
9
Distributing Public Network Management Systems Using CORBA

Brian Kinane
Ericsson Applied Research Laboratory - Network Management
Broadcom Eireann Research Ltd.,
Kestrel House, Clanwilliam Pl., Dublin 2., Ireland.
Email: bkinane@broadcom.ie

Abstract

In the search for compennve advantage, network management systems are becoming
increasingly important to public network operators. In an attempt to reduce the cost of
management systems, the telecommunications community have, for many years, been working
on the standardisation of interfaces between systems to encourage a multi-vendor
environment. As the computing and telecommunications domains converge, there is now a
possibility to use distributed object technology to increase the cost-effectiveness of
management systems. This paper discusses experiences of using the Common Object Request
Broker Architecture (CORBA) as a basis for a public telecommunications network
management system platform.

Keyword Codes: C.2.4; D.1.5; D.l.l
Keywords: Distributed Systems; Object-oriented Programming; Applicative (Functional)
Programming

1. INTRODUCTION

The International Telecommunications Union (ITU) addresses the management of
telecommunications networks through their Telecommunications Management Network
(TMN) M.3000 series of recommendations [1]. Although these address the interoperability of
management systems, they do not directly provide methodologies or guidelines for actual
implementation of systems. Issues such as the infrastructural requirements of management
systems including management service implementation and deployment are not addressed by
TMN standards.

As the telecommunication and computing domains converge, technologies based on concepts
from Open Distributed Processing (ODP) [2] are being applied to the design and
implementation of telecommunication management systems. These technologies support the
implementation of management applications as distributed heterogeneous systems.

At present, an on-going study, RACE-II project PRISM R2041 [3], is using TMN
methodologies in conjunction with the ODP enterprise, information and computational
viewpoints for the specification of management systems. The next logical stage is
implementation of these specifications using distributed object technologies.

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995

118 Part Two Reviewed Papers

This paper discusses experiences associated with constructing TMN management systems
using the Object Management Group's (OMG) Common Object Request Broker Architecture
(CORBA) [4]. CORBA is a core component of the Object Management Architecture (OMA)
- an architecture which reflects the computational and engineering viewpoints of ODP. The
suitability of CORBA as the basis for a telecommunications management platform is
evaluated through the implementation of a TMN-based security management application
using Orbix [5] - a full implementation of CORBA.

CORBA is targeted at the implementation of systems using heterogeneous components but at
present there are only C and C++ standardised language bindings available. As a result, use
of CORBA implies use of C/C++. To explore use of other language paradigms with CORBA,
Erlang [6], a declarative concurrent functional programming language (FPL) was integrated
with CORBA through a partial language binding. It was used, in addition to C++, because of
its high-level nature (i.e. it is more formal and closer to specification). The construction of
management systems using C++ and Erlang components, integrated via an ORB, is discussed
in this paper.

The paper consists of three sections. Firstly, a framework for integration of CORBA within
TMN is identified. Based on the resulting framework, a case-study which uses the Orbix
COREA-implementation is described. Finally, the implementation is analysed and
conclusions presented.

2. DEVELOPING MANAGEMENT SYSTEMS

While TMN guidelines are effective for specification of management systems and
identification of points of distribution and interoperability between management applications,
it does not provide a path which leads to implementation of the specification. It is suggested
here that the CORBA may be used, in conjunction with TMN, as an implementation platform
for 1MN specifications.

2.1. TMN approach

A Telecommunications Management Network (TMN) provides monitoring and control of
another network. The TMN may be separate or share facilities of the network it manages.
According to the ITU-T recommendation X.700 [7] a management network should perform
five functions - configuration, fault, security, accounting and performance management.

The TMN recommendations standardise some of the functionality and many of the interfaces
of management software. This is intended to enable software from different vendors to
interoperate within a 1MN and to enable the exchange of management information between
TMNs of different organisations. The reference architecture of a TMN is defined in the ITU
base recommendation M.3010 [8] "Principles for a Telecommunications Management
Network".

