
8 
Analysis and design of a management application using RM-ODP and OMT 

Erik Colbana and Fabrice Dupuyb 

aNorwegian Telecom c/o Bellcore, NVC-lC115, 331 Newman Springs Road, Red Bank, NJ 
07701, USA. Phone: + 1 908 758 2875, e-mail: erik@tinac.com 

bFrance Telecom I CNET, LAA/EIA/BSA, Technopole Anticipa, 2 avenue Pierre Marzin, 
22307 Lannion Cedex, France. Phone: + 33 96 05 36 65, e-mail: dupuy@lannion.cnet.fr 

Abstract 

This paper studies the assimilation ofOMT, an object-oriented design method not particularly 
well suited for distributed applications development, into RM -ODP, a framework for distributed 
applications lacking a method. It reports on current work in this venture in the TINA Consor­
tium. 

Keyword Codes: D.2.2; D.2.7; D.2.10 
Keywords: Software Engineering, Tools and Techniques; Distribution and Maintenance; De­
sign 

1. Introduction 

Adhering to the RM-ODP viewpoints along with object-orientation is not as easy as it may 
seem from the reading of the standard and it can lead to different interpretations as to what the 
objects described mainly from the information viewpoint, the computational viewpoint and the 
engineering viewpoint really represent. 

Since the standard to be RM-ODP [1] [2] [3] does not prescribe any method along with the 
architectural concepts, a system designer can for example choose to follow an object-oriented 
analy-sis and design method, without any additional consideration of the RM-ODP viewpoints, 
and be convinced (somehow rightly) that his/her analysis and design models correspond respec­
tively to the RM-ODP information and computational models. Another designer can adhere to 
the functional model and describe the functional modules by means of the computational view­
point and the information exchanged between them by means of the information viewpoint. 
RM-ODP would perfectly suit his/her needs. 

The authors of this paper, and the TINA-C core team [4] working on the software architecture 
of the future telecommunications information networks, adopted another interpretation or meth­
od which consists of taking over an object-oriented analysis and design method, namely OMT 
[5] and adding a substantial set ofRM-ODP concepts to the analysis and design phases in order 
to take more thoughtfully account of the distribution issues. 

K. Raymond et al. (eds.), Open Distributed Processing
© Springer Science+Business Media Dordrecht 1995



106 Part Two Reviewed Papers 

This paper describes first the application example that provides the ground for comparison. 
Then the main sections of this paper aim at showing how the example is examined using the 
OMT method on one hand and using a mixure ofRM-QDP and OMT, as proposed by the TINA­
C core team, on the other hand. The conclusion highlights the benefits of the latter method. 

2. Example 

All along this contribution, the same example, network resource management, will be taken. 
The problem statement that serves as an input to the analysis and design phases of the methods 
is proposed to be the following: A computer-based distributed system is required to manage a 
telecommunication network, regardless of the size and the type of the network (ATM, SDH, 
POTS, ... ), in order to react to its faults as seamless and transparently to its users as possible, and 
to control the correct establishment of end-to-end connections at its various end-points. A topo­
logical map of the telecommunications resources that make the network is stored in the system 
in order for the network manager to be kept updated about the network configuration, to easily 
locate the established connections or the faults, and to identify t~e actions to undertake. 

It should be noted that the purpose of this contribution is of course not to come up with a com­
plete problem statement, nor to completely show how the sketchy statement given above will 
be analyzed and turned into a complete object-oriented design. Only parts of this problem state­
ment will be used to exemplify the discourse and therefore will undergo the process of analysis 
and design outlined below. The focus is mainly on the OMT method, its benefits and its short­
comings related to distribution concerns. 

3. The OMT approach to the analysis and design 

OMT is only used in this contribution to exemplify the discourse and because the core team 
gained experience in using it during two years (In no way, this choice should be considered an 
assessment of the various OOA&D methods). 

The OMT object-oriented analysis and design method consists of three non compulsory se-
quential steps: analysis, system design and object design:· 

It is proposed in OMT to analyze a system according to three related but different 
"viewpoints": an object model, a dynamic model and afunctional model. The object 
model represents the static, structural "data" aspects of a system. The dynamic model 
represents the temporal "control" aspect of it. The functional model represents the 
transformational aspects. 

