
1

Open Issues in Conformance Test Specification

Bernd Baumgarten

GMD, Rheinstr. 75, 64295 Darmstadt, Germany

ABSTRACT

In this paper, we deal with semantic problems of test specification in the OSI Conformance
Testing Methodology and Framework, especially in the test notation TTCN. They concern
mainly the PCO model and the test purposel test verdict complex. In either case, we identify
several open questions. We show up merits and disadvantages of various ways to fill the re­
maining gaps in standardization, and recommend some specific solutions.

1. INTRODUCTION

As any regulation written in natural language and by human beings, protocol and protocol test
standards are prone to gaps, ambiguities and contradictions. Such defects are often felt more
painfully in testing than in the implementation of protocols. The reason is that protocol imple­
mentors will often produce "satisfactory" implementations by creating their own interpreta­
tion the standard, complementing it or deviating from it in reasonable ways whenever neces­
sary. If different interpretations lead to interoperability problems, these may be ironed out in
implementor groups harmonizing the implementations. On the other hand, clients of a test
laboratory, trying to obtain a favourable test result and later a certificate, but confronted with
negative test results caused by defects in test standards, may become quite annoyed. Testing
and certification procedures do not leave much room for compromise. Therefore, test stan­
dards require particular care and scrutiny.

In this paper, we deal with some test specification problems encountered in the OSI Con­
formance Testing Methodology and Framework (CTMF) [1], especially in the test notation
TICN as published in [2]. They concern mainly

- the incomplete specification of points of control and observation (PCOs) and undesired
effects of frequently found interpretations of the PCO model, as well as

- unclear effects of non-determinism in protocol specifications on the choice of test pur-
poses, and, closely related to that, weaknesses of verdict assignment rules.

Some of these problems arise not purely within TTCN, but rather from the interplay of CTMF
and other OSI standards. Some were already addressed in the standardization work, but could
not be solved due to reasons of schedule and compromise. As far as we know, the progression
to the next version of TTCN, due in 1995, which is to include two amendments, will not af­
fect these problems in any way.

For the sake of readers acquainted with CTMF, let us remark here that, in order to pro­
vide a clear and simple picture of these problems, we stick to a widespread illustrative para­
digm, used in many discussions of conformance testing: We confine ourselves to protocols
and do not talk about profiles or information objects etc.; we confine ourselves to single-party
testing, in particular to the Distributed test method, to layers without substructure, to single­
layer and single-protocol IUTs, and to ASPs (and not PDUs) as the primary kind of events

T. Mizuno et al. (eds.), Protocol Test Systems
© Springer Science+Business Media Dordrecht 1995

4 Part One

dealt with at PCOs. The terms which are essential to understanding our arguments are ex­
plained in the paper.

In order to give an unbiased view, we do not speak in terms of specific formal description
techniques, such that no one will be tempted into dismissing the problems as merely descrip­
tion language specific issues.

In Section 2, we summarize some traits of the OSI BRM and service conventions. In Sec­
tion 3, we will deal with the PCO model in ITCN, the motivation behind, and the problems
arising from it. We only explain the barest basics of ITCN. Readers desiring to gain more
insight may consult [2, 3, 4]. Section 4 will be devoted to problems centered around protocol
non-determinism, test purposes and verdicts. Throughout the paper, statements derived from
standards (BRMx, Qux, DISC) or implementation needs (IMPLX) are analysed and contrasted
with one another, leading to problems and questions (PRx).

2. A SHORT REsUME OF THE OSI BRM AND THE ROLE OF SERVICES

In this section, we summarize the OSI modelling concepts from [5] and [6]. Later, we will
relate them to CTMF notions.

2.1. OSI Basic Reference Model
The OSI Basic Reference Model (BRM) provides a framework in which the OSI protocol spe­
cifications can be expressed. In its simplest form, as shown in Figure 1, i.e. disregarding rout­
ing and relays, it models two communicating open systems, A and B, as two stacks of corre­
sponding protocol entities, AI-A7 and BI-B7, residing on top of a global physical medium.
The (N)-service is provided by the interplay of the entities AN, AN-I, ... , AI, of the physical
medium, and of the entities B 1. ... , BN; in other words, the (N)-service provider consists of
AN, BN, and the (N-l)-service provider.

Figure 1. The OSI BRM global structure

2.2. ASPs and PDUs
Protocol entities are communicating locally at service boundaries, to be more precise, at ser­
vice access points (SAPs), by means of service primitives. In Figure 1, this local communica-

Open issues in conformance test specification 5

tion is going on between vertically neighbouring protocol entities. We will abbreviate "ser­
vice primitives" by "ASPs" (abstract service primitives), as in CTMF terminology.
Protocol entities are also communicating, via lower layer entities and the physical medium,
with peer protocol entities, by means of protocol data units (PDUs). In Figure I, this commu­
nication can be interpreted to be going on horizontally, e.g. between AN and BN. In the oper­
ational view of the BRM, the (N)-PDUs are wrapped up in (N-I)-ASPs, i.e. they are commu­
nicated vertically as data components (called parameters) of ASPs, see Figure 2. Some clari­
fying views on ASPs were developed in [7].

(N)-Entity

(N)-PDUs 10 and from remole peer (N)-enlity

... are Irealized
by means of ...

