
24
Single Node and End-to-End Buffer Control in Real Time

Erol Gelenbea Sridhar Seshadrib and Vijay Srinivasanc

aDepartment of Electrical Engineering,
Duke University, Box 90291, Durham, NC 27708-0291, USA

bDepartment of Statistics and Operations Research,
Leonard N. Stern School of Business, New York University, NY 10012-1118, USA

CDepartment of Computer Science,
Duke University, Box 90129, Durham, NC 27708-0129, USA

Abstract
High speed integrated services networks will multiplex distinct traffic streams that have

different sensitivities to packet or cell loss. We consider traffic streams or "classes" that
have a cost function representation related to cell loss. These traffic classes share a
common finite capacity buffer. Using this model we characterize optimal scheduling and
rejection rules for minimizing the cost of lost cells, both over the finite and infinite time
horizon. Optimization is considered both at the single switch level and for a sequence of
switches with cross traffic. For the single node case we describe optimal policies for cell
scheduling and rejection when loss related cost functions are used. These cost functions
can either be linear or convex. In the case of a two-node system, we describe numerical
experiments using a dynamic programming formulation. Although this leads to large
computational cost, it does provide insight into simple rules which could be used to
approximate optimal policies.

Keyword Codes: C.2.1; C.2.3; CA
Keywords: Network Architecture and Design; Network Operations; Performance of Sys­
tems

1. INTRODUCTION

The next generation of high speed packet-switching networks based on the Asyn­
chronous Transfer Mode (ATM) are expected to provide guaranteed Quality of Service
(QoS) to a wide range of types of connection. Perhaps the most important measure of
QoS is the level of cell or packet loss seen by a connection. Cell loss will occur largely due
to lack of physical buffer space in ATM nodes during temporary periods of congestion.
The purpose of this paper is to characterize buffer control policies for connections sharing
finite capacity buffers in ATM network nodes, with respect to the cell loss rates which
each user may encounter. Thus, the goal of these policies is to optimize loss-oriented
performance criteria. When several priority levels or classes of traffic are present, these

D. D. Kouvatsos (ed.), Performance Modelling and Evaluation of ATM Networks
© Springer Science+Business Media Dordrecht 1995

Single node and end-to-end buffer control in real time 459

criteria can be incorporated into different types of cost functions depending on the desired
effect.

We consider optimal policies for packet or cell scheduling, based on minimizing a cost
function which is directly related to cell or packet loss. For the single node case, we will
consider both simple linear "weighted sum" type cost functions, and more complex convex
functions. We will exhibit the optimal policy in the linear case, and show non-optimality
results for intuitive policies in more general cases. We study the multi-node case via a
simple dynamic programming formulation of a two-node network. Through insights gained
from the dynamic program, we construct a simple heuristic that significantly outperforms
static priority rules.

We note here that when we refer to the rejection of a cell from a particular class, we
are implicitly assuming that the sequential ordering of cells from that class is preserved.
When there is more than one cell from that class to choose from for discarding, this can
be achieved by selecting the cell that entered the buffer last. Similary, when there is
more than one cell from that class to choose from for transmission, we select the cell that
entered the buffer first. This preserves the in-sequence delivery of cells, a basic property
of virtual circuits in ATM networks.

We briefly describe below significant related prior work. In this paper, we summarize
several results from [1] on optimal control policies for a single ATM node with finite buffer
space. In [2] a space priority single-server queue is analyzed with two classes of traffic as
an MIG/1 system. The space priority discipline permits cells from the more important
class to take the place of a cell from the less important class when the finite waiting room
is full. Cidon, Guerin and Khamisy in [3] are concerned with buffering policies that can
guarantee a loss probability to cells from high priority classes regardless of the arrival
characteristics of cells from low priority classes. Lin and Silvester have considered (see
[4]) two classes of service in ATM networks under several priority queueing strategies.
The performance criterion they consider is minimum overall loss probability. Bounds are
provided on the performance of the high and low priority classes. Petr and Frost in [5]
use a dynamic programming approach to minimize the average cell discarding cost in a
system with two classes of traffic and waiting room for one cell. In [6], three classes of
buffer control policies are identified and optimal control policies with respect to some
performance criteria are characterized. The problem of characterizing feasible regions to
guarantee delay and loss-related QoS measures and the issue of designing efficient control
policies from these regions has been studied in [7], [8] and [9]. Clare and Rubin in [8]
consider a slotted-time queueing system in which the service time is deterministic and
cells can begin and end transmission only at slot boundaries. For each source, the arrival
process is modeled by assuming that the number of cell arrivals in the slots form an
i.i.d. sequence of random variables. However, the arrivals of cells from different sources
in the same slot could be correlated. Under these assumptions they show that a work
conserving policy - i.e. one that never idles when there are cells awaiting transmission -
and a non-expelling rejection policy - i.e. one that rejects a cell only when the buffer is full
- minimizes the total number of lost cells at every time instant. They prove these results
using sample path analysis. We extend these results to more general arrival patterns by
assuming a certain conservation law holds. They also define a strict discipline as one
that fixes the priority levels once and for all for all the classes and uses these to determine

460 Part Six Quality of Service

scheduling and rejection actions: the highest priority cell is scheduled first, and the lowest
priority cell is dropped first. We call such a policy a static priority policy. Clare and Rubin
show that the vector of long-run average losses is the largest in the majorization order
and use a limit theorem for regenerative processes to prove this result. We show that the
same result holds for general arrival processes on every sample path using the recently
developed theory by [10].