The OMT system design consists in grouping the objects identified in the analysis 
phase into subsystems, each subsystem being associated later with specific comput­
ing resources (DBMS, graphical user interfaces, ... ) 

The OMT object design consists in refining the objects identified during the analysis 
phase. 



A management application using RM-ODP and OMT 107 

3.1 OMT analysis 

During analysis, the OMT object model pennits to describe the patterns of the objects, at­
tributes, operations and links. In the case of our example, the object model enables to give a 
view of the telecommunications network structure composed of layer networks, subnetworks, 
tennination points, to state that the responsibility of managing the network can be given to dif­
ferent kinds of network managers, to outline the difference between link connections estab­
lished between two subnetworks and subnetwork connections established within a subnetwork. 
The Figure 3-1. below contains neither attributes nor operations for the sake of clarity. 

Figure 3-1. An OMT Object Model of the 
network resource management system 

A complete OMT object model would include, as stated earlier, a description of the attributes 
and operations of each object. For example, the subnetwork connection is composed of at­
tributes named direction (a connection can be simplex or duplex), cast (a connection can be uni­
cast or multi-cast), Quality of Service (throughput, delay, jitter), and it offers operations to delete 
the connection, to reserve a connection, to start transferring the media flow through the connec­
tion, to associate a connection with subnetwork tennination points (SNWTPs). 

The OMT Dynamic model permits to describe the states of the objects and the events sent by 
objects to stimulate the others. In our case, the dynamic model enables to examine the states of 
the objects identified in the object model and to relate any state change to events (mainly corre­
sponding to operation invocations). The Figure 3-3. shows a state diagram of the subnetwork 
connection object (inspired from [6]). 



108 Part Two Reviewed Papers 

Subnetwork connection 

direction 
cast 
QoS 

delete 
reserve 
unreserve 
start_ transferring 
stop_transferring 
connect_to_SNWTPs 
disconnect_from_SNWTPs 

Subnetwork connection 

set_ up_ 
connection------, reserve 

unreserve 

start_ transferring 

stop_transferring 

Figure 3·2. The subnetwork 
connection object 

Figure 3-3. A bit of an OMT Dynamic Model of the 
network resource management application 

The OMT Functional model specifies what happens, whereas the Dynamic model describes 
when it happens. The Functional model shows how output values in a computation are derived 
from input values. Consequently, this model describes data flows where the Dynamic model de­
scribes control flows. The Figure 3-4. shows an example with some functions associated to the 
object 'subnetwork connection'. 

Iist_of_SNWTPs 

subnetwork_ connection 
>-----.------.-, Topological map -----.jot- Network Manager I 

number_of_free_connections 
number_of_established_connections 
number_ of_reserved_ connections 

Figure 3-4. A bit of an OMT Functional Model of the 
network resource management application 

3.2 OMT system design 

During analysis, the focus is on what needs to be done. During design, the concern is on how 
the problem will be solved. The OMT system design consists in determining the overall struc­
ture of the system, a sort of high level design, in which the system is partitioned into subsystems 



A management application using RM-ODP and OMT 109 

and objects are packaged into these subsystems. The rationale behind partitioning into sub­
systems is to have the objects share some common properties: similar functionality, same phys­
ical location, or execution using the same computing resources. 

For the network resource management example, it can be proposed to package the topological 
links and the link connections into a subsystem called transmission subsystem, the subnetwork, 
its subnetwork connections and its termination points into a switching subsystem, the trails, trail 
termination points and layer networks into an operations system, and the communication ses­
sions into a telecommunication service package. 