(N-1) I y -- ASPs 0-------/

.. . al a Service Access
Poinl(SAP)~ User

(N-1)-Entity Provider

Figure 2. ASPs and PDUs

An ASP is an abstract, atomic, implementation-independent representation of an inter­
action between an OSI-service user and its OSI-service provider. The interaction shall be re­
garded as taking place as an instantaneous event, which cannot be interrupted by another
interaction. ASPs do not necessarily imply implementation-specific mechanisms or direct
relationships to protocol elements. ASPs are invoked by either user or provider. They may
involve bidirectional information exchange, but they have a direction indicating the main
information flow. It seems that they are invoked by the producer of the main information.

The OS I-local view and an OSI-service definition are described in terms of the set of
ASPs which the OSI-service-user and the OSI-service-provider are allowed to exchange, to­
gether with the sequencing rules which apply to these exchanges, thus defining an "ASP lan­
guage." Existing OSI-service definition standards often do not (fully) describe the global ef­
fects of the service as observed by two remote service access points, although [6] requires that
"the correlation among OS I-service primitives for this set of OSI-local views" be defined.

[6] allows for strictly local interactions het",'een user and provider in implementations
that do not count as service primitives and are m l considered in the service definitons. These
may, in particular, involve declarations of w!llingness to issue or of readiness to accept an
ASP and similar flow control informations.

2.3. Operational model and reality
Note that the BRM, together with the relevant protocol specifications and service definitions,
provides only an operational specification for correct behaviour of local OSI-open systems.
The valid behaviour of an OSI-open system is, in the last analysis. only specified with respect
to the exchange of bit streams via the physical medium and not with respect to ASPs at the
upper boundary.

6 Part One

Operational specifications and operational semantics are widely accepted as a means of
defining behaviour. A well-known example is the definition of computable string functions in
terms of a Turing machine model working with mechanically oriented notions. In a very
similar manner, the OSI concepts of vertically neighbouring protocol entities, exchanging
service primitives at service boundaries, are merely fictitious constructs, made up to convey
in an operational manner the definition of correct behaviour of a stack of protocol entities. An
implemented open system need not execute any activities that could be identified as a coun­
terpart for any of the ASPs involved in its specification. We will see that in testing the situ­
ation is somewhat different.

OSI explicitly does not prescribe actual implementation structures, cf. e.g. "Only the
external behaviour of open systems is retained as the standard of behaviour of real open
systems" in [5].

Commercially available OSI implementations are often only partial open systems, which
do not span all 7 layers. The realization of the uppermost service boundary of an implemen­
tation as an actual interface is not regulated by OSI standards. It is however a widely accepted
scheme that OSI implementations provide an actual "upper" interface representing their upper
service boundary, at which the occurrence of ASPs is an observable reality, even though it is
completely left to the implementors how the upper ASPs are realized, e.g. by means of asyn­
chronous mechanisms. The lower interfaces of lower layer entities are quite well described,
down to physical characteristics of plugs.

As the real activities in implementations constituting an ASP necessarily consume time,
the question arises what is actually retained in reality from the atomicity of an ASP and its
common performance by user and provider.

2.4. CoUected theses
BRM1. OSI does not prescribe actual implementation structures, neither of the interior, nor

of the interfaces.
BRM2. In protocol specifications, ASPs are common atomic actions of a user and a provider

at a service boundary, occurring in observable orders. Incomplete ASP attempts are
not considered. ASPs are abstract constructs, introduced to define valid open system
behaviour operationally.

BRM3. An OSI service definition constrains the behaviour of the OSI-service user by per­
mitting only selected sequences of ASPs.

IMPL 1. Many OSI implementations provide an upper interface with real counterparts for
upper ASPs. User and provider at the SAP always observe the same order.

3. ASYNCHRONY AND PCOS

Many authors found that the structure of the points of interaction between the tester above
and the tested implementation or the underlying provider below have a marked influence on
the formulation of the test cases and on the verdicts assigned to event sequences in a test, e.g.
[8,9,10,11,12]. One structure for these points is described in CTMF, in particular in [2]. This
description is not unproblematic, as we will discuss in this section.

3.1. Conformance testing and ASPs
In this subsection, we give a short summary of the operational semantics of TTCN on a level
that does not force us to describe too many details of TTCN syntax.

CTMF AND TTCN BASICS
Under the simplifying assumptions made in the introduction, in protocol conformance

testing we are faced with the following problem: The behaviour of an implementation of an

Open issues in conformance test specification 7

(N)-layer protocol entity, called implementation under test (lUT), is to be analyzed by means
of a tester sitting on top of the IUT and on top of the common underlying service provider
(USP) realizing an (N-l)-service used by both the IUT and the Tester. Their interaction
points, called points of control and observation (PCO), are called UT and LT in Figure 3,
reminding of "upper and lower tester."

Figure 3: A simple test configuration

We note the following requirement in testing:

IMPL2. Service boundaries have to be realized as actual interfaces, if testers are to be granted
access to them.

The tester executes test cases written in TTCN, describing possible sequences of events.
In the sequel we will often have to speak of "the IUT and/or the underlying service provider
USP." We will abbreviate this by "the IUTIUSP." CTMF represents the tester by two entities,
called abstract testing functions, a lower and an upper tester, and considers different ways
how these two can be coordinated. This substructure does not matter in the following discus­
sions and was therefore omitted from the picture.