Distributing public network management systems using COREA

Figure 1 - TMN Functional Architecture showing Operations System, Mediation , Q­
Adapter, Network Element, Work Station Function blocks and reference points.

119

The TMN functional architecture consists of a number of function blocks - the Operations
System (OSF), Network Element (NEF), Q-Adaptor (QAF), Mediation (MF) and Work
Station (WSF) function blocks (TMN functional architecture in figure 1) . Each of these
blocks performs a particular function and cooperate to provide management services.
Between each pair of communicating function blocks there exists a TMN reference point.
The reference point (q3, qx, x, f in Figure 1) defines the 'service boundary between two
management function blocks' and is a potential point of physical separation between systems
(provided by different vendors or existing in different organisations).

Building blocks are actual systems which implement the above function blocks.
Interconnection between these TMN building blocks is facilitated by a set of standard inter­
operable interfaces . These interfaces are defined with respect to reference points and specify
what information a building block should present and what means of communication it should
use.

2.2. Distributing TMN systems

TMNs are physically distributed information processing software systems. Such systems are
realised using heterogeneous technologies from different vendors and hence present
substantial inter-operability problems. Specifying a management system using the TMN
guidelines identifies function blocks which cooperate to provide particular services.
According to TMN these blocks can physically exist separately. Support is provided to define
standardised interfaces to these functions blocks in order to enable different function blocks to
intemperate.

Building blocks can be further decomposed into functional components which are a set of
simpler and more generic Management Software Components (MSCs). Little attention is
given to defining interfaces, implementation and distribution of these components. It is
contended, in this paper, that building blocks will be implemented as heterogeneous MSCs
distributed over heterogeneous architectures. ODP addresses such distribution issues. By
mapping these components to a model such as the ODP computational viewpoint, these

120 Part Two Reviewed Papers

logically distinct functional components can be defmed and implemented, using ODP 'support
environments' (e.g. CORBA, ANSAware), as physically distributed management software
objects with well defined IDL interfaces. This enables a commodity environment where
MSCs are re-used and combined to rapidly construct and customise management systems.

The Object Management Architecture (OMA) and specifically the Common Object Request
Broker Architecture (CORBA) has the potential to be an implementation medium for TMN
applications since it offers a location/technology transparent object distribution environment
which overlaps with the computational, engineering and technology viewpoints.

2.3.CORBA

The goal of the Object Management Group is 'to develop a set of standard interfaces for inter­
operable software components'. This is being accomplished through the OMG's Object
Management Architecture (OMA) Reference Model which is a model for object management.
In this model, application objects communicate with objects that provide common facilities
and with low level object services through a communications infrastructure called the Object
Request Broker (ORB). The ORB is a location transparent, distributed object platform and
the Common Object Request Broker Architecture (CORBA) standard is a specification
defining standard interfaces to the ORB.

2.3.1. Orbix

Orbix is a full implementation of the Object Management Group's Common Object Request
Broker Architecture standard, developed by Iona Technologies Ltd. Orbix provides a C++
language binding for CORBA and is supported on SunSoft SunOS, Silicon Graphics IRIX,
HP/UX and Windows NT. Orbix is being ported to Windows 3.1 and other Unix platforms.
Orbix interoperates across all supported platforms.

2.4. Role of CORBA within TMN

In the TMN model, the distribution of management systems is at building block granularity.
Each block provides particular services such as configuration or accounting. These services
are accessed through an information model over the Common Management Information
Service/Protocol (CMIS/P) [9]. The building block is considered a monolithic system which
presents a TMN management interface.

CORBA extends this above concept of a building block. Instead of being monolithic, it is a
set of cooperating objects distributed via CORBA. The TMN management interface is
provided by the 'gatekeeper' object through which services offered by the building block are
accessed (see Figure 2). Consequently, two layers of distribution exist;

• TMN distribution between systems belonging to different organisational domains or
built by different vendors;

• CORBA within the building block inter-connecting both generic and specific MSCs
which cooperate to provide the service offered by that building block.