Transmission 
subsystem 

~ Topologic~ li~ 
j Link connectio3 

Switching 
subsystem 

Service 
subsystem 

Cor.nr.nunication 
session 

Operations 
sUbsystem 

Figure 3-5. A system design of the network resource management system 

One main remark is to be made concerning the system design step of the OMT method (this 
step consisting of packaging objects identified during the analysis phase into subsystems). Usu­
ally, when it comes to partitioning the overall system into packages, the packaged objects are 
executable units (or executable objects), which, by essence, constitute the basic units for struc­
turing the computer-based system. Here, with the OMT method, the assembled objects are the 
objects directly derived from the analysis phase. As no intermediate step, in which the analysis 
objects would be turned beforehand into 'executable' objects, is explicitly proposed in OMT, it 
means these problem domain objects have also to be considered as executable units in OMT. 
Such a homomorphism between analysis and design objects cannot always hold: for example, 
the network manager 'human being' cannot be 'packaged' into a computer-based subsystem. 

3.3 OMT object design 

The OMT object design phase determines the full definition of classes, the implementation 
of the associations (with pointers to the associated objects for example), and the algorithms of 
the methods used to implement the operations. The objects discovered during analysis serve as 
a skeleton of the design, the object designer having to choose the ways to implement them, to 
add new objects for storing intermediate results or translating data representations, ... These ob­
jects present in the analysis phase are usually carried directly to the design phase. Object design 
in OMT is then nothing more than a process of adding details and deciding how to implement. 

For example, the object model discovered during analysis for the network resource manage­
ment example is detailed during object design so that all operations and associations become 
implementable. The subnetwork connection object, for instance, is further designed (Figure 3-



110 Part Two Reviewed Papers 

6.) to offer access to its attributes (e.g., get_direction, get_cast, get_QoS) and to implement the 
relationships in which it takes place (e.g., give_termination_points). The type of the attributes 
is determined (e.g. direction of type enumeration). 

Subnetwork connection 

direction: {simplex, duplex} 
cast: { uni, multi} 
QoS: (throughput, jitter, ... ) 

delete 
reserve 
unreserve 
start_transferring, ... 

get_direction 
get_ cast, ... 
give_tennination_points 
give_subnetwork 

Figure 3-6. The subnetwork 
connection object further 

refined during object design 

3.4 The shortcomings of the OMT approach 

In this approach, the OMT analysis stage seems to correspond to the RM-ODP information 
viewpoint, the OMT object design stage to the RM-ODP computational viewpoint: (the design­
er is more concerned, at this stage, by how the system works and what to do to optimize it), and 
the OMT system design phase to the RM-ODP engineering viewpoint (the system is broken 
down into subsystems or system components that share common properties). 

RM-ODP information 
viewpoint 

RM-ODP engineering 
viewpoint 

Object 
model 

Dynamic 
model 

Distributed engineerin 

Functional 
model 

OMT 
analysis 
phase 

OMT 
object design 
phase 

OMT 
system design 
phase 

The shortcomings of this method can be essentially summarized as a lack of a framework for 
distribution: 



A management application using RM-ODP and OMT 111 

There is a suggested one-to-one mapping in OMT between the objects discovered 
during analysis and the objects eventually designed. It is deemed by the authors that 
this is not realistic, and too constraining. As RM-ODP does not prescribe such a map­
ping between information objects and computational objects, it should provide a 
more flexible framework. 

During the OMT system design, no distinction is suggested to be made between ob­
jects with interfaces for local use and objects with interfaces for possibly remote use. 
Therefore, the distributed processing infrastructure supporting the OMT object-ori­
ented computational model (the OMT object/system design) has to handle all refer­
ences to objects in the same manner, i.e. as if they were all distributable or none was 
at all. With the concept of "clusters", within which the communication mechanisms 
are left to the cluster manager, and between which communication relies on the pro­
cessing environment kernel facilities (a sort of object request broker), the reference 
model of ODP provides a noticeable distinction that helps to·reduce the distributed 
environment workload. 

During the OMT object design, all the burden implied by the distribution issues is 
left to the designer, who supposedly has to know how to deal with the different trans­
action semantics (which transaction model to take), with security (how to trade off 
between security and performance), with remote access (how to encode/decode the 
invocation parameters), and with quality of service procurement. It is clear that, on 
the subject, the RM-ODP computational model constitutes a substantial improve­
mentofOMT. 