An event is the reception or emission of an ASP (a Receive, or a Send) at a PCO or the
reception of a notification from an expired timer that was started earlier by the tester (a Time­
out). In contrast with [6], TTCN assumes ASPs to be unidirectional and of two general kinds:
Send ASPs are initiated by the tester and transfer information exclusively from the tester to
the IUTIUSP. Receive ASPs are initiated by the IUTIUSP and transfer information exclusive­
ly from the IUTIUSP to the tester. The rare OSI ASPs that transfer information both ways
have to be substituted by short sequences of Send and Receive ASPs.

TTCN test cases are expected to be written in a way that the tester behaviour is deter­
ministic, such that the next ASP it sends or the verdict it reaches is always uniquely deter­
mined by the previous history of events. The aims behind this determinism requirement,
namely the repeatability of test cases with the same results, motivates several more rules of
TTCN. Note that repeatability is related with impartiality towards test clients, because it
precludes that the execution of a test case takes arbitrary turns and goes to different depths
with different clients.

A test case consists (in a simplified picture) of a behaviour tree, describing possible se­
quences of events or event patterns. It is written by means of indentation, where alternatives
are left-aligned at the same level of indentation and the sequentially next event is indented
below its predecessor. Figure 4 demonstrates the principle, omitting a few details required in
full TTCN. The maximal event sequences described are (UT!A, UT?B), (UT!A, LT?C, LT!D,
UT?E), and (UT!A, LT?C, LT!D, UT?F).

8 Part One

UT!A
UT?B
LT?C

LT!D
UT?E
UT?F

Figure 4: A (simplified) TTCN behaviour tree

During the execution of the behaviour tree, a path through it is chosen, depending on the
events actually happening. The next event to be executed is always determined from a list of
next alternatives. Such a list is either a "Receive list", i.e. a collection of Receive, Otherwise
(a sort of indiscriminate Receive) or Timeout alternatives, or a single Send alternative. Note
that this rule for alternatives does not appear explicitly CTMF, but it can be inferred from the
standard and the observation that alternatives that are obviously never reachable can be drop­
ped [8].

PCOs are closely related with SAPs; we will shortly come back to this point. Let us ob­
serve here that the SAPs at UT and LT will usually be realized in systems remote from one
another, i.e. the tester is a distributed system. In non-concurrent TTCN, the behaviour tree
describes global orders of events at LT and UT.

PCOS AND SERVICE BOUNDARIES
Note that a real tester, or at least a component of it, is interacting with the upper service

boundary of the IUT. In the OSI BRM, this boundary was only a conceptual abstraction; in
conformance testing it has to be actually realized as a useable interface. This creates a conflict
of aims:

- Outside of CTMF, OSI standards explicitly renounce prescribing details of the realiza­
tion of service interfaces, just as they renounce prescribing details of protocol entity
realization.
Customers acquiring an OSI implementation will ordinarily accomodate any user pro­
grams they want to run on top of it to the available interface; they can be seen as
"partners" of the implementor.

- But if this boundary has to be accessed by the tester, and the tester's behaviour towards
the IUTIUSP and its possible interactions with them have to be specified precisely, then
this indifference is not acceptable: Imagine, to use an analogy, a class of students
required to write an exam but being permitted to decide arbitrarily in which language,
on which medium and at which speed they will do so. In CTMF, a tester, as an examin­
ing instance, would therefore be served best by a complete specification of the upper
IUTIUSP interfaces both at UT and at LT.
Test laboratories accessing the IUT's upper interface are rather to be seen as "oppo­
nents" of the implementor, because it is their task to spot errors. If they cannot get
along well with the upper interface, they might consider some of the less successful
interactions as IUT errors. The LT interface is less of a problem, because in the tester's
local system we have again the "partner relation."

One aspect slightly defuses the "opponent relation" at UT: Implementors of tester soft­
ware also want to sell their products and will try hard to enable them to cooperate smoothly at
least with the more common types of IUT upper interfaces. But neither will this do justice to
a good but unconventional IUT, nor does the appeal to common sense and good will solve all
interoperability problems - why else would we need standards and testing, in the first place?

Open issues in conformance test specification 9

In the absence of standardized interface definitions, TTCN and CTMF came up with a
minimal solution to this dilemma, by fixing a (somewhat sketchy) structure of PCOs, giving
them slightly more structure than that provided by the atomic interactions:

QUI. The PCO model is based on two FIFO queues: one output queue for the tester send­
ing ASPs and one input queue for the tester receiving ASPs (under our simplifying
assumptions). These queues are free of loss and reordering. No capacity bound is
mentioned in CTMF. These queues are explicitly meant abstractly, not as imple­
mentation requirements.

QU2. The output queue is assumed to be located within the IUT (at UT) and within the
underlying provider (at LT), respectively.

With these provisions, TTCN feels safe to postulate:

QU3. ASPs, at least valid ones (cf. BRM3), can always be sent by the tester and are never
lost.

3.2. Resulting problems
THE INPUT AND OUTPUT QUEUES

By QU2, TTCN prescribes a queue at the upper boundary of the implementation for ASPs
sent from above. This may be seen as contradicting BRMI and QUI. Hence, TTCN users are
faced with the problem:

PRI. Which of these two positions, BRMI and QUI, has precedence? Can one actually
ask for a tester output queue in the IUTIUSP? And if not: should it be dropped or
placed somewhere else?

The second problem naturally arising from the PCO queues is:

PR2. If the PCO queues are retained, what can be assumed about their capacities?

