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In an ATM network, the ATM Adaptation Layer(AAL) is used to support the connec­
tion between the ATM and non-ATM protocol layers. The AAL consists of two sub-layers: 
the Convergence Sub-layer(CS) and the Segmentation And Re-assembly Sub-layer(SAR). 
In the CS, a packet from higher layers is broken up into a number of sub-packets, which 
are further divided into ATM cells in the SAR sub-layer. The performance of the AAL is 
investigated through the analysis of a network of queues that is constructed based upon 
the functions of the AAL. Among those individual queues in this queueing network, we 
found the queue representing the SAR sublayer to be the most difficult and the most crit­
ical one to solve. The arrival process to this queue is assumed to be an I BP[x] in order 
to capture the traffic burstiness property in ATM networks. In this paper, we focus on 
the analysis of this critical queue, with a more general queueing model, I Bp[x]jGeo/1/ [{ 
queue. The mean waiting time, blocking probabilities, and the generating function of the 
interdeparture time distribution for this queue are presented. We also fit the departure 
process from this queue to a two-state MMBP. Using this MMBP as an arrival process 
of the downstream queue, the remaining queues in the network of queues can be easily 
analyzed. 
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1. INTRODUCTION 

The Asynchronous Transfer Mode (ATM) is a fast packet switching and multiplexing 
technique for broadband ISDN [1]. In an ATM network, all information ranging from 
narrowband voice and data traffic to broadband video traffic is transmitted in a fixed size 
"cell". Essential to the service offered by the new ATM networks is the ATM Adaptation 
Layer(AAL). As indicated in the ATM network protocol stack shown in Figure 1, the 
AAL, sitting above the ATM layer is used to support the connection between the ATM 
and non-ATM interfaces. The AAL consists of two sub-layers: the Convergence Sub­
layer(CS) and the Segmentation And Re-assembly Sub-layer(SAR). In CS, the packet 
from higher layers is broken up into a number of sub-packets and CS Protocol Data 
Units(CS_PDUs) are formed. The CS_PDU is further broken up into 53 byte ATM cells, 
in the SAR sub-layer [2]. To study the performance of the AAL, a queueing network is 
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Figure 1. ATM Network Layers. 

constructed based upon the functions of all ATM network layers, see Figure 2. At the 
source node, the queue SOURCE is used to generate the traffic of application packets 
from higher layersj the queue splitl is used to simulate the function of CS, which splits a 
packet from higher layers to several fixed size CS_PDU:sj and the queue split2 is used to 
simulate the function of the SAR-sublayer, which converts the CS_PDU to cells. Cells are 
transmitted through the ATM network. The network is assumed to have finite buffering 
capability and low cell loss probability. At the destination, the cells are reassembled into 
CS_PDUs and packets at the reassl and reass2 queue, respectively. In ATM networks, 
error control is performed on an end-to-end basis and retransmission should occur only 
at the CS_PDU level. To evaluate the performance of this queueing network, the decom­
position technique for analyzing large complex queueing system is used. The main idea 
of this technique is to decompose the queueing network into individual queues that will 
be analyzed independently and then recombined. This implies that it is very important 
to find accurate representations for the departure process from a queue since this process 
may be the arrival process to another queue. 

In high speed networks, another important issue is the selection of a traffic model, 
because most of the traffic that an ATM network supports is highly bursty and the Pois­
son process (or in discrete time the Bernoulli process) is not a good choice for the traffic 
in such environments. In this paper, the packet arrival process to the split! queue is 
modeled a~ an Interrupted Bernoulli Process(IBP), which captures the burstiness of the 
traffic. After the packet is segmented into several CS_PDUs in the queue splitl, the arrival 
process to the queue split2, which is the superposition of the bulk of CS_PDU:s traffic and 
the retransmission traffic, can be approximated as an I BP[xj [3], where the superscript 
[x] indicates bulk arrivals. 

To simplify the queueing analysis, we study the network performance only at the CS_PDU 
level. Thus, the constant service time for split2 queue, i.e., the time interval to transmit 
one CS_PDU, is assumed to be the time slot. K is the finite buffer size of the queue split2. 
Therefore, the model that needs to be solved for the queue split2 is the IBP[xj/D/l/I< 
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queue, which is a special case of the I Bp[xl/Ceo/l/ j{ queue. Thus, in order to solve the 
queueing network by decomposition, solving the I Bp[xl/Ceo/l/ j{ queue becomes a crit­
ical step. Also, the departure process of this queue will be of importance for the analysis 
ofthe other queues. In this paper, we concentrate on the analysis ofthe I BP[xl /Ceo/l/ K 
queue and its departure process. 