In the sequel we will interchangeably use the term "packet" and "cell". It is to be
understood however that we basically consider systems with fixed cell size (set to 1) and
that our work is oriented towards ATM. Our results are nevertheless applicable to any
networking environment where cells of constant size are being transmitted, and in which
packet (or cell) loss is a major issue.

2. THEORETICAL RESULTS FOR A SINGLE NODE

The theoretical results we develop consider a multiplexer with a single server and a
finite buffer with waiting room for K cells. We do not consider the effect of cross traffic.
The simulation results of the next section do include cross traffic, however.

The multiplexer is serviced by a channel of capacity C. Cells arrive to the multiplexer
from M different traffic classes, and we denote by al < a2 < ... the successive arrival
times. We will denote the service or transmission times of cells as {SI, S2, ... }. If a cell
arrives to a full buffer, i.e. with K cells awaiting transmission, either the newly arriving
cell or one of the K cells in the buffer is dropped (lost to the system). The loss process
is described by {Li(t), i = 1,2, ... , M} where Li(t) is the number of cells discarded from
class i until time t, starting from time t = o.

We consider control policies which select cells for transmission among those which are
waiting, when a transmission ends, and for rejection when the buffer is full and a new
arrival occurs. We assume that the scheduling discipline is non-idling (work conserving),
non-anticipatory and non-preemptive. A rule is said to be non-anticipatory if it does not
use information about the future. Specifically, it is assumed not to use any information
about the service times of the cells waiting for transmission or about when cells from
different classes will arrive to the multiplexer (but it may use information about the num­
ber and type of cells that have already been serviced/discarded or are awaiting service).
The rejection rule is also assumed to be non-anticipatory. The class of all scheduling and
rejection rules satisfying the above assumptions will be denoted as A. The elements of A
will be denoted as u = (8, r) where s is a scheduling rule and r is a rejection rule.

Define Nt(t) to be the number of cells from class i waiting for transmission in the
buffer at time t when control U E A is used. Let L,/(t) be the number of cells from dass i
that have been discarded until time t under control U E A. We shall assume that sample
paths of Ni(t) and Li(t) are right continuous and have left hand limits. We make the
key assumption that the choice of any of the policies we consider will not affect N(t),
the total number of cells in the buffer at any time. This assumption is realistic in many
cases of interest. For instance, if all cells have the same length - and therefore service
or transmission times - then this assumption will clearly be satisfied. This is obviously
true in ATM networks where all cells are of constant (53 bytes) length. In fact, it can be
shown that for a given sequence of arrival instants, the assumption that the number of

Single node and end-to-end buffer control in real time 461

cells in queue does not depend on the policy is equivalent to assuming that the departure
instants do not depend on the policy.

Now let L"(t) be the total number of cells lost until time t when control u is used:

M

L"(t) = LLf(t).
;=1

Also, let N"(t) be the total number of cells waiting for transmission in the buffer at time
t when control u is used:

M

N"(t) = L Nt(t)
i=l

The following is an important property of the policies we consider.

Lemma 2_1 If for any u, u' E A, we have NU(t) = N"I (t), then

M M
LLf(t) = LLt(t).
i=l ;=1

Proof: We omit the proof of this lemma. Please see [1J for details.

We first assume that the objective to be minimized is a linear loss related cost function
of the form:

M

mJnLc;LW),u E A. (1)
;=1

Without loss of generality, assume that C1 > C2 > ... > CM > O. Define 7f to be the
scheduling and rejection rule that gives the highest priority to class 1, the next highest
priority to class 2 and so on. This means that the next cell to be selected for transmission
from the pool of waiting cell will be from the class with the smallest index. Similarly,
when a cell has to be discarded because the buffer is full, it will be chosen from the class
with the largest index. We will prove that 7r achieves the objective specified above for
every instance t. Note that the "squeeze-out" policy described in [6J is a specific case of
7r when the number of classes M = 2.