An analysis of the effects of the tester output queue on the observable behaviour of the IUTI
USP depends partly on the capacity of the queue. If it is unbounded, then the only observable
effect is that send events from above always succeed "immediately."

Now, unfortunately,

IMPL3. Unbounded queues are usually very hard to implement.

If the unbounded PCO output queue (or, at least, its effect Qu3) were dropped, we would face
a flow control problem. A guarantee for the regular success of tester send events would
require particular provisions like the following:

(a) The IUTIUSP processes ASPs issued by the tester at any speed and in any number - a
not too realistic demand.

(b) The test suite writer uses prudence for limiting, and timers for delaying, its Send events
to a degree that the IUTIUSP is confronted with tester-initated ASPs only at a rate that
it is explicitly required to cope with in the relevant specifications. Presently, however,
such rates are usually not mentioned in standards. Nor is there any mention of how long
a user may have to wait for an ASP to succeed.

(c) Another way out of the dilemma would be to permit loss of ASPs at PCOs before they
are received; but this would entail an excessive loss of control by the tester and even
more reachability analysis to be performed by the test suite writer.

(d) Analysis of OSI protocols may reveal that validly interacting instances fill the queues
only up to a calculable fixed upper bound. It could be required that the tester, even in
displaying invalid behaviour, should not send more ASPs in a row than the queues are

10 Part One

required to hold under valid circumstances. However, TICN could then only be used
for a small set of protocols, which happen to fulfill some strong requirements.

THE DISCONNECT PROBLEM
The Disconnect problem turns up if the input queue is at the tester side of a PCO and the

output queue is inside the provider. In many OSI protocols, cf. e.g. [13], in the user-provider
dialogue, as soon as a connection (or association etc.) is set up, the provider may issue a
Disconnect (or similarly named) primitive any time it desires. After that, the connection is
discontinued, and the user cannot perform any more service primitives with the provider,
except those required for establishing a new connection. If the user is the tester, this means
that whenever it tries to send in a test case, the provider may meanwhile have issued a
Disconnect that is now sitting in the input queue. The Send cannot possibly succeed, contrary
to requirement QU3.

DISC. If a provider has issued a Disconnect, ASPs related to the disconnected dialogue and
attempted by the user will no longer succeed. If the user is unaware of the Discon­
nect' it cannot possibly know which ASPs will be successful next.

The Disconnect problem shows that Sends may not always be successful. Even if the
tester has made sure there is no Disconnect in the input queue and then turns to the output
queue to "send" an ASP, the Disconnect may have occurred while the tester "was turning,"
because Disconnects are usually unconfirmed and considered to be possible at any time.

PR3. DISC conflicts with (QUl-3).

Note that present TTCN prevents the tester from checking for the absence of Disconnects
before every Send, anyway: looking can only happen in a Receive line, and Receive lines
must not be followed by Send lines in a list of alternatives.

PCO QUEUES VERSUS SERVICE BOUNDARY
If we retain the queues, unbounded or not, we are faced with the question:

PR4. When do the ASPs actually "happen" at the service boundary:
on being put at the back ofthe input or output queue or
on being taken out at its front?

In other words: Where exactly is the service boundary located at a PCO that is asso­
ciated with the two queues?

If we consider unbounded input and output queues, and if we put aside exotic variants
(like having the service boundary cut across these queues or permitting unconventional opera­
tions on the queues), then the four possibilities shown in Figure 5 remain. The "Tester core"
in the illustration represents the fictitious entity looking at the queues and executing the be­
haviour tree; the tester comprises everything outside the IUTIUSP. In (A), e.g., the input
queue belongs to the tester, and the output queue belongs to the IUTIUSP. In fact, having the
input queue inside the IUTIUSP (as in B and C) seems a bit questionable: what should be the
meaning of a "parking" status of an ASP not having occurred yet?

If we want to decide which of these PCO structures fits best the various requirements
posed by various standards and the needs of real testing, then we have to check for each one,
whether it places the output queue into the IUTIUSP (Qu2), whether it refrains from restrict­
ing the implementation beyond the OSI behaviour specifications (BRM1), and whether the
send event is always successful (QU3). Finally it should avoid serious practical problems with
the real testing of real. protocols (lMpL3, PR3). Table 1 shows the assessment of A-D.

If we simply count the arguments introduced in favour and to the disadvantage of the
four PCO structures, then D gains a narrow victory, with Band C as runners-up. None of the
four candidates meets more than three out of the five demands. More than four cannot be
expected, anyway, because they are in conflict, as shown before. We desisted from deriving a

Open issues in conformance test specification 11

linear ranking between the four models, e.g. by assigning different weights to the various
demands.

I Tester core I I Tester core I

(A) 8 H (8) 8H
IUT/USP I IUT/USP

I Tester core I I Tester core I

(C) 8 H (0) 8H
I IUT/USP I IUT/USP I

Figure 5. PCO structures relating two unbounded queues to the service boundary

Table 1.
Some pros and cons of possible PCO structures

Demands to be met \ PCO structure A B C D

Output queue in the IUTIUSP + +
No implementation details of IUTIUSP +
Sends always successful + +
Unconditionally implementable
No "IUTIUSP Disconnect" roblem + + +

For lack of space we leave it to the reader to investigate the suitability of various other
possible PCO structures, like combinations using bounded queues or synchronous interactions
etc. We tried quite a few of them, and they always revealed similar disadvantages, besides
being even further away from the BRM and the (admittedly not very specific) TTCN model.