Also, this approach does not take parallelism or concurrent access into account. Be­
sides an information model explaining by means of objects what the system does, 
further design decisions need to be taken in order to avoid too many accesses to the 
same object interface, or to allow concurrent processing. 

4. The TINA-C approach of using OMT and RM-ODP 

As the previous chapter suggests, OMT lacks concepts and principles, such as the ones includ­
ed in the reference model of ODP, that can help a distributed system designer in his/her task, 
whereas it constitutes an object-oriented analysis and design method somehow efficient and 
promising. TINA-C aimed at using both RM-ODP and OMT to provide a complete and tool­
supported framework. There are of course several ways in bringing these two together, not all 
as good. During 1993, TINA-C attempted to clarify these matters for three of the RM-ODP 
viewpoints: the information, computational, and engineering viewpoints. 

4.1 Infonnation Specifications with OMT 

In 1994, TINA-C started to use OMT for the information specifications. Certain care must be 
taken in order to make an information specification design independent. Even if one restricts the 
exercise to what is traditionally seen as object-oriented analysis, computational aspects are of­
ten introduced mistakenly into the specification. Consider for instance, the Subnetwork Connec­
tion object type in Figure 4-5. A connect_to_SNWTPs operation is specified which associates 
Subnetwork Termination Points to a Subnetwork Connection. The operation does not pertain 



112 Part Two Reviewed Papers 

only to a Subnetwork Connection, but also to the Subnetwork Termination Points. One may 
therefore question why this operation has been assigned to the Subnetwork Connection object 
type and not to theSubnetwork Termination Point, or to the Subnetwork. As a matter of fact, as­
signing the operation to Subnetwork Connection is a design choice that belongs to the compu­
tational viewpoint. The connect_to_SNWTPs operation provides the means to add a Subnetwork 
Termination Point to the Subnetwork Connect. In the information viewpoint, the analyst should 
only be interested in stating that Subnetwork Tennination Points can be associated withSubnet­
work Connections. In Figure 4-1, this is accounted for by the multiplicity 2+ on the Tenninat­
ed_by association. 

For the information specifications, TINA-C suggests to only use the Object Model part of the 
OMT analysis phase. The reason for this is that it is difficult to reason about any event flows 
when no computational model is in mind. However, in specifying the information viewpoint, 
TINA-C goes far beyond simply providing a set of object diagrams. 

Objects, in the information viewpoint as well, have a state. The state is defined by the values 
of the attributes of the object. Therefore, every object type is assigned a set of attributes. The 
state may change, but only according to a set of specified actions. Note that these actions only 
pertain to the object to which they belong, unlike the connect_to_SNWI'Ps operation mentioned 
earlier. If an operation can take place only under certain conditions, these are specified as pre­
conditions to the operation. Any property that has to hold after the state change is specified as a 
post-condition. If there are any conditions that imply a change of state, they are specified as trig­
gering conditions. Note that by specifying pre-, post, and triggering conditions, some of the ex­
pressive power of dynamic modelling is covered. Properties that hold regardless of the state of 
the objects are specified as invariants. In specifying all these conditions the analyst may refer to 
associated objects; the next paragraph gives more insight. 

In order to account for dependencies between objects, we use the associations of OMT (re­
ferred to as relationships in TINA-C). These associations may have a state, in which case it is 
specified in the same manner as for object types. Also important, when specifying an associa­
tion, are the constraints on the instances of the association or the associated objects. Multiplic­
ities are one kind of such constraints, but there may be others. In specifying these constraints, 
we may refer to the class (in the sense of ODP) of the association an~ the associated objects. 

In TINA-Can OMT tool has been customized in order to facilitate writing information spec­
ifications. With the customizing the tool allows the user to enter in a textual form any conditions 
that belong to the specifications. It also generates a report in a notation that has been chosen by 
the Core Team (the notationused is an adaptation ofGDMO). 

Figure 4-1 shows a small fragment of the TINA-C Network Resource Information Model. 
Note that the NRIM is under development and that it may change by the time the reader discov­
ers it. Note also that currently the NRIM only includes information objects representing man­
aged resources: it lacks information objects playing manager roles (as tentatively proposed in 
Figure 3-1.). 