The building block is a unit of vendor and domain inter-operability whereas CORBA provides
component distribution and integration within the building block.

Distributing public network management systems using COREA

OS
Building
Blocks Vendor C - - - _ 1- -

1 - MSCs

I
I VendorB TMN /
'------------------

Figure 2 - TMN and CORBA Distribution

This approach raises a number of issues:

• Why not replace TMN distribution with CORBA?
• How does the TMN and the CORBA model interwork?
• How is the building block structured in terms of the OMA model?

121

TMN distribution is required as it is the most accepted mechanism for achieving shared
management knowledge (SMK) between different systems. CMIP. is standardised for the Q3
interface and is being used today. In addition, a large amount of work has been done in areas
such as OSI security. CORBA, can however, support TMN distribution by providing a
distribution and component integration platform for building blocks. It is likely that much of
the new computing technology will be accessible over ORBs [10]. Using the ORB as a
building block platform will enable the use of this technology in management applications.

In a CORBA-based system, OMA application objects interact in a client server model
invoking methods from the operational interface of other application objects. Common
Facilities (CF) objects and object services provide platform support to these management
oriented application objects_ For CORBA to interact with TMN, a mapping from CMIS
requests on the management information model (MIM) to requests on server objects is
required. This request initiates an activity (chain of operations on the MSC application
objects) which upon completion will manipulate the TMN interface to cause a response to be
sent to the manager application.

TMN describes the functional decomposition of building blocks in the form of functional
components which include:

• Message Communication Function (MCF) which provides communication over a
CMIS/P interface in either a manager or an agent role;

• Management Information Base (MID) which contains the available management
information;

• Management Application Function (MAP) which performs processing capability
and implements the management services;

122 Part Two Reviewed Papers

• Presentation Function (PF) and Human Machine Adaptor (HMA) which combine
to transform and present management information in a human comprehensible
format.

These functional components are implemented as application objects on the ORB platform.
Building blocks should have the structure shown in Figure 3.

Operations
Systems
Building·
Block

Figure 3 - Building Block as a set of objects

CMIS/P

In this structure, an ORB object acts as an MCF (or gatekeeper) and in conjunction with the
MIB object provides a TMN agent interface to the building block. An MCFm object is
required for MAP objects to use services from other building blocks (manager role). When a
request is received via the MCFa (agent role), it is transformed into an operation on a MAP
object by the Information Conversion Function (ICF). This causes a chain of further requests
(activity) on objects within the building block which upon completion will cause a response to
propagate back to the ICF and be transformed to a TMN response. Both MAP objects and the
ICF object can query and update the MIB. A specification process such as the PRISM
methodology could be used to define the object interfaces and MIB specification which could
also be used as the basis for the TMN Management Information Model.

In this model, the building block becomes a unit for deployment of objects which interact to
provide a service. Certain attributes such as location, security and throughput are associated
with the building block. Attributes such as throughput are requirements that must be met by
the deployment environment (e.g. hardware, software). Others, such as security, relate to the
interface of a building block. Since the building block is a closed set (objects are not directly
accessible outside the building block), these attributes are determined by the TMN interface of
the MCFa (gatekeeper) object.

2.5. Implementation with CORDA

As CORBA matures, standardised facilities such as Object Oriented (00) database object
adaptors will become available. These can be used to support MIB implementation. More
language bindings such as Smalltalk will be standardised enabling a multi-language in
addition to the present multi-hardware environment. At present, however, CORBA
implementations offer only C and/or C++ standard bindings. C++ is a low-level language. As
a result, programmers have to cope with low-level issues such as memory management
instead of the logic of their application. While C++ can be used to develop robust
applications, it is not, in the opinion of this author, an ideal language for implementation of

Distributing public network management systems using COREA 123

management application functionality. This is partly due to its lack of built-in primitives for
concurrency and fault-tolerance.