The paper is organized as follows: In Section 2 we briefly describe the more general 
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Figure 3. Markov chain of IBP. 

queue, I Bp[xl/Ceo/l/ j{ queue. The queue length distributions and blocking probabilities 
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of both queues are obtained through a Markov chain analysis. In Section 3 the derivation 
of the generating function ofthe interdeparture time distribution for the I B p[x] / Geo /1/ K 
queue and the first four moments of the interdeparture time are presented. In Section 4 
we report on the first four moments of the inter arrival time distribution of an MMBP. The 
program "Interopt" [4] is then used to fit the departure process of the I Bp[x]/Geo/l/ K 
queue to a two-state MMBP. It is verified that our fitting approach provides a satisfactory 
accuracy by comparing the four moments of the interdeparture time against the moments 
of the interarrival time in the MMBP. Using this MMBP as an arrival process of the 
downstream queue, the remaining queues can be easily analyzed. 

2. THE QUEUE LENGTH DISTRIBUTIONS OF THE IBP[x]/GEO/I/K QUEUE 

The IBP is a doubly stochastic Bernoulli process. It is governed by a discrete time 
Markov chain with two states, an active state and an idle state, shown in Fig. 3. IBP[x] 
is an IBP with batch arrivals [5]. The batch size is assumed to be distributed geomet­
rically, that is, gn = (1 - pl)p~-l, n ~ 1, where 9n = P[batch size = n]. We assume 
that this I BP[x] process is the arrival process to a single server finite capacity queue with 
geometric service time with rate u. In this system, if a bulk of sub-packet arrivals make 
the system full, only those sub-packets which find that the buffer is full are lost. 

In order to obtain the steady state queue length distribution, we observe the system 
at the slot points and generate the embedded Markov chain at these points [6]. Since 
the process development is observed in the discrete time domain, several events (e.g., ob­
serving system, state change of IBP, arrival, and departure) can happen simultaneously. 
In this paper, the possible events are assumed to be processed in the following order: 
1) departure, 2) observing, 3) state change, and 4) arrivals, as shown in Figure 4. In 

potential 
departure point 

observing point 

potential 
potential state arrival point 
change point 

Figure 4. Potential Event Sequence. 
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the Markov chain, as shown in Figure 5, there are 2(K+l) states denoted by (m,A) and 

Figure 5. The Two dimensional Markov Chain of I Bp[x1/Geo/l/ J( Queue. 

(m,l) (m=O,I, ... ,K), where (m,A) represents an active state of the arrival process with 
m sub-packets in the system; (m,l) represents an idle state of the arrival process with m 
sub-packets in the system. Note that K represents the total number of sub-packets per­
mitted in this system, i.e., server and queue combined. The state changes in the Markov 
chain can only be caused by: 

1) a state change between active and idle; or, 
2) sub-packet batch arrivals; or, 
3) sub-packet departure. Note that an arrival at the current slot cannot be served until 
the beginning of the next slot. 

An example, see Figure 6, should provide some of the necessary details in terms of tran­
sition probabilities in the Markov chain. 

By solving global balance equations of the Markov chain, the queue length distribu­
tion (i.e., Prob[number of sub-packets in the system = nl) of the I BP[x1/Geo/1/ J( queue 
is obtained. Figure 7 shows the queue length distribution of the I Bp[x1/Geo/l/ J( queue 
with parameters p = 0.8, q = 0.8, 0' = 0.8, u = 0.8, and K = 64. 

As a special case, when the system service time is constant, i.e., u =1, the I Bp[x1/Geo/l/ J( 

queue becomes an IBP[x1/D/l/J( queue. The result for the queue length distribution of 
the IBP[x1/D/l/J( queue is presented in Figure 8 when p = 0.8, q = 0.8,0' = 0.8, and 
K = 64. 
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Figure 6. Transition probabilities of state (m,l). 
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In Figure 7 and 8, the peak values of the queue length distribution appear at system 
length = K-l point when mean batch size is large. It makes sense because we observe 
the system at slot points which are right after the potential departure points. When the 
mean batch size is large, the system is very likely to be full all the time. At the other 
hand, when u is big (here, u = 0.8 or 1), it is very likely to have a departure also. Thus, 
at our observing points, i.e. slot points, the probability of having K-1 CS_PDUs in the 
system should be high. 