A management application using RM-ODP and OMT 113 

Figure 4·1. A Fragment of the TINA-C Network Resource Information Model 

4.2 Computational Specifications with OMT. 

Actually, OMT already includes a computational model: as mentioned in Section 3, all object­
oriented methods assume a computational model; furthermore, as stated in Section 4, the OMT 
object design phase partly corresponds to the RM-ODP computational viewpoint. However, en­
hancements of this computational model are necessary relatively to the following points. 

4.2.1 Correspondence between analysis and design objects 

In object orientation, "real world" concepts are modelled as object types and phenomena as 
objects. The purpose is to get a "homomorphism" between the real world and the model or, in 
other words, to reflect the structure of the real world in the model. This homomorphism should 
be carried through to implementation. The value of doing this is to produce systems that are eas­
ier to maintain and to extend. 

These principles of object orientation guide the information modelling and should, as far as 
possible, also guide the computational modelling. Therefore, a good starting point for the com­
putational specification is to naturally map each information object type onto one computational 
object type (this is precisely the correspondence embedded in OMT) and, whenever the one-to­
one mapping between information objects and computational objects can not be maintained, the 
designer has to remember that the homomorphism, and therefore one advantage of object ori-



114 Part Two Reviewed Papers 

entation, are lost. In this homomorphous scenario, relationship types (corresponding to associ­
ations in OMT) may either be mapped onto separate computational object types or one may let 
the related objects maintain on their own the given relationship. 

However, for several reasons given below, the one-to-one mapping is difficult to maintain and 
may lead to a non realistic distribution-driven computational object design: 

An information object may have to be split and distributed on several nodes thus pro­
viding interaction points at several locations. For example, the information object 
'subnetwork' is split up into as many computational objects (also called hereafter 
subnetworks) as there are levels in the network structure recursiveness. 

Information objects that appear in great number can be stored in a data object con­
tainer and retrieved through a single interaction point. For example, an image of all 
created subnetwork connections may be stored in that manner. The database manag­
er, called hereafter topological map repository, is seen as one computational object 
whose interfaces are determined by the possible requests to the database. 

In order to perform certain operations that involve collection of objects, computa­
tional objects that have interfaces that offer such operations may be specified. These 
objects do not necessarily correspond to any information object. 

In an open application it is important to be able to set the limits on how open the ap­
plication should be. One may need to prevent users from getting direct access to a 
piece of information to prevent users to tamper on it. The solution is to offer to the 
users computational interfaces that clearly defines and delimits the possible interac­
tions that may occur. 

Trading is a costly operation that should be minimized. For this reason one might 
group operations, that can be related, into one interface instead of spreading them on 
several computational interfaces. 

A transaction is defined as an operation that spans more than one computational ob­
ject. A transaction is also a costly operation and one should try to minimize the num­
ber of them in the same way as trading is minimized. This can be achieved by map­
ping several information objects into one computational object. For example, group­
ing all termination points related to a subnetwork within the same computational 
object 'subnetwork' allow to have the transactional operation Connect_to_SNWI'Ps 
not span any other computational object. 

Due to these differences, separate object models need to be developed for each of the infor­
mation and the computational viewpoints. Not only are the object diagrams different, but object 
types will also be specified differently in the computational object model than in the information 
object model. Object types in the computational object model will for instance be specified with 
other operations and attributes than the corresponding object types in the information object 
model. For instance, attributes that serve a object reference holders in the computational object 
model could correspond to associations in the information object model. See also previous com­
ments about the operation connect_to_SNWI'Ps which is a perfectly valid operation in the com­
putational object model, as shown in the figure below (inspired from [6] and [7]). 