M M
Theorem 2.1 Lc;Lf(t) ~ Lc;Lf(t),u E A

i=l ;=1

Proof: We use an inductive proof. Assume that given any b1 > b2 > ... > bn > 0,

Er=l biLf(t) ~ Er=l biLf(t) is true. Then given b1 > b2 > ... > bn > On+! > 0, consider

n+1 n n+1

L bi(Lf(t) - Lf(t)) = L(b; - bn+!)(Lf(t) - Li(t)) + bn+1 L(Lf(t) - Lf(t)) (2)
;=1 ;=1 ;=1

The first term on the right hand side of (2) is less than or equal to 0 by the inductive
hypothesis. The second term is also non-positive by Lemma 2.2 given below. I

462 Part Six Quality of Service

n

Lemma 2.2 2:(Lr(t) - Lf(t)) ~ 0, n = 1,2, ... , M
i=1

Proof: Recall that 2:~1 Lnt) = 2:~1 L't(t) by Lemma 2.1. Assume that the above

statement is true at time t = O. Let T1 be the first time that the buffer is full and we
have a new arrival, i.e. Tl is the first time at which the rejection rule is invoked. If Tl is
not finite, then the lemma is true. Otherwise, in [0, Td there have been no cells discarded
under either control1r or control u. Moreover, since no cells have been lost in this interval,
and because policy 1r gives priority for transmission to classes 1 to n,

n n

2:N;(Tl) ~ 2:N;"(Tl) (3)
i=1 i=1

The lemma is true in [0, Td since we have no losses in this interval. The lemma is true
at Tl and thus in [0, TIJ because of (3) and the priority given for not rejecting cells from
classes 1 to n. Let T2 be the next time instant that the rejection rule is invoked. If T2 is
not finite, the lemma is true. We now need to consider two cases.

Case 1. Both 1r and u discarded a cell from the same class at T1• Then,

n n
2: N;(T2-) ~ 2: NiU (T2-) (4)
i=1 i=1

If the cell discarded by control 1r at time T2 is not from classes 1 to n, then the lemma
holds during [0, T2J. Otherwise, if 1r discards a cell from classes 1 to n then there must
only be cells from classes 1 to n to choose from due to the nature of the rejection rule.
Thus by (4) u also discards a cell from classes 1 to n.
Case 2. 1r and u discarded cells from different classes at T1 . Then,

n n

2:N;"(T2-) ~ 2:N;"(T2-) + 1 (5)
i=1 i=l

On the right hand side of (5) we have an additional cell since control1r may have rejected
a cell not belonging to classes 1 to n, while control u may have rejected a cell from
classes 1 to n. At time T2 if control 1r does not reject a cell from classes 1 to n, the
lemma is true during [0, T2J. On the other hand, if there is equality in (5) we must have
2:~=1 L'[(Tn = 2:~=1 L't(Tn - 1. Therefore, even if control1r discards a cell from classes
1 to n at T2, the lemma is true in [0, T2J.

The construction can be continued in the same manner to T3 , T4 ,. ... The general
induction hypothesis is that if at time T;;;:

n n

2: N;(T;;;) = 2: N;"(T;;;) + Xm
i=1 i=1

and
n n

2: L'[(T;;;) = 2: L't(T;;;) + Ym, Ym 2: max(xm, 0)
i=1 i=1

Single node and end-to-end buffer control in real time 463

Then:
n n

LN;"(T';;+l) = LN;"(T';;+l) +Xm+l
;=1 ;=1

and
n n

LLi(T';;+l) = LL~(T';;+l) +Ym+l,Ym+l ~ max(xm+l'O)
;=1 ;=1

We consider four cases below.

Case 1. At time T,;; policy 7f does not reject a cell from classes (1,2, ... ,n) and policy u
also does not reject a cell from these classes. We must have Xm+l ::; Xm because of the
scheduling rule and Ym+l = Ym'

Case 2. At time T,;; policy 7f does not reject a cell from classes (1,2, ... ,n) but policy u
rejects a cell from these classes. We must have Xm+l ::; Xm + 1 because of the scheduling
rule and Ym+l = Ym + 1.

Case 3. At time T,;; policy 7f rejects a cell from classes (1,2, ... ,n) and policy u rejects a
cell from these classes. We must have Xm+l ::; Xm because of the scheduling rule and
Ym+l = Ym'

Case 4. At time T,;; policy 7r rejects a cell from classes (1,2, ... ,n) but policy u does not
reject a cell from these classes. We must have Xm+l ::; Xm - 1 because of the scheduling
rule and Ym+l = Ym - 1. In addition because policy 7r rejected a cell from the first n
classes, it must be true that Xm > O. Therefore, Ym+l = Ym - 1 2: Xm - 1 2: O. I

Theorem 2.1 characterizes the optimal policy for the finite time horizon case. For the
infinite time horizon case we can employ a continuous discount factor p and by using
Theorem 2.1 obtain:

Corollary 2.1

Several remarks are worth making at this point. Note that in order to achieve the
minimum cost, it is necessary to control both the order in which cells are scheduled for
transmission as well as the manner in which packets are selected for discarding. The
optimal solution is said to be path-wise least cost if the objective function is minimum at
each point of time on every sample path under the optimal control. For examples of the
definition and for uses of path-wise least cost solutions, the reader may see [11-14]. Thus
the above proof shows that the policy 7r is a path-wise least cost solution.