It was decided to address these issues by using C++ in conjunction with another language
technology for implementation. Erlang, a functional programming language (FPL), was
chosen because it provides comprehensive support for real-time concurrency and fault
tolerance and because the declarative nature of FPLs reduces the gap between specification
and implementation. CORBA purports to offer the capability of task driven language
selection. This was investigated through the ORB-supported integration of Erlang and C++
components.

2.5.1. Erlang

Erlang is a concurrent, real-time, declarative, and functional language intended for the
implementation of real-time industrial control systems. It was initially developed by Ericsson
for the implementation of telecommunication systems.

Erlang provides a number of primitives which support real-time, fault tolerance, code
modularisation and hot replacement of code. In addition, since Erlang is a functional
programming language it has the property of variable single assignment. This has important
ramifications for the application of formal methods to Erlang specifications and also code
reliability. Function selection is made by pattern matching which leads to highly succinct
code.

Erlang has a process based model of concurrency. Concurrency is an explicit and natural part
of the language and encourages design of systems as numerous lightweight processes.
Message passing between processes is asynchronous and is based on Communicating
Sequential Processes. The use of processes overcomes a number of the problems associated
with using functional languages.

Erlang provides a distribution mechanism based on TCPIIP which supports the location/
technology transparent distribution of processes. Application processes can be distributed
over a heterogeneous network without affecting the semantics of the process interaction.

3. APPLICATION CASE STUDY

3.1. Scope

In order to evaluate the suitability of the above framework (i.e. ORB distribution within TMN
and the resulting building block structure) a detailed case-study was conducted. This case­
study consists of a TMN conformant security management application which provides
management services that configure and monitor the security controls of a service layer
management system. The demonstrator consists of the following:

• A Value Added Service Provider (VASP) Operations Systems (OS) building block
providing end-to-end virtual leased lines to Customer Network Management (CNM)
building blocks over an X interface;

124 Part Two Reviewed Papers

A Security Manager OS which provides security management services for the V ASP OS's
security mechanisms using Management Application Functions (MAPs). The Security
Manager is implemented in Erlang and C++;

• A Security Manager WorkStation (WS) building block (implemented in Erlang) which
provides a Graphical User Interface (GUI) to a human operator.

r1MN·······················
i
i
i

' i
l
' L _______________________________ J

X

I
L

Figure 4 - Case-study scenario

Communication between the Security Manager OS and V ASP OS is via the Q3 interface. The
F interface enables communication between the Security Manager OS and WS.

3.2. Specification of the management application

Before any implementation could begin it was necessary to specify the requirements on the
security manager. As TMN offers a framework for defining and specifying management
functionality and their relationships, its guidelines were followed:

The services provided by the application are defmed as follows:

Visualisation and configuration of the access controls of the OS;
• Monitoring and reporting of access violation notifications emitted from the OS.

Once the services have been defined, the building blocks and the constituent functional
components (which are needed to provide these services) are identified. The building block
and functional component inter-relationships must also be specified. After this analysis
phase, a reference configuration for this scenario was formed.

The chosen reference configuration for the Security Manager consists of two building blocks
- an Operations Systems building block which provides the actual management services and a
Work Station building block which enables the operator to interact with the provided services.
These building blocks are composed of a number of functional components such as Message
Communication Function (MCFs), Management Application Function (MAF) and
Management Information Base (MIB) components. ·

Distributing public network management systems using COREA 125

Mapping functional components into objects

In this demonstrator the functional components were mapped directly into OMA application
objects. These objects are grouped into packages based on the function block to which they
belong. The relationship between the objects is client-server and the specific relationships are
derived from the manager-agent roles used by TMN.

Figure 5 - Object specification for case-study management application

Applying this approach to the reference configuration the MIB, MCF and MAF functional
components map to objects (see Figure 5). Where a function block is realised as a building
block, the MCF application object provides the TMN management interface.