A management application using RM-ODP and OMT 

Subnetwork 
Resource Management 
interface 

ML Connection 
Control Interface 

EL Connection 
Control Interface 

115 

I add SNWTP 
delete SNWTP 
change_QoS_of_SNWTP 

set_up_connection 
connect_connection_to_SNWTPs 
disconnect_to_SNWTPs 
Change_QoS_of_connection 
change_direction 
reserve_connection 

I add connection 
remove_connection 
get_list_of_SNWTP 

Figure 5-3. A possible NetWork Resource Management Computational Model 

4.2.2 Extensions of the OMT computational model 

In addition, the computational concepts in OMT are not fully complete to allow a good design 
of a distributed application. OMT lacks concepts to express, for instance: 

objects with multiple interfaces and dynamic instantiation of interfaces, 

stream interfaces through which continuous media flows are permitted (for a lower­
level subnetwork called a matrix and conveying user data for instance), 

quality of service like transactional QoS, real-time QoS, availability, 

concurrency control. 

In TINA-C, an Object Description Language (ODL) has been defined to enable the designer 
to specify these aspects of a computational object (ODL is an extension og OMG IDL). We be­
lieve that OMT should be enhanced with these concepts although the TINA-C core team has not 
yet totally carried out any experiments that validate the appropriateness of the language. 

4.3 Engineering Specifications with OMT 

TINA-Cis currently working on the definition of a so-called Life-Cycle Service (as close to 
the OMG object life cycle as it can be) and on the deployment of computational objects into 
RM-ODP clusters. LCS and cluster management are used to master the computational object 
life cycle (creation, activation, deactivation, deletion) respectively at a fine grain (application 
level) and at a coarse grain (system level). Cluster management constitutes a major part of an 
engineering specification. 

The TINA-C core team believes that the OMT system design is insufficient with respect to 
engineering modelling. In a one or two year time frame, it should be able to propose a language, 
aligned with the RM-ODP engineering concepts, that enhances OMT on this matter. 



116 Part Two Reviewed Papers 

5. Conclusion 

OMT is not a method that is targeted towards distributed software development. In order to 
use OMT in such a context, it is necessary to enhance it with concepts that belong to the area of 
distributed computing. TINA-Cis currently pursuing this route by working on a software archi­
tecture intended to include the most interesting concepts and principles of both RM-ODP and 
OMT. 

Further more, the core team is currently customizing an OMT tool so that the user can express 
various aspects or viewpoints of distributed computing as defined in RM -QDP. So far, the work 
has been done for the information viewpoint, but similar customizing is planed for the compu­
tational and engineering viewpoints. This customized OMT tool may constitute in the future a 
skeleton of a distributed software engineering tool that would enable to user-friendly and more 
easily follow the RM-ODP recommendations. 

Acknowledgments 

The authors would like to thank the core team of the TINA Consortium who contributed to 
the specifications of the TINA Architecture, Magnus Lengdell (Telia, Sweden)who tested the 
usefulness of the OMT tool customization and Val~re Robin (France Telecom I CNET) who pro­
vided valuable comments on this contribution. 

References 
[1] ISO!IEC 10746-2.2 I ITU Recommendation X.901, Basic Reference Model of Open 

Distributed Processing - Part 1: Overview and Guide to Use, International Organization 
for Standardization and International Electrotechnical Committee, June 1993. 

[2] ISO/IEC 10746-2.2 I ITU Recommendation X.902, Basic Reference Model of Open 
Distributed Processing - Part 2, International Organization for Standardization and 
International Electrotechnical Committee, June 1993. 

[3] ISO/IEC 10746-3 I ITU Recommendation X.903, Basic Reference Model of Open 
Distributed Processing - Part 3 - Prescriptive Model, International Organization for 
Standardization and International Electrotechnical Committee, November 1992. 

[4] Fabrice Dupuy, Gunnar Nilsson, The TINA Consortium: Towards Telecommunications 
Information Networking Services, to be published in the ISS'95 proceedings, Berlin, April 
1995. 

[5] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William 
Lorensen, Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ.:, 
1991. 

[6] ITU SG15 Q.30115 0.272, Information Specification of the subnetwork connection 

services, May 1994. 

[7] Bloem, J., Pavon, J., Oshigiri, H., Schenk, M., «TINA-C Connection Management 
Architecture, TINA'95 Proceedings, Melbourne, February 1995. 