We can define the performance vector to be the expected number of lost cells of each
class (EL;(t), i = 1,2, .. , M). The arguments developed above show that this performance
vector satisfies a strong conservation law as defined in [10]. We will use this fact in the
next section.

464 Part Six Quality of Service

3. CONVEX COST FUNCTIONS

Although the linear cost functions discussed in the previous sections are intuitively
appealing, there are instances where other cost functions would be of interest - for instance
when one would like to differentiate more strongly between priority classes, so as to let
some priority class become "much more important" than other classes with respect to cell
loss. As an example, for a 2-class system one could have an objective of the form:

where we are saying that losses for the second class of cells are to be considered only if
they exceed a quantity 'Y > o.

Thus we will now consider strictly increasing and convex cost functions /; (Li (t)), i
1, ... , M and the objective is now to find policies u which minimize:

M

L!i(L~(t)),u E A.
i=l

(6)

We first give an example that shows it is impossible in general to obtain a path-wise
least cost solution, as for the strictly linear case, when the cost functions are strictly con­
vex. However we do not exclude that such path-wise optimal solutions exist for special
cases.

A counterexample Consider the case where we have two classes sharing a buffer of size
1, i.e. M = 2 and K = 1. Assume that both classes have the same strictly increasing and
convex cost function given by !1(0) = 12(0) = 0, h(l) = 2, h(2) = 12, 12(1) = 4, and
12(2) = 12.

Let us assume that we have a path-wise least cost control 7f for this system. We will
show the existence of a control u E A that achieves 2::f!1 !i((Li(t)) < 2::f!1 !i((L'[(t)) for
some t and a specific realization of events. Label the system controlled using 7f as I and
the other system as II. At the first time, t l , that a cell has to be dropped let there be a
cell of type 2 in the buffer in both systems (this can be achieved in II by following the
same scheduling policy as in I). At tl let the newly arriving cell be of type 1. Let 7f decide
to drop the type 1 cell and u decide to drop the type 2 cell. From tl onwards, let there
be no more arrivals of type 2 and only arrivals of type 1. Therefore, at the next instant
t2 that a cell has to be dropped, both 7f and u will have to drop a type 1 cell. Then
h(Lf{t2)) + 12(L2(t2)) = 12 > 6 = !1(Lf(t2)) + 12(L~(t2)) . If at time t l , 7f drops a type
2 cell, then u drops a type 1 packet. If we assume that only type 2 cells arrive after time
t l , we obtain a similar contradiction at time t 2 .

We will now turn to the characterization of optimal control policies when the perfor­
mance measure is expressed as an expected or average value.

3.1. Optimality for Average Convex Cost
In the sequel we will assume that the model is defined in a probability space, by an

appropriate probabilistic representation of the arrival and service process.

Single node and end-to-end buffer control in real time 465

Our development would also be applicable if we were dealing with infinite sample paths.
Let

1· . f Lf(t) f.lU· 12M
1m III -- = /Ji ,~= , , ... , .

t-+oo t (7)

Then the infinite time horizon minimization problem is:

M

mJn L J;(rm, u E A (8)
i=1

Assuming an appropriate probability space, we will consider the finite time horizon prob­
lem of minimizing the expected cost:

M

mJn L E[ji(Li(t))], u E A (9)
i=1

As we will see below, the solution to (8) can be characterized via absolute priority rules,
similar to what was done previously - see Gelenbe and Mitrani (Chapter 6 of [15]). We
will show that a lower bound for the optimal solution to (9) can be constructed using the
recently developed theory by Shanthikumar and Yao (see [10]).

Define an absolute priority rule a to be a permutation of {I, ... ,M} which gives the
highest scheduling and rejection priorities to class a(I), the second highest to a(2) and
so on. From Lemma 2.1 it follows that for all u E A:

M M
LL~(i)(t) = LL:(i)(t), (10)
i=1 ;=1

and
m m

LL~(i)(t) :::; LL:(i)(t), 'v'm:::; M (11)
i=1 i=1

From (10), (11), and the definition given in [10] (and earlier work in [15] on achiev­
able performance vectors), the performance vector of expected number of lost cells,
{ELl (t), EL2 (t), ... , ELM(t)}, satisfies a strong conservation law. From Theorem 1 of
[10] it then follows that the achievable performance vectors are contained in the (base of
a) polymatroid, PI, whose vertices correspond to the absolute priority rules. Using this
fact, we have:

Theorem 3.1 If the objective is

M

minLE[J;(Li(t))],u E A,
u i=l

a lower bound on the optimal value of the objective function is given by

M

min L J;(Xi).
XEP'i=1

(12)

466 Part Six Quality of Service

Proof: By the reasoning given in the previous paragraph, every achievable value of the

performance vector belongs to the polymatroid PI. Therefore minimizing E~I !;(Xi) over
PI solves

M

mJn L j;(E[Ly(t)]), u E A.
i=1

Since the f;(.) are convex, an application of Jensen's inequality (see for example p. 47 in
[16]) gives the required result. I
Remarks:

1. This theorem suggests that absolute priority rules need not be optimal and we may
have to search for randomized rules to achieve satisfactory performance.