By using Little's law, the mean waiting time can be easily obtained. Also, from the knowl­
edge above, the blocking probabilities of the IBplx]/Geo/11 J( queue and IBPlx]1 Dill J( 

queue can pe derived as follows: 

Let Prob(block) be the blocking probability of sub-packets; Bi[A) be the probability 
that the batch sub-packet arrivals see i sub-packets in the system and in the current slot 
the state of the Markov chain in the arrival process is active, in another word, it is the 
conditional probability that the batch arrivals see i sub-packets in the system and the 
current slot is in the active state given there are a batch of arrivals. 

Bi[Aj 
7ri,Apa + 7ri,I(l - q)a 

...!.=.La 
2-p-q 

(2 - p - q) 
(1 _ q) [7ri,AP + 7ri,I(l - q)), 
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Figure 7_ I BP[x] /Geo/1/ J{ Queue Length Distribution w.r.t. Different Mean Batch Size. 

where 1I";,A (11";,1) is the probability that there are i sub-packets in the system and the state 
of arrival process is active (idle)_ Thus, 

( ) L~o BM]L~l jProb(bulk size = K + j - i) 
Prob block = K 00 • .., 

Li=O Bi[A] Lj=l JProb(bulk sIze = J) 

Prob(bulk size 2 j) = p{-I, 

Finally, 

Prob(block) = LJ:-oJ1I"i,AP + 7l'i,r(l - q)]pf-i 
Li=O[1I"i,AP + 7l'i,r(l - q)] 

3. THE DEPARTURE PROCESSES OF IBP[x]/GEO/1/J{ QUEUE 

Having developed a method to solve the queue length distributions of the I Bp[x]/Geo/1/ J{ 
queue, in this section we use the results above to obtain the generating function of the 
interdeparture time for the IBp[x]/Geo/1/J{ queue and the first four moments of the 
interdeparture time. 

Let the random variable d be the interdeparture time of the IBp[x]/Geo/1/I< queue. 
We have 

I ts 
d = ts + RA 

ts + Rl 

w.p_ 1 - dorA] - dolI] 
w.p. dorA] 
w.p. dolI] 

(1 ) 
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Figure 8. IBP[:r;I/D/l/K Queue Length Distribution w.r.t. Different Mean Batch Size. 

where 

• RA is one slot plus the time interval from the current departure to the next arrival, 
given the current departure leaves the system empty and the next slot following this 
departure is in the active state. 

• RI is one slot plus the time interval from the current departure to the next arrival, 
given the current departure leaves the system empty and the next slot following this 
departure is in the idle state. 

• t. is the service time. 

• dorA) is the probability that the departing job leaves the system empty and the next 
slot following this departure is in the active state. 

• doli) is the probability that the departing job leaves the system empty and the next 
slot following this departure is in the idle state. 

In order to find dorA) and do [I) , it is very important to remember the assumption we made 
in the last section for the order of events at a slot boundary: 1) departure, 2) observing, 
3) state change, and 4) arrivals. 
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For convenience, denote the state that at a slot point, with one departure, the system 
becomes empty, and the next slot is in the active state as WAc Similarly if the next slot 
is in the idle state as WI. Thus 

do A = Prob(WA ) 

[] Prob(I departure) 

dolI] = Prob(WI ) 

Prob(I departure) 

Since the assumption has been made that an arrival at the current slot cannot be served 
until the beginning of the next slot, there are only four possibilities of getting to the state 
WA : see Figure 9. The possibilities are 

a) at observing point E, the system is in the state (l,A); there is no state change in 

departure 

(n-l)st (n+l)st slot 

E 

x stands for a potential state change. 