Defining the object interfaces

Once the application objects have been defined, interfaces for them can be specified. These
interfaces are used by other objects to access the services offered by an object acting in a
server role. The Object Management Group's Interface Definition Language (IDL) was used
because it offers an object oriented abstract specification language and because all CORBA
implementations suppon IDL. An IDL interface class was specified for each object - its
methods defining services offered by that object.

3.3. Implementation of the object model

The transformation of the TMN management application specification into an object model
(where each component has a clearly defined interface) enables the use of distributed object
techniques to be applied to the implementation.

,--- --------- ------ -,
I I
I I S

I ~~· MIP) I
I I
I I
I I
I I
I Security Manager I
L- ----- ------ ----- - --

Figure 6 - Implementation Specification

126 Part Two Reviewed Papers

In the implementation, which is shown in figure 6, each Management Software Component
was implemented as either an Orbix object or an Erlang process interacting via a
combination of Orbix and the Erlang distributed environments

The Presentation Function, Management Application Function and Management Information
Base Functional Components were implemented as Erlang processes and the CMIS Message
Communication Functional Component was implemented as a C++ object encapsulating a
sourced C++ based ISODE CMIS/P stack [11] (This is further discussed in section 4).

3.4. Integration of the Erlang distributed process environment & CORDA

In order for Erlang to be used as part of the CORBA environment, a partial binding from
Orbix/IDL to the Erlang environment had to be developed. This was possible due to the
similarity of the models:

• Both models consist of active objects (processes in Erlang can be viewed as active
objects);

• Communication between these active objects is via message passing (method invocation is
a form of message passing) which can be either asynchronous or synchronous;

• Active objects present clearly defined interfaces.

Figure 7- Representation (a) ORB objects to Erlang (b) Erlang processes to ORB

Representing resources in the ORB as native Erlang resources requires the mapping of objects
which exist within the ORB environment into processes which exist within the Erlang
environment. These processes act as Erlang proxies (i.e. a local entity which acts on behalf of
a remote entity) for the remote objects (as shown in Figure 7(a)). Within the Erlang domain a
proxy appears as a normal Erlang process. Simultaneously it appears as an ORB client in the
ORB domain. When a process, acting as a proxy for a remote object within the ORB's
domain, is created in Erlang, any messages sent to the process will be transformed into
methods invoked upon the remote object. If the method returns a result then this result is
mapped into an Erlang term (i.e. data structure) and is sent to the client process. The only
ORB specific information an Erlang client needs is the name of the remote object which is
required when spawning a proxy.

Distributing public network management systems using COREA 127

Access by non-Erlang clients to Erlang processes via the ORB is of equal importance. To
achieve this, it is necessary to represent Erlang processes as objects in the ORB environment.
Erlang processes make themselves available to ORB clients by registering as objects within
the ORB domain as depicted in the figure 7(b). Any methods invoked on such an object will
cause an equivalent message to be sent to the associated Erlang process. The return message.
if any, will be sent to the ORB client application via the result of the method invocation.

4.ANALYSIS

Implementation of the demonstrator allowed a number of issues relating to the use of
distributed environments in supporting TMN applications to be considered. These issues
cover a range from management services development to implementation of management
systems.

4.1. Developing application on a CORDA based platform

Any telecommunications platform should support development of management applications.
By using CORBA, it was possible to use its support for object oriented software construction
in management application development. IDL proved to be a very useful abstract language
for defining interfaces to the Management Software Components (MSCs). It is independent
of implementation. Once MSCs were associated with the interface, the ORB provided trouble
free integration of these components. The ORB interface repository enabled the development
of components to proceed without having to see the class hierarchy of the particular interface
class being used. The main difficulty in using the ORB was providing a TMN (CMIS/P)
interface to the application objects. This required mediation to convert requests on the
management information models and requests on the application objects. Mediation was
hardwired in the demonstrator (but more automatic mediation is being investigated by a joint
Network Management (NM) Forum I OMG committee at present [12]).