2. We can use Theorem 3.1 to compare the performance of several heuristics that are
simpler to implement.

As shown for the performance vector {ELI(t), EL2(t), ... , ELM(t)}, we can show that
the performance vector {!h,.82, ... ,,BM} satisfies a strong conservation law. Therefore
every achievable performance vector is contained by the convex polytope, Poe (which
is the base of a polymatroid) generated by the performance vectors {,Bf,,B~, ... ,,B~}
corresponding to the absolute priority rules (a). We shall restrict our attention to the
class of controls AL (or systems) in which the following equality is attained almost surely
in the limit:

lim Ly(t)/t a~. ,Bi, i = 1,2, ... , M.
t-+oe

Theorem 3.2 If the objective is

M

min L fi(,Bi), U E AL ,
" i=1

the optimization problem is equivalent to solving the convex program:

M

(13)

min L j;(Xi) (14)
xEPoo i:::::l

Proof: Similar to the first part of Theorem 3.1. I

In practice, to apply the results of Theorems 3.1 and 3.2, we need to know the break­
up of losses suffered by different classes under each absolute priority rule in order to
determine the vertices of the polymatroid. One method for obtaining this break-up is to
use simulation. However, since the loss probability is often of the order 10-9 , simulation
runs will have be very long. If it were possible to characterize the arrival patterns before
hand - ego for some packet audio applications - the calculations for the break-up of loss
can be performed off-line and the actual control determined in real time. Another method
of estimating losses is to use approximations, but using the available approximations for
queues with bounded buffer space (see Buzacott and Shanthikumar [17] and Gelenbe and

Single node and end-to-end buffer control in real time 467

Mitrani (chapter 4 of [15])), losses cannot be computed accurately. Simulations suggest
that even the relative losses of different classes for a given absolute priority rule can
be extremely sensitive to the distribution of the arrival streams of cells. This area of
approximations holds potential for future research.
Remark: For a system with Poisson arrivals and i.i.d. service times, once the optimal value
ofx has been obtained from solving the convex programs (12) or (14), the priority rule can
be determined by using the methods of Federgruen and Groenvelt [18]. For the general
case we can resort to randomized application of absolute priority rules or apply different
absolute priority rules over different time slices. These options and their implications for
the quality-of-service are currently being investigated.

4. END-TO-END CONTROL VIA DYNAMIC PROGRAMMING

For the general case of a multi-hop (multi-switch) network when there can are many
streams of traffic to control, it is not easy to characterize the best control policies or
even to specify a generally acceptable cost function. Nor is it obvious to determine what
appropriate measurements could be, or would have to be, collected to design meaningful
controls. Thus the general problem we are addressing is very challenging and can lead to
some new insight and research issues.

For the sake of simplicity, we still limit our attention to the key issue of how to schedule
cells for transmission and for rejection. One intriguing question is to determine whether
static policies with limited information could in some cases perform as well (or perhaps
even better) than "optimal" ones using global information, especially when traffic patterns
fluctuate rapidly. The preliminary evaluation in this section will reveal that even though
the computation of an optimal control rule cannot be carried out on-line (as would be
expected), the insight it produces would provide useful guidelines for designing simple
heuristic rules.

Figure 1. Model for Two Node Control Problem

In order to illustrate the issues which are involved in a more the more global optimiza­
tion problem, we will now address the simplest and still interesting model of a multi-node

468 Part Six Quality of Service

control problem involving two nodes shown on Figure 1.
We assume that the cost function used is based on a linear functions of cell loss. We

also assume that global information is available to a central controller. In future work
we will address the practically more interesting case when only partial information is
available to each node. As we shall see, even this model (using global information) gives
us very valuable insight into what an optimal control under local information would be if
supplemented with even marginal global information about the other nodes.