; stands for potential arrivals 

Figure 9. Event Sequence getting to state WA or WI. 

the n-th slot; no arrivals in this slot; one departure happens at the end of the n-th slot; 
and the IBP arrival process stays in the active state in the (n+I)st slot. 

b) at observing point E, the system is in the state (l,A); at the n-th slot the state of 
IBP is changed to idle; one departure happens at the end of the n-th slot; and the IBP 
arrival process changes to the active state in the (n+ 1 )st slot. 

c) at observing point E, the system is in the state (1,1); at the n-th slot the state of 
IBP is changed to active; no arrivals in this slot; one departure happens at the end of 
the n-th slot; and the IBP arrival process stays in the active state in the (n+ 1 )st slot. 

d) at observing point E, the system is in the state (1,1); at the n-th slot the state of 
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IBP stays in the idle state; one departure happens at the end of the n-th slot; and the 
IBP arrival process changes to the active state in the (n+I)st slot. 
Thus, 

dorA] = (p2(1 - a) + (1 - p)(1- q))1I"1,A + (1 - q)(p(I - a) + q)1I"1,J. 
1 - 11"0 

(2) 

where, 11"0 is the probability that the system is empty. 1I"1,A, 11"1,[' and 11"0 can of course be 
obtained from the queue length distribution derived in the previous section. 

Similarly, four possibilities exist for getting to the state WI: 

a) at observing point E, the system is in the state (I,A); there is no state change 
in the n-th slot; no arrivals in this slot; one departure happens at the end of the n-th slot; 
and the IBP arrival process changes to idle state in the (n+1)st slot. 

b) at observing point E, the system is in the state (I,A); at the n-th slot the state of 
IBP is changed to idle; one departure happens at the end of the n-th slot; and the IBP 
arrival process stays in the idle state in the (n+I)st slot. 

c) at observing point E, the system is in the state (1,1); at the n-th slot the state of 
IBP is changed to active; no arrivals in this slot; one departure happens at the end of 
the n-th slot; and the IBP arrival process changes to idle state in the (n+l)st slot. 

d) at observing point E, the system is in the state (1,1); at the n-th slot the state of 
IBP stays in the idle state; one departure happens at the end of the n-th slot; and the 
IBP arrival process stays in the idle state in the (n+I)st slot. 
Thus we have 

dolI] = (1 - p)[P(1 - a) + q]1I"1,A + [(1 - q)(1 - a)(1 - p) + q2]1I"1,J 
1 - 11"0 

and 

1 _ do[A]- dolI] = 1 _ (1 - pa)1I"1,A + (1 - a + aq)1I"1,I 
1 - 11"0 

From the memoryless property of the geometric distribution, we have 

RA~ { 
1 , w.p. a 
I+RA , w.p. (1 - a)p 
1 +RJ , w.p. (1 - a)(1 - p) 

and 

RJ = { 1 + RJ , w.p. q 
1 +RA , w.p. (1 - q). 

It is found that 

(3) 

(4) 

(5) 

(6) 



where 

E[ZRA] 

E[ZR1] 

E[zt,] 
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z(o: + E[zRA ](1 - o:)p + E[zRI](l - 0:)(1 - p)) 
z(E[zR1]q + E[zRA](l - q)) 

zu 
1 - z(1- u)' 
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(7) 
(8) 

(9) 

By solving the equations 6- 9, the generating function of the interdeparture time distri­
bution, E[~d], is obtained. 

Now, we focus on the first four derivatives of the generating function of the interdeparture 
time. For simplicity, let us introduce the compact and obvious notation, D[z] = E[zd], 
RA[Z] = E[zRA], RI[Z] = E[zRI], and Ts[z] = E[zt,). 

The first four derivatives of the generating function D[z], evaluated at z=l, can be calcu­
lated as follows 

D(ll[l] = 
D(2l[l] 

D(3l [l] 
D(4l[l) 

where 

TPl[l] + a, 

T}2l[l] + 2Tpl[l]a + b, 
T}3l [1] + 3Tpl[l]a + 3T}3l [l]b + c, 
T}4l[l) + 4Tpl[I)a + 6TPl[l)b + 4TPl[I)c + e, 

a do[A]R~l[l) + do[I)R}ll[1), 

b do[A)R~l[1) + do [I) R}2l [1), 

c do[A)R~)[1) + do[I)R}3)[1), 

e = do[A)R~l[1] + do[I]R}4)[1], 

and 

i = 1,2, .... 

i '(1 _ u)i-l 

u i 

R~l[l] and RY)[I), (i = 1,2,3,4), can be derived by the following computation: 

First, rewrite Eq. 7 and 8 in matrix form as 

where 

S[z) = [ 1 - (1 - o:)pz -(1 - 0:)(1 - p)z ] 
(1 - q)z qz - 1 . 