3.3. Alternative PCO structures

ATOMIC ASPs
Let us assume for the moment that, contrary to CTMF, we apply the abstract service

boundary model to TTCN test specifications, equating PCOs with SAPs and ASPs with
atomic interactions between the tester and the IUTIUSP. Even such a very abstract view
leaves room for various conflicting interpretations. As opposed to BRM2, a real tester can
observe more than only which ASPs have completed in which order, i.e. more than the ASP
words happening at the service boundary in the BRM. For example, if the IUT is due to issue

12 Part One

an ASP at UT by a certain time, but erroneously does not, then the tester can use a clock to
find out and call the test case failed. But just how much more can it observe? In particular,
with respect to Send events, the following questions arise:

PR5 What happens if the user of the IUT, in our configuration the tester, issues a valid
ASP at UT, and the IUT (which does not necessarily implement its specification),
will not accept it? Can the two deadlock within this ASP? Can the user recognize
that the provider declines and call this a failed test case? These questions affect the
usability oftest cases as well as verdict assignment in real testing and therefore can­
not be put aside as mere implementation details.

PR6 What if the IUT, e.g. in some kind of backpressure situation, cannot accept the ASP
right now, but would in principle accept it later, and therefore defers acceptance
without downright declining it? Will the user recognize the delay? If so, will it wait
arbitrarily long for the ASP to complete or stop the attempt? These questions are of
similar rank as those under PR5

Questions of this kind are not unknown in theory: Process algebra deals, in various ways
and usually without mentioning time explicitly, with at least some of these choices.

Assume test case execution is simply delayed in a Send event until the IUTIUSP is able
and willing to accept it. At least, this might be the view of TTCN operational semantics; in
reality, this delay could be filled with local interactions. Of course, if a Send can delay indefi­
nitely, it can also delay for unreasonably long times. Testers, however, always have only a
limited amount of time available. Hence, delaying Send events calls for a facility that is pre­
sently not provided in TTCN: something like a "send-timeout" or an "elapsed-patience­
default," which is attempted as an alternative to Sends that remain unsuccessful within rea­
sonable time, in order to prevent excessive waiting for a Send to succeed. What reasonable
time is, could be agreed between the test client and test laboratory (e.g. in the PIXIT, cf. 4.1).
Note that with such facilities the snapshot does not determine any longer the outcome of an
attempt of the current list of alternatives - no wonder, considering the Disconnect problem.
At any rate, in Table 1, such an approach would earn a "+" on each applicable criterion
except the guaranteed success of Sends.
SPECIFIC INTERFACE DEFINITIONS

Theoretically, one could implement any number of different types of upper interfaces for
OSI implementations, making it hard for real testers both to connect to the SAPs at all, and,
sometimes, even to find out whether they have just found an error or only misunderstood the
interface. Prior interface testing, not standardized in any way, offers only some ad hoc relief.
Standardized interfaces, no matter whether uniform throughout OSI or protocol-specific,
would definitely help. So would, alternatively, a standardized interface definition language,
permitting IUTs to be accompanied by a description of the realization of the upper service
boundary (e.g. in the PICS, cf. section 4). The realization problem of ASPs was already ad­
dressed in [14].

4. NON-DETERMINISM, TEST PURPOSES AND VERDICTS

4.1. Non-determinism in protocol specifications
OSI specifications leave many choices for implementations, which we will now attempt to
classify under practical aspects.

Static choices are choices in the implementation production process. Some functions of
protocol entities are not mandatory. They can either be freely implemented or not (Le. purely
optional functions) or they can only be realized in particular combinations (choice or condi­
tional functions). Furthermore, protocol entities may have parameters influencing the be·
haviour, that can also be chosen either freely or only in certain combinations. As the reali

Open issues in conformance test specification 13

zation of non-mandatory functions can be considered as a value-assignment to, e.g. Boolean,
parameters, value parameterization represents a general mechanism for static choices. These
parameters are usually also parameters of the corresponding test suites. By corresponding
value assignments in the test suite, the test cases are dedicated to the particular realization of
the specification. The test client completes a form by filling in these parameter values. The
completed form is called the PICS (protocol implementation conformance statement).

Other static parameters are rather parameters of a conformance test than of the implemen­
tation. System addresses and test -specific timers, e.g. to limit the duration of the test case, are
typical examples. The test laboratory and the test client agree on these parameters in the
PIXIT document (protocol extra information for testing).

Dynamic choices concern the remaining non-determinism of the IUT implemented with
the parameter values written down in its PICS and PIXIT, i.e. after the static choices have
been eliminated. Test cases have to provide the proper branches to cope with any valid
choice. For the sake of simplicity we limit our analysis to binary choices. From a practical
point of view, there are several flavours of choices, distinguished by factors such as prefer­
ability and controllability:

- choices between alternatives of "equal value," i.e. for none of which any preference is
discernible, as opposed to

- choices between a "preferred, regular" behaviour and an ''undesired, exceptional" be­
haviour, the latter only to be used in emergency situations that are expected to arise
only seldom, furthermore

- choices that are expected to be controllable by the IUT and its local system, but for
whose decision mechanism the specification just does not care, as opposed to

- uncontrollable choices, e.g. if a request is usually granted but may be turned down due
to a temporary lack of resources.

It seems that in practice equal value choices often coincide with controllable choices, and
regular/exceptional choices coincide with uncontrollable choices.