In Figure 1, we show four classes of external traffic at node 1 and two classes of external
traffic at node 2. We denote the external traffic by i/j, where i is the node and j is the
class of traffic. Specifically, 1/1 is "end-to-end" traffic, and cells from this class pass
through nodes 1 and 2 before exiting the system. Traffic class 1/2 is identical to 1/1 but
it is more costly to lose a cell of 1/2 compared to 1/1. 1/3 and 1/4 are traffic streams
that use only node 1 and then exit the system, with 1/3 being cheaper than 1/4 to lose.
Thus, 1/3 and 1/4 constitute the "cross" traffic at node 1. 2/1 and 2/2 are streams that
use only node 2 and then exit the system. There is a shared finite buffer at nodes 1 and
2, and the buffer sizes are denoted as Bl and B2 respectively. The arrival processes are
all assumed to be Poisson and the arrival rate of stream i/j will be denoted as Aij. The
cost of losing a cell of type ij will be denoted Cij' We assume for reasons given later
that C11 = C 13 = C 21 and that C 12 = C 14 = C 22 . Another important simplifying
assumption that we make is that the propagation delay for a cell to travel from node 1 to
node 2 is negligible. This assumption is somewhat unrealistic in most fast ATM networks
where the propagation delay can be a large part of the delay experienced by a cell while
traversing the network.

The dynamic program will be set in discrete time, t = 0,1,2, ... , and the time to
transmit a cell will be one time unit. We suppose that rejection decisions are made at
instants 0-, 1 - , ... and scheduling decisions are made at 0+, 1 +, For convenience we
assume that 0,1, .. correspond to 0+,1 +,

The state space of the optimization problem will be given by,

4 6

{nl, n2, n3, n4, n5, n6}' L ni ::; B1, L ni ::; B2 , ni = 0,1,2, ... ,
i=l i=5

where ni, i = 1, ... ,4 correspond to the number of cells at node 1 from class 1/1,1/2,1/3
and 1/4 respectively; n5 corresponds to the total number of class 1/1 and 2/1 cells at node
2; and n6 to the total number of cells of class 1/2 and 1/4 at node 2. The assumption
about the costs was made partially to simplify the state space representation at node 2,
as is evident from the above description.

The transition probabilities between states of the state space will definitely depend
on the controls allowed for cell scheduling and rejection. For simplicity we side-step the
rejection decision by assuming that C 12 = C 22 = C 14 > > C11 = C21 = C13 . This
assumption means that there are two kinds of traffic in the network: a "costly" kind and a
"cheap" kind. By the assumption that cells of one kind are much more valuable compared
than the other cells, we side-step the rejection decision as follows. It is clear that cells
from class 1/4 will be preferred to cells from 1/2 because 1/4 has a shorter route and is
just as costly to lose. Similarly, 1/3 will be preferred over 1/1. Because C12 > > C13 ,

cells from 1/2 will be preferred over those from 1/3. So we have a complete ordering at

Single node and end-to-end buffer control in real time 469

node 1 as far as rejection is concerned: 1/4 > 1/2 > 1/3 > 1/1. At node 2, the static
priority rule discussed in [1] will be still valid.

Even with all these simplifications, the dynamic program is computationally difficult
to solve. The control is now to decide which cell to schedule for transmission at node 1.
However in principle node 1 need not transmit any cell, even when there is work to be
done. The transition probabilities will result from this control, the optimal static control
at node 2, and the arrival rates as well as the rejection rule. The computational details
are omitted from this paper.

4.1. Numerical Computation of the Controls
To simplify the numerical computations we truncate the Poisson distribution by allow­

ing at most eight arrivals during one time slot. The state space of the dynamic program
can still be extremely large for large buffer sizes and given time constraints on our com­
puting facilities, we have worked with small buffer sizes as given below. We solve for
the optimal average cost and compare it with the average cost using the optimal single
node static priority policy (modified slightly as described below) at both nodes. The dy­
namic program uses successive iterations to solve for the value function and 100 iterations
were employed. The details of the recursive computations for the value function are not
given since the interested reader can refer to any standard work on stochastic dynamic
programming (such as S. Ross [19]).

The number of iterations was chosen to meet the time constraint of solving a program
within 2 to 4 hours of running time on a DEC Alpha 3000 Model 500 workstation and
obtaining at least convergence to the third decimal place in the average cost. Clearly this
approach is not feasible in real time. However it does provide a useful comparison for
simple static policies, and it does provide insight into some simplified rules which may be
used to mimic the optimal control.

The optimal static priority policy for a single node will not distinguish between 1/1
and 1/3 at node 1, but due of the nature of the routing, we modified the static policy
to prefer 1/3 over 1/1 at node 1. The optimal static policy was used for node 2. We
set the parameters for the dynamic program as in Table 1. With the arrival rates shown

Table 1
Parameters for the Dynamic Program

Traffic Type i/j Cost G ij Arrival Rate Aij

1/1 1 0.08
1/2 2 0.16
1/3 1 0.32
1/4 2 0.24
2/1 1 0.32
2/2 2 0.48

in Table 1 the load will be 80% at node 1 and 104% at node 2. The buffer sizes were

