[13] Ural, H., Williams, A: Test generation by exposing control and data dependencies within
system specifications in SDL, (in R Tenney: FORTE'93), North-Holland, 1994.

186 Invited Adress 2

System Example
~conCOnf]

1(1)

ISAP

[(User)]
signal e:,
ConReq, DatReq, Dis,
ConConf, CR, DT, CC, Ack;

Protocol_M signallist
User - ConReq, DatReq, Dis;

~CC,ACk]

MSAP

[CR,DT]

Medium_M

[CC,Ack]
/

LSAP

[CR,DT]

Figure 8: The system diagram for the protocol

Frameworkfor formal methods in conformance testing 187

Block Protocol_M
[ConConf]

1(1)

I~onnect ISAP and u;_~
connect MSAP and L;

U

[(User)]

(1,1)

Protocol_B

[CR,DT]

L

[CC,Ack]

Figure 9: The block of the sending process

188 Invited Adress 2

Process ProtocoCB 1(1)

Figure 10: The sending process

Frameworkfor formal methods in conformance testing 189

Block Medium_M 1(1)

I~OM.CI MSAP and E; 'I
COMocl LSAP and L;

[ec, Ack]

E

[CR,DT]

(1,1)

Medium_B

[ee,Ack]

L

[eR,DT]

Figure 11: The block modeling the unreliable medium

Process Medium_B 1(1)

Figure 12: The behavior of the unreliable medium