We will not consider the kind of choice created by gaps in the specification, which may
be interpreted as permitting arbitrary IUT behaviour. Such situations should lead to defect
reports concerning the protocol specification. Unfortunately, in practice, this does not always
happen.

4.2. Test verdicts
CTMF defines the possible test verdicts as follows:

"pass (verdict): A test verdict given when the observed test outcome gives evidence of
conformance to the conformance requirement(s) on which the test purpose(s) of the test case
is (are) focused, and when all test events are valid with respect to the relevant specification(s).

fail (verdict): A test verdict given when the observed test outcome either demonstrates
nonconformance with respect to (at least one of) the conformance requirement(s) on which
the test purpose(s) of the test case is (are) focused, or contains at least one invalid test event,
with respect to the relevant specifications.

inconclusive (verdict): A test verdict given when the observed test outcome is such that
neither a pass nor a fail verdict can be given."
Let us ask about the interpretation of some central terms and phrases in these definitions:

PR7 What is a valid test event?

PR8 What is a conformance requirement?

PR9 What is a test purpose? What is a test purpose of a test case?

PRIO Which are the conformance requirements a test purpose focuses on?

14 Part One

PRII When is evidence of conformance to a conformance requirement given?

PR12 When is nonconformance to a conformance requirement demonstrated?
In the following subsections, we will point out possible answers to these questions.

4.3. Validity and conformance requirements
In the configuration of Figure 3, the IUTIUSP is observed interacting with the test case exe­
cuted by the tester. An IUTIUSP observation obtained this way is a sequence of observation
events that correspond to the successful lines of the test case. Consider each observation to
include its relevant data, such as PDU types and values, variable values or timer readings. We
may assume that verdicts are assigned exactly in the leaves of the behaviour tree. Other possi­
bilities can be reduced to this case.

Each IUT determines a set of possible lUT behaviour sequences, by which we denote se­
quences of interactions (including their timing) between the IUT and any arbitrary environ­
ment obeying the upper and lower service descriptions. In Figure 3, the tester cannot record
directly IUT behaviour sequences, but only the IUTIUSP observations. The possible IUTI
USP observations are determined by the possible IUT behaviour sequences, the underlying
service, and the test case.

The protocol specification determines the set of valid IUT behaviour sequences. The va­
lid (IUTIUSP) observations are determined by the valid IUT behaviour sequences, the under­
lying service, and the test case. Each valid observation consists entirely of valid test events.
Certainly, the first event in an observation which shows that this observation is not valid,
should be called an invalid test event. It is unnecessary to assign a validity status to sub­
sequent events in the invalid observation. The IUT conforms to its specification if each pos­
sible IUT behaviour sequence is a valid one.

As conformance requirements (CRs) are not very clearly defined in CTMF, several views
have been adopted; CRs have been identified with properties of protocol specifications, with
clauses of protocol specifications, with properties of behaviour sequences, etc. Usually, a CR,
regardless of how it is formulated, determines a set BS(CR) of CR-conforming lUT behaviour
sequences. Usually the set of all CRs is equivalent to the protocol specification, in the sense
that the set of all valid JUT behaviour sequences coincides with the intersection of all
BS(CR), taken over all CRs. The CR-conforming observations are determined by BS(CR), the
underlying service, and the test case.

4.4. Test purposes
According to CTMF, a test purpose is a prose description of a narrowly defined objective of
testing, focussing on a single or some closely related CRs. For the sake of simplicity we as­
sume that a test purpose TP, similarly to a CR, determines a set BS(TP) of behaviour se­
quences. It also calls for particular tester behaviour, TB(TP). This corresponds to the empi­
rical fact that test purposes require special behaviour from the tester, or even from the IUT -
we will dwell further on this point below. TP is focusing on CR if BS(TP) is a subset of
BS(CR). TP is a test purpose of a test case if the tester behaviour defined by the test case
stays within the limits of TB(TP).

Of course, as test verdict assignment involves the notion of test purposes, it is important
to define unambiguously what a valid test purpose is. At present, it is very much an open
question what a test purpose may require and how it is stated.

Some of the questions still remaining to be answered in this context are the following:

- Protocol specifications often use an extended finite state machine driven by ASPs and
the PDU contained therein. Should test purposes require driving the "protocol machine"
into particular states, or through particular state transitions?

Open issues in conformance test specification 15

- Should test purposes require performance of certain global event sequences? Should
they prescribe the tester's Send actions in this sequence, or the complete sequence of
tester Sends and Receives, or rather the Sends and Receives at the IUT's upper and
lower boundaries?

At the present stage of standardization, these questions may be answered arbitrarily by the
test purpose writers, depending on personal taste.

4.5. Evidence of conformance and nonconformance
There are two different intuitively reasonable views of when evidence of conformance to a
CR is given:

(a) The recorded IUTIUSP observation is CR-conforming. Informally, the IUT "may have
behaved in conformance with CR."

(b) The recorded IUTIUSP observation proves that the ruT behaviour sequence was CR-
conforming. Informally, the IUT "behaved in conformance with CR."

The difference between these two views lies in the faithfulness of the underlying service. If,
for example, the USP may have lost output from the ruT during the test case performed, then
at most (a) may be inferred, but not (b), because the lost output may have been invalid.

Analogously, two alternative views of when a test outcome demonstrates nonconfor­
mance with respect to the a conformance requirement are:

(i) The recorded IUTIUSP observation does not rule out that the IUT behaviour sequence
was not CR-conforming. The IUT "may not have behaved in conformance with CR."