470 Part Six Quality of Service

varied by setting (B l , B2) = (2,2), (5,5) and (7,7). The results from solving the dynamic
program are shown in Table 2. The column under optimal cost gives the average cost
estimate after 100 iterations, the costs under the static policy were also obtained similarly
using dynamic programming. The column labeled deviations gives the percentage of the
total number of states in which the optimal policy deviated from the static policy. Two
interesting points can be made from this example:

1. The percentage of the cases in which the optimal policy deviates from the static
policy is not too large « 25%) and

2. The improvement from using the optimal policy over the static policy increases with
the buffer size.

Table 2
Comparison of Static Policy to the Optimal Policy using the Dynamic Program

(2,2)
(5,5)
(7,7)

Static Cost
0.390
0.133
0.095

Optimal Cost
0.377
0.114
0.077

Percent Improvement
3.4
6.7
23.4

Deviations
11.11%
24.34%
23.25%

The first point is noteworthy because it implies that we can cleverly modify the static
policy by adding some information about the state of node 2 to the information already
available at node 1 and possibly obtain improvements. The second point is of interest
because it implies that when losses are very small, it can be very beneficial to use the
optimal control. The practical case of interest is obviously when when losse probabilities
are small, say 10-7 . Variations in the problem parameters other than the buffer size give
very similar results to those shown in Table 1. Based on these findings we were led to ask
two questions:

1. What differentiates the optimal policy from the static policy, and

2. How does the optimal policy minimize losses and in what sense?

Apart from some nuances that seem to be applicable only to networks with small buffers,
the optimal policy changes the scheduling rule at node 1 by using information about node
2's overall load. The rule changes as follows:

• When the buffer at node 2 is relatively empty, say only 15 to 20% of the buffer
is occupied, then the optimal policy schedules 1/2 in preference to 1/4 and 1/1 in
preference to 1/3, and the overall scheduling priority at node 1 can be described by
1/2 > 1/4 > 1/1 > 1/3, and

• When the buffer at node 2 is relatively full, say 60 to 70% percent occupied, then
the optimal policy does not schedule 1/1 or 1/2 and schedules only 1/3 and 1/4.

Single node and end-to-end buffer control in real time 471

• When the buffer in both nodes are close to full, and there are only cells of type 1/1
and 1/2 in the buffer at node 1, then the policy transmits cells preferring 1/1 to
1/2.

The second rule means that the scheduling policy at node 1 is no longer work conserving.
The modification of the static rule using these insights will be called the HILO heuristic.

We first simulate the same two-node example using the Poisson process to model arrivals
for the different traffic classes. The run lengths are 1000000 time units. We compare
two policies: (i) The HILO heuristic, and (ii) the Static policy described earlier. For
the HILO heuristic, when the number of cells in the buffer at node 2 is above a preset
level, called HI, the scheduling rule is 1/4 > 1/3 and never to schedule 1/1 or 1/2;
when the level is below a preset limit, called LO, the rule is to schedule according to
1/2 > 1/4 > 1/1 > 1/3, and when it is in between these limits the rule is to use
the static priorities 1/4 > 1/2 > 1/3 > 1/1. When the buffer occupancy at node 2
is above HI, the only cells in buffer at node 1 are of type 1/1 and 1/2, and the number
of cells in the buffer at node 1 are above a level denoted as FULL, cells of type 1/1
are transmitted in preference to cells of type 1/2. Denote the buffer sizes as Bl and B2 ,

respectively. In our simulations, we set LO to 20% of B2 , HI as 70% of B2, and FULL
as 90% of B l . The static rule has been discussed earlier.

We simulated the two-node system with Poisson traffic for two examples. The parame­
ters used in the simulations for the two examples are given in Table 3, and the results are
compared in Table 4. From these results, we can conclude the Static rule saves cheaper
cells but does not reduce overall cell loss when compared to FIFO. The HILO heuristic
reduces overall cell loss by one order of magnitude.

Table 3
Two Examples for Poisson Arrivals

Buffer Size
Bl B2
30 30
30 30

Arrival Rates
.An .A12 .A13 .A14
0.07 0.14 0.28 0.21
0.21 0.21 0.14 0.14

0.28 0.42
0.2 0.3

A little experimentation convinced us that the performance was relatively insensitive
to changes in these levels. As anticipated the losses truly decline with the buffer size,
and amazingly we get up to 18 times improvement with limited feedback. Similar results
were obtained for other values of the problem parameters and are not reported here. We
did observe that the HILO heuristic is effective only when the losses are relatively small.
Moreover the rule can be improved by more descriptive feedback such as counting a cheap
cell as half a cell and a costly one as one cell, i.e. by counting cells in the proportion
of costs. We do not dwell on such issues because the key issues are more practical in
nature, such as will the HILO heuristic perform well in more complex networks, whether
the improvements will be of the same order of magnitude, will limitations due to the large

472 Part Six Quality of Service

Table 4
Comparison of Cell Losses for Poisson Arrivals

Traffic Type Example 1 Example 2
i/j HILO Static HILO Static
1/1 0 0 11 0
1/2 0 0 0 0
1/3 0 0 0 0
1/4 0 0 0 0
2/1 16 278 0 433
2/2 0 0 0 0

Total for all types 16 278 11 433

bandwidth-delay product in ATM networks inhibit the use the feedback and lead to the
consideration of cells" already transmitted and not yet received by node 2.