(10) 
(11) 
(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Differentiate Eq. 19 and take z=l, we have 

(21) 

The i:th derivative can be written recursively as 

(22) 

i = 2,3, .... 

where 

_ [ 1 - (1 - a)p -(1 - a)(l - p) ] 
S[lJ - 1 1 ' -q q-

and 

B = [ -(~ = ;)p ;(1 - a)(l - p) ] . 

The departure process ofthe I Bp[x]/Geo/1/ I< queue has also been found through simula­
tion. The simulation result indicates that the successive interdeparture times are slightly 
correlated, and the mean and second moment of the interdeparture time is 1.65 and 4.53, 
respectively when p = 004, q = 0.5, (J' = 0.8, PI = 004, and K = 64. Based on the Eq. 10- 22, 
the analytical results for the mean and second moment related to the given parameters 
are 1.65 and 4.54, respectively. 

Similarly, as a special case, the departure process of I B pIx] / D /1/ I< queue can be easily 
obtained by setting (J' = 1 in the departure process of I Bp[x]/Geo/1/ I< queue. 

4. MATCHING THE DEPARTURE PROCESS TO AN MMBP 

In this section, we characterize the departure process of the IBp[x]/Geo/1/I< queue 
as an MMBP. Since simulation results reported on in the previous section indicate that 
the successive interdeparture times are correlated, neither a Bernoulli nor an IBP is a 
reasonable candidate for the departure process. Instead, we have selected the Markov 
Modulated Bernoulli process (MMBP), which can successfully capture both the burstiness 
and correlation properties, as a model for the departure process of the I BP[x] /Geo/1/ I< 
queue and IBP[x]/D/1/I< queue. 

4.1. Markov Modulated Bernoulli process 
The Markov Modulated Bernoulli process (MMBP) is a doubly stochastic point process 

whose arrival phase process for each slot is governed by an m-state irreducible Markov 
chain [7J [8J. The dwell time at phase i of the arrival phase process is geometrically 
distributed. We further assume that if the n-th slot is in state i, (i = 1,2, ... ,m), an arrival 
occurs according to a Bernoulli process with rate ai. The MMBP is characterized by 
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Figure 10. Markov Chain of MMBP. 

the transition probability matrix Q and the m Bernoulli process rates all a2, ••• , am. For 
simplicity we focus on a two state MMBP, as shown in Figure 10. We use the notation 

Q = [ 1 - 0"12 0"12 ] , 

0"21 1 - 0"21 

and 

The steady-state vector of the Markov chain 7r is such that 

7r = 7rQ. 

Let 

Pi = Prob(the arrival comes from state i I there is an arrival) 

i = 1,2, 
we have 

P (Pll P2) 
( 7r1a1 , 7r2a2 ). 

7r1 a1 + 7r2a2 7r1 a1 + 7r2a2 
(23) 
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4.2. Fitting the departure process of IBp[x1/Geo/l/I< queue to an MMBP 
From the description of an MMBP in the previous subsection, we know that the four 

parameters (112, (121, al and a2 are sufficient description for the process. Our approach 
is to match the first four moments of the interdeparture time for the IBp[x1/Geo/l/I< 
queue against the four moments of the interarrival time of an MMBP. By using the pro­
gram "Interopt", these four parameters can be derived from the four equations related 
to the four moments. The program "Interopt" uses a simulated annealing approach to 
extract unknown parameter values from nonlinear equations. We could of course use 
other moments for our fitting approach. Auto correlation coefficients of lag 1 and maybe 
higher could be used. In this investigation we did, however, decide to use as our matching 
equations the first four moments of the interdeparture time. The main reason for this 
was our observation from the simulation results that indicated that the correlation was 
not that significant. 

For completeness we introduce in this section a condensed derivation of the MMBP inter­
arrival time distribution. Let c,,-1 and c" be the (n-l)-th and n-th arrival, respectively, 

polential .Iale chanse. 

Cn-l Cn 

Figure 11. Interarrival time. 

see Figure 11, and tn ,; be the time interval from any slot point to the next arrival given the 
state in the current slot is i (i = 1,2). Assume, as above, that the potential state switch 
point is at the beginning of each slot, and a potential arrival point is at the beginning of 
each slot immediately after the potential state switch point. 

Let Al[Z] and A2[Z] denote the z-transforms of tn,l and tn ,2, respectively. The follow­
ing matrix equation for Al[Z] and A2[Z] is easily found. 
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(24) 

where 

F _ [ (1 - 0"12)(1 - ad 0"12(1 - (2) ] 
- 0"21(1 - al) (1 - 0"21)(1 - (2) . 