(ii) The recorded IUTIUSP observation is not CR-conforming. The ruT "did not behave
in conformance with CR."

These possibilities leave us with four possible (partial) interpretations of the verdict def­
inition. Obviously, it should be clarified in the standard which of them is really meant, but let
us try here to assess their relative merits. We will be able to identify four potential disadvan­
tages of the various interpretations:

(1) The first condition of PASS, i.e. evidence of conformance, is redundant, because it is
implied by the second, validity of events. This would cast some doubt on the inter­
pretation considered, because the standard makers probably intended something else.

(2) The first condition of FAIL is implied by the second, cf. (1).

(3) In some cases, both PASS and FAIL apply, contrary to their characterization as mutu­
ally excluding alternatives. This would be highly counterintuitive.

(4) Inconclusive never applies, because either PASS or FAIL applies, or both do. This,
too, seems not to be intended by the standard, which deals in several places with the
verdict INCONCLUSIVE.

The last two seem to be of greater importance than the first two. A short analysis yields the
following score for the four interpretations:

Inte retation: (a) + (i) (a) + (ii) (b) + (i) (b) + (ii)
Disadvantages: (1), (3), (4) 0), (2), (4) (4) (2)

Under the last interpretation, (b) + (ii), none ofthe more serious disadvantages (3) and (4) ap­
plies. It is therefore the only interpretation to be recommended here, pending further clari­
fication in the standard.

Many experts therefore either agree silently on slightly other defininitions, e.g. replacing
(a) by "the test purpose is achieved" - which delegates the meaning of verdicts to a clarifi-

16 Part One

cation of test purposes and their achievement - or call explicitly for a change of the standard,
such as in [15]. Of course, even a widely accepted deviation from the standard is not a
solution; rather, the standard has to be made acceptable. It seems hard to guess what the final
definiton of verdicts will be, therefore we will leave this question open and only discuss some
aspects of it. In 4.7 we will venture some recommendations on how to fix the verdict
problem.

4.6. Test purposes and verdicts
Some experts identify test purposes (roughly) with global event sequences, or pieces thereof,
some among them permit event sequences with invalid ruT behaviour as possible test pur­
poses. What should the verdict be, if the ruT correctly declines to display the particular, or in
fact any, invalid behaviour? The test purpose has not been obeyed, but the conformance
requirement in the protocol has, such that the standardized criteria for PASS seem to be
fulfilled.

PR13 Can a test purpose call for invalid IUT behaviour?

We think that an "objective, focussing on a conformance requirement," cannot be represented
by an event sequence with invalid ruT behaviour, and that a previous analysis should be ap­
plied to exclude demands of invalid ruT behaviour from the test purposes. But this may just
as well be another example of what kind of ambiguities 'natural' language can lead to ...

The most controversial point in the field of test purposes and verdicts is, in our opinion,
whether test purposes may, or even should, require the ruT to pursue specific alternatives at
points of dynamic choice in non-deterministic protocol specifications.

PR14 Can the ruT be obliged by the test purpose to choose one of several valid alterna-
tives?

Different answers can obviously lead to different test purposes and, possibly, test verdicts: If
the specification permits to choose between A and B, and ifPRl4 is answered with ''yes'' and
the test purpose says "show A" and the ruT chooses B, then (assuming otherwise only valid
and desired behaviour) many people feel that the verdict INCONC should result. At any rate,
it seems not be advisable to demand the selection of uncontrollable exceptional alternatives. If
PR14 is answered with "no" then the corresponding test purpose should rather say "show A
or B", and the IUT choosing B should probably get a PASS. Test purpose and test suite
writers do not answer this question uniformly, as pointed out in [15]. In fact, the authors cite
cases where, in terms of our example, the ruT performing B would even be given a FAIL.

IfPR14 is answered positively, then a FAIL does differentiate the reason:

PR15 If "PRI4=YES" and the verdict is FAIL, did the ruT "refuse the test purpose", show
invalid behaviour, or both?

A relatively independent problem with an impact on test purposes and verdicts arises
from the notion of invalid PDD. Test suites dedicate a considerable portion of test cases to
finding out whether the IUT displays the right kind of responses to invalid PDUs sent by the
tester. PDUs of a type that should at the moment not be sent are commonly considered as
invalid. But opinions differ about PDUs of the expected type, but containing a field value that
a protocol-conforming tester would not produce at that moment.

PR16 Is a PDU of a valid type but with some invalid field value(s) invalid?

The test suite structure clause in part 2 of [1] seems to affirm the question, but some experts
tend to negate this. Some protocols specify explicitly what to consider as invalid, and how to
treat different kinds of invalid PDUs. A strict and clear, but not universally accepted, defini­
tion is to consider any PDU as invalid which could not have been produced (with exactly the
observed field values) in the given situation by an entity conforming to its specification.

Open issues in conformance test specification 17

4.7. Possible improvements
The questions raised in this section have to be answered in CTMF standards, the sooner the
better. PR9 would merit a CTMF part of its own. As to PR13, we are strongly inclined to
answer "no." Regarding PR14, there seems to be room for a solution other than a mere yes or
no: If we assume that dynamic choices in the protocol specification are either controllable and
of equal value or uncontrollable and of the regular/exception type, then PR14 could be af­
firmed for controllable choices and negated for uncontrollable choices. The distinction be­
tween the types of choice need of course be made throughout the protocol standards. PR16
should either be answered individually in protocol specifications or collectively in CTMF.