5. Conclusions

We have considered issues of optimal cell (or constant length packet) scheduling and
rejection to minimize loss oriented cost functions.

We have derived optimal policies for a single node with multiple traffic streams. Then we
have discussed the design of optimal controls for multiple node systems with cross traffic.
For the latter case we have examined a two-node example using a dynamic programming
formulation. We have observed that even though the computational cost of such an
approach is prohibitive, it can be useful for two reasons. First it provides an evaluation
of how well (or poorly) simple static policies perform compared to the optimal. Secondly,
the dynamic programming formulation provides insight on the design of simple policies
which mimic the optimal schedule. This points to new research avenues in designing
sub-optimal schedules for future high-speed ATM networks.

REFERENCES

1. E. Gelenbe, S. Seshadri and V. Srinivasan, "Pathwise Optimum Policies for ATM
Cell Scheduling and Rejection ," Department of Computer Science, Technical Report,
Duke University, CS-1994-24, 1994.

2. G. Hebuterne and A. Gravey, "A Space Priority Queueing Mechanism for Multiplex­
ing Channels," Computer Networks and ISDN Systems, 20, 1990, 37-43.

3. 1. Cidon, R. Guerin and A. Khamisy, "On Protective Buffer Policies," Proc. INFO­
COM '93, 1051-1058, 1993.

4. A.Y-M. Lin, and J. A. Silvester, "Priority Queueing Strategies and Buffer Allocation
Protocols for Traffic Control at an ATM Integrated Broadband Switching System,"
IEEE Journal on Selected Areas in Communications, Vol. 9, No.9, Dec. 1991,
1524-1536.

Single node and end-to-end buffer control in real time 473

5. D.W. Petr, and V.S. Frost, "Optimal Packet Discarding: An ATM-Oriented Analysis
Model and Initial Results," Proc. INFO COM '90, 537-542, 1990.

6. L. Tassiulas, Y. Hung and S.S. Panwar, "Optimal buffer control during congestion in
an ATM network node," Proc. INFO COM '93, 1059-1065, 1993.

7. Y-H. Jeon, "Conservation Laws and Multiplexing Schemes for Delay and Loss Re­
quirements in Broadband Networks," Ph.D thesis, Department of Electrical and Com­
puter Engineering, North Carolina State University, Raleigh, NC, 1992.

8. L.P. Clare and 1. Rubin, "Performance Boundaries for Prioritized Multiplexing Sys­
tems," IEEE Transactions on Information Theory, Vol. IT-33, No.3, May 1987, 329-
340.

9. L. Georgiadis, R. Guerin and A. Parekh, "Optimal Multiplexing on Single Link:
Delay and Buffer Requirements," to appear in Proc. INFOCOM '94, 1994.

10. J.G. Shanthikumar and D.D. Yao, "Multiclass Queueing Systems: Polymatroidal
Structure and Optimal Scheduling Control," Operations Research, Vol. 40, Supp.
No.2, May-June 1992.

11. J.M. Harrison, "Brownian Models of Queueing Networks with Heterogeneous Cus­
tomer Populations," Stochastic Differential Systems, Stochastic Control Theory and
Applications, ed. by W. Fleming and P. Lions, IMA Vol. 10, Springer-Verlag, Berlin
1988, 147-186.

12. C.N. Laws and G.M. Louth, "Dynamic Scheduling of a Four Station Queueing Net­
work," Probability in Engineering and Information Sciences, 4,1990, 131-156.

13. L.M. Wein, "Optimal Control of a Two-Station Brownian Network," Math. Oper.
Res., 15, 2, 1990, 215-242.

14. P. Yang, "Pathwise Solutions for a Class of Linear Stochastic Systems," Doctoral
Dissertation, Stanford University, 1988.

15. E. Gelenbe and 1. Mitrani, "Analysis and Synthesis of Computer Systems," Academic
Press, London, 1980.

16. K.L. Chung, "A Course in Probability Theory," Academic Press, New York, 1974.
17. J.A. Buzacott, and J.G. Shanthikumar, "Stochastic Models of Manufacturing Sys­

tems," Prentice Hall, Englewood Cliffs, N.J, 1993.
18. A. Federgruen and H. Groenvelt, "Characterization and Optimization of Achievable

Performance in Queueing Systems," Operations Research, 36, 733-741.
19. S. Ross, "Introduction to Stochastic Dynamic Programming," Academic Press, 1983.