Re-use of components is essential to rapid construction of systems and was well supported by
the CORBA implementation used here. It is possible to bind to a required type of MSC using
its interface name. The ORB locator will find an appropriate active object and will launch
one if none are available. One feature lacking in Orbix was an interface repository browser.
More tools such as browsers are required.

Flexibility is well supported through mechanisms like the Dynamic Invocation Interface.
Objects can learn about new services and make use of them without recompilation. In
addition, once an object is registered with the interface repository, it is available to all ORB
clients in a black box (binary) format.

Support for new services can be achieved through the facility provided by CORBA of hot
addition and replacement of MSCs. In this way a MSC that adds new functionality may be
added at run-time. In addition, a new service may be developed by using different
combinations of existing MSCs. Orbix allows numerous instances of an interface to exist.
Because of its unique naming structure for objects, they can be easily distinguished.

128 Part Two Reviewed Papers

Finally, CORBA enables the re-use of existing management tools and components such as the
ISODE CMIS/P stack and manager/agent code through encapsulation with C++ wrapper
classes. Re-use is not limited to management software. As new object services and third
party Common Facility (CF) objects become available in the computing community, those
telecommunications vendors using CORBA will have a more structured method for
integration of new computing technologies and products into their platforms.

4.2. Orbix support for management platform requirements

Management applications impose a number of requirements such as distribution and fault
tolerance, scalability, technology independence and security. Orbix, as a full implementation
of CORBA, was evaluated against these requirements. The beta-version of Orbix, used in the
demonstrator, provides the basis for the experiences outlined in the paper. Continued
development of Orbix has since addressed a number of issues raised in this section.

Orbix provides a fully distributed location/technology independent platform. As it uses a
XDR{fCP/IP communication protocol, full distribution via the internet is supported. Orbix
also provides binding, brokering and limited trading services. This enables the platform to
provide transparent distribution to management applications.

CORBA is clearly targeted at achieving independence from the computing environment.
Orbix supports transparent access to objects over a variety of operating systems e.g. SunOS,
Solaris, HP-UX, Windows NT. This is a very useful feature to management system vendors
in reducing the costs of their management systems.

Controlled scalability is supported by the Orbix in the sense that services can be instantiated
an arbitrary number of times. Extra support such as load-balancing objects is required to
control when and where new instantiations should occur. In the demonstrator this is done
manually by registering new object-servers on extra hosts. Vendors can, using a CORBA­
based platform, scale the processing power (e.g. number of workstations) for their
applications to suit the requirements of the customer's network.

Fault tolerance was not well supported by the ORB used in the demonstrator. Persistence for
objects was not easily accomplished. The entrance of companies specialising in fault
tolerance into the CORBA market (e.g. ISIS has since been integrated with Orbix) in
conjunction with the OMG's efforts with object services should rectify this problem.

An important requirement of management platforms that Orbix lacked was security (e.g.
authentication at binding). There are, however, other ORBs which provide object security as
a value added feature. The OMG is looking at this and it will become a standardised object
service. In the demonstrator, OSI-based security control was performed by the Message
Communication Function agent object (which acts as a gatekeeper to the building block).

Distributing public network management systems using COREA 129

4.3. CORBA & Erlang

Erlang offers a fully distributed location/technology transparent process (active object)
environment. It is not, however, open. There are no standardised interfaces for Erlang
components, no standardised object model or standardised interface definition language,
although the Erlang environment could potentially be used as a technology basis for a 'ODP
support environment'.

From the perspective of this paper, Erlang as an adjunct (via an IDL to Erlang binding) offers
a more effective method than C++ for implementing the control functionality of systems.
This is, primarily, due to the declarative and functional paradigm to which Erlang conforms.