A[z], the z-transform of the unconditional interarrival time is given as 

(25) 

The k:th derivative of A[z] evaluated at z=1 is 

A(k)[I] = p [ A~k)[l] ] . 
A~k)[l] 

(26) 

By differentiating Eq. 24 k times and putting z = 1, we get 

[ A~k)[I] ] = k '(I _ FtkFk- 1 
A~k)[11' e (27) 

where e = [1, I]T, and k = 1, 2, 3, .... Thus, the first four moments of the interarrival 
time can be obtained. Matching these four moments against the first four moments of the 
interdeparture time derived in the previous section, we have four equations from which 
the four parameters 0"12,0"21, al and a2 can be obtained. 

Given p = 0.4, q = 0.5, 0" = 0.8, PI = 0.4, and K = 64, the first four moments of the 
interdeparture time of the I Bp[x1/Geolll J( queue are found to be 1.65,2.88909, 11.9571 
and 73.8954. By using the matching approach above, the four parameters 0"12, 0"21, al 
and a2 are approximately obtained as 0.107774, 0.318488, 0.771349 and 0.129266, respec­
tively. Thus the departure process of the IBp[x1 /Geo/1/J( queue is characterized by an 
MMBP with above parameters. 

In order to test the accuracy, the first four moments of the MMBP can be obtained 
by using the values of 0"12, 0"21, at, a2 and Eq. 26 and 27. They are 1.64201, 2.86897, 
11.9054 and 73.1123, respectively. This example consequently indicates a satisfactory 
accuracy in our approach and this approach certainly can be applied to the departure 
process of I B p[x11 Dill J( queue. 

5. CONCLUSION 

Queueing networks are very useful models for investigating the performance of com­
munication systems. A simple way to study a queueing network is to approximately 
decompose it into individual queues that are analyzed independently and then recom­
bined. This approach is used in this paper to indicate how a performance study of the 
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ATM Adaptation Layer can be done. To capture the traffic burstiness property in ATM 
networks, an I BP[xl is used as the model for the arrival process of sub-packets. It turns 
out that one critical model that needs to be solved is an IBP[xl/D/1/I< queue. In this 
paper, the queue length distributions, the blocking probabilities, and departure processes 
of the IBp[xl/Geo/l/ I< and I BP[xl/ D/1/ J{ queues are studied by a Markov chain anal­
ysis. Since the simulation results indicates that the interdeparture times are correlated, 
a Markov-Modulated Bernoulli process(MMBP), which can capture both burstiness and 
correlation properties of traffic in high speed network, is used for modeling the departure 
process. A four moments fitting approach is used to match the departure processes of the 
IBp[xl/Geo/l/I< queue to a two state MMBP:s. Using this MMBP as an arrival process 
of the downstream queue, the remaining queues can be easily analyzed. 

REFERENCES 

1. Steven E. Minzer, "Broadband ISDN and Asynchronous Transfer Mode (ATM)", 
IEEE Communications Magazine, pp.17-24, Sept. 1989. 

2. Arne A. Nilsson and Zhi Cui, "ATM Adaptation Layer Issues", Proceedings, The 
Twenty-Fourth Southeastern Symposium on System Theory, pp.434-437, 1992. 

3. Arne A. Nilsson and Zhi Cui, "On The ATM Adaptation Layer", Proceedings of 1992 
International Conference on Communication Technology, 16.06, 1992. 

4. Laura J. Bottomley, "Traffic Measurements on a Working Wide Area Network," Ph.D 
Dissertation, 1992. 

5. David M. Lucantoni, " New Results on the Single Server Queue with a Batch Marko­
vian Arrival Process," Stochastic Models. 7(1), pp.l-46, Jan. 1991. 

6. L. Kleinrock, Queueing System, Vol. I, John Wiley & Sons, Inc, New York, NY, 
pp.134-136, 1975. 

7. W. Fischer and K. Meier-Hellstern, "The Markov-modulated Poisson process (MMPP) 
Cookbook," Performance Evaluation, 18, pp.149-171, 1992. 

8. Harry Heffes and David M. Lucantoni " A Markov Modulated Characterization of 
Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance", 
IEEE Journal on Selected Areas in Communications, VOL. SAC-4, No.6, Sept. 1986. 