PRll, PR12, the potential flaws (1-4) deriving from their answers, and PR15 can be re­
solved by always providing two test verdicts that separately answer the following questions:

1. Did the IUT exhibit only a valid behaviour sequence?
(verdict suggestion: "VALIDITY: PASSIFAILIINCONC")

2. Did the IUT fulfill the given test purpose?
(verdict suggestion: "PURPOSE: PASS/ FAIL! INCONC")

Furthermore, in case of INCONC it would be interesting to know whether the inability to
decide was due to exceptional USP behaviour, or whether it is principally impossible to
decide (e.g. if the medium is relatively "opaque", say, if we apply TTCN outside of OSI to
some didactical example, or if the test purpose was ill-chosen).

Note the possible difference to present verdicts: If the test purpose is fulfilled and the
behaviour "looks alright", the present verdict would be PASS. But the new validity verdict
might be PASS or INCONC, depending on whether the same observations could have hap­
pened with an IUT committing errors. Of course, this proposal puts more burden on the test
suite writers.

CONCLUSION

In this paper, we dealt with two important fields of CTMF which pose problems, partly by
themselves, partly if held against general OSI principles or practical necessities: the PCO
model and the test purpose/ test verdict complex. In either case, we identified and analysed
several open questions and problems, and made specific suggestions to change existing
standards.

Note that one could argue that the problems described in section 3 only provide a case
against the Distributed method and the use of ASPs as test events. On the other hand, revert­
ing e.g to the Remote method and PDUs as test events requires an equally thorough analysis
as the one presented in this paper, probably with emergence of a similar number of problems.
Moreover, it does not seem proper to give up useful test configurations only to avoid the
clarification of some technical points.

Space in one paper is too limited to discuss all remaining problems in CTMF and TTCN.
Some other areas in which we discern a demand for additional standardization or the need to
improve existing standards, are outlined in [3].

Another crucial point that is, in our opinion, not yet satisfactorily treated is the missing
formal definition of a correct test case. We hope that attempts to apply scores of different
semantics, which might even multiply the need for different test suites, will be abandoned in
favour of a single approach that realizes in theory that what is needed in practice. In
particular, correct test cases must end after finitely many events and in finite time. Differen­
ces in infinity do not matter so much, whether they involve fairness considerations on infinite
event sequences or notions of non-acceptance that can only be decided after infinite waiting.

It cannot be expected that all experts will agree with the views, arguments, and sugges­
tions put forward in this analysis of CTMF and TTCN. Some readers may miss arguments

18 PaTtOne

and criticisms they deem more important than those presented. In any case, we will be content
if this paper can rekindle the discussion on TTCN, in order to clarify the meaning of test
cases. In the end, test purpose and test suite writers, test laboratories, and test clients should
profit from the results.

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Heinz-Jiirgen Burkhardt, Alfred Giessler,
Christa Paule, Eckart Raubold, and Helmut Wiland, who helped in many discussions to work
out the specific reasons for his initially more intuitive discontent with parts of CTMF.

REFERENCES

1. ISOIIEC IS 9646: Information Technology - Open Systems Interconnection - Confor­
mance Testing Methodology and Framework,S parts, 199112

2. ISOIIEC IS 9646-3: Information Technology - Open Systems Interconnection - Confor­
mance Testing Methodology and Framework, Part 3: The Tree and Tabular Combined
Notation, 1992

3. B. Baumgarten, A. Giessler: OSI Conformance Testing Methodology and TTCN, to be
published, Elsevier, 1994

4. A. Wiles: The Tree and Tabular Combined Notation - A Tutorial, Telia research,
U ppsala, 1992

5. ISOIIEC DIS 7498-1: Information Technology - Open Systems Interconnection -
Reference Model, Part 1: Basic Reference Model, 1992 (Revision of 1984's IS 7498)

6. ISOIIEC JTC 1, IS 10731: Information Technology - Open Systems Interconnection­
Basic Reference Model- Conventions for the definition of OSI services, 1994

7. c.A. Vissers, L. Logrippo: The Importance of the Service Concept in the Design of Data
Communication Protocols, Protocol Specification, Testing, and Verification,V, North­
Holland, 1986, 3-17

8. U. Bar: OSI-Konformitatstests: Validierung u. qualitative Bewertung, VDI-Verlag, 1994
9. B. Baumgarten: Structural Prerequisites for Unambiguous Conformance Testing, 2nd

ISIIS, INTAP,Tokyo, 1988, pp 283-290
10. R. Gotzhein: On Conformance in the Context of Open Systems, 12th ICDCS,

Yokohama, 1992,236-243
11. M. Phalippou: The Limited Power of Testing, Protocol Test Systems, V , North-Holland,

1993,43-54
12. J.G. Tretmans: A Formal Approach to Conformance Testing, CIP - Gegevens Konink­

lijke Bibliotheek, Den Haag, 1992
13. ISOIIEC IS 8072: Information Technology - Open Systems Interconnection - Transport

Service Definition, 1986
14. G. v. Bochmann, C.S. He: Ferry approaches to protocol testing and service interfaces,

2nd ISIIS, INTAP,Tokyo, 1988, pp 283-290
15. S. T. Chanson, Qin Li: On Inconclusive Verdict in Conformance Testing, Protocol Test

Systems, V , North-Holland, 1993,81-92