Using a functional approach, programs are implemented by specifying the relationships
between the input set and output set of a function rather than describing imperatively how the
function accomplishes its state transformation. With Function Programming Languages, data
is not stored explicitly by the programmer. Instead, garbage collection is done by the
environment. This form of environment has advantages for implementing MSCs.

• Due to the declarative nature of Erlang, the code required and development time required
in this demonstrator to implement MSCs is less than C++ (e.g. Erlang provides automatic
memory management);

• As a MSC implemented in Erlang is defined in terms of function clauses, the state of the
MSC and the possible transitions are specified explicity and transparently. Consequently,
the behaviour of the MSC is defined in a more formalised manner and is more tractable.
In the demonstrator, Vienna Design Method (VDM) specifications for Directed Acyclic
Graphs (DAG) were used for the Management Information Tree (MIT) operations.

It was found that the transparent integration of C++ and Erlang via CORBA was useful.
Existing OSI/I'MN software utilities (e.g. ISODE) could be encapsulated within C++ classes
and made accessible over the ORB, in a manner analogous to a toolbox. Erlang was used for
the complex logic of the Management Application Functions. Erlang was also used for the
Management Information Base. In retrospect, C++ or an Object Oriented database would
have been a superior solution due to Erlang's lack of support for inheritance (although there is
work on-going at present at developing an 00 extension to Erlang).

5. CONCLUDING REMARKS

The Object Management Architecture and specifically CORBA provides a viable platform for
implementation of TMN conformant management systems. The benefits of this approach are
two-fold. By using CORBA, management specification methodologies based on the synergy
of ODP and TMN (e.g. PRISM) can be mapped more easily to physical implementation. This
requires the convergence of the OMA with the computation and engineering viewpoints of
ODP. Secondly, because CORBA is an accepted middleware standard, the use of CORBA as
a telecommunications platform will support the incorporation of advanced (and out-sourced)
computing technology (e.g. object oriented databases) into management systems. More work
is required, however, on the integration of TMN specifications and the OMA object model.

130 Part Two Reviewed Papers

The relationship between GDMO and the OMA object model (IDL), including mediation, is
being addressed by a joint Network Management Forum I OMG task force at present.

New language bindings need to be developed for CORBA IDL to take advantage of languages
that provide more formalised methods for specifying object behaviour. The use of Erlang in
this project has shown the benefit of using declarative FPLs for implementing MSCs. The
combination of Erlang, C++ and CORBA is a useful advance in the development of
telecommunication management applications. We found that the use of Erlang significantly
improved development productivity and code reliability of the Management Application
Functions.

REFERENCES

[1] K. Shrewsbury, "TMN in a Nutshell", Network Management Forum, 1994
[2] ISO/IEC JTC 1/SC 21/N 7053 (CCITI' X.901) Draft Recommendation, Basic

Reference Model for ODP- Part 1: Overview and Guide to Use, December 1993
[3] RACE R2041 Prism Deliverable 8: Reports on Selected Areas of the Service

Management Reference Configuration, September 1994
[4] Common Object Request Broker : Architecture and Specification

OMG Document Number91.8.1
[5] "Orbix- A Technical Overview", Iona Technologies Ltd., July 1993
[6] J. Armstrong et al., "Concurrent Programming in Erlang", Prentice Hall1993
[7] X.700 Recommendation X.700 I ISO/IEC 7498-4 "OSI- Basic Reference Model­

Part 4: Management Framework"
[8] ITU-T Recommendation M.3010, "Principles For A Telecommunications

Management Network", November 1992
[9] ITU-T Recommendati0n X.710, "Common Management Information Service For

CCITI' Applications"
[10] J. Stikeleather, "Why Distributed Object Computing is Inevitable", Object Magazine,

March-April, 1994
[11] G. Pavlou, "Implementing OSI Management- A Tutorial", Dept. of Computer

Science, University city London
[12] C. Ashford, Comparison of the OMG and ISO/CCITI' Object Models, The Report of

the Joint NM Forum/OMG Taskforce on Object Modelling, April1993

