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Abstract 
We study the effects of nonstationary traffic patterns in a network of ATM nodes. 

Dynamic behaviour of ATM networks is of interest due to the highly nonhomogenous 
nature of the load: periods of basic activities are interleaved with bursty periods of 
demands. The models frequently used to predict transient behaviour of these networks 
are based on fluid approximation. Usually they assume Poisson arrivals and consider 
only mean values of queues. Here, we propose a diffusion model which takes into account 
general input process and allows us to study the dynamics of nonstationary traffic along 
virtual path, to approximate transient distributions of queues and transient distributions 
of response times of one or several nodes. It also permits the estimation of time-varying 
loss rates due to limited capacity of buffers. 
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1. INTRODUCTION 

BISDN will support various classes of multimedia traffic with different bit rates and 
different quality of service requirements. Traffic in the networks is expected to be very 
bursty and non stationary. Because of the available bandwith, these networks will not 
be bandwidth-limited but latency-limited systems. Flow control and congestion control 
algorithms will not be based as previously on the window mechanism. Alternative tech­
niques to prevent the congestion have been proposed and analysed [1). Transmission 
delays and cell loss probabilities are the most commonly used decision criteria in ad­
mission control. If long term time-averaged values of these variables are used, there is 
a danger that during periods of temporal network congestion a large number of cells 
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may be lost even when the long term time-average value of loss rate is kept small, see 
realistic examples in [2, 3]. 

Therefore, the dynamics of flows becomes an important factor which requires to be 
modelled. It is studied by transient solutions of corresponding models. 

The direct approach lies in transient analysis of continuous-time Markov chains. 
Markov models are able to express various synchronization constraints related to control 
machanisms in a network but their application encounters several numerical problems, 
such as size of the models, which easily overpass 50 000 or 100 000 states, ill condi­
tionning and stiffnes of the equations. A considerable effort have been already taken to 
overcome these problems. Explicite differential solution methods (Runge-Kutta), spe­
cial stable implicit methods, an uniformization (randomization) method based on the 
reduction of continuous-time Markov chains to a discrete-time Markov chain subordina­
ted to a Poisson process were proposed and tested [4]. Also some efficient approximative 
methods based on the use of Krylov subspaces (the original matrix of an infinitesimal 
generator is projected into Krylov subspace; the new matrix has the same eigenvalues 
but its dimention is considerably smaller) were applied [5]. Nevertheless, this approach 
is still a challenge to one's skills and numerical experience of a modelling person. 

Another approach consists in the use of fluid approximation [6]. First order differen­
tial equations, refferred to as fluid flow equations, of the type d~Jt) = f;n(t) - fout(t) 
are developed; X(t) is the average number of customers in the system, f;n(t), fout(t) 
are average flows in and out of the system. The equations may include the classes of 
customers and the effects of non-premptive priority; they are solved numerically. 

Diffusion approximation lies between the both extremities: the use of two first mo­
ments of interarrival and service time distributions improves the approximation because 
fluid approximation is based on the first moments only. The computation effort related 
to diffusion approximation is considerably smaller than in numerical analysis of Markov 
chains. There are already diffusion models applied to ATM networks [7], transforming 
diffusion process to Ornstein-Uhlenbeck process. Our approach uses a special method 
of solution to diffusion equation with instantaneous return process acting as boundary 
conditions; this method represents the desired probability density function (pdf) of the 
process by a spectrum of pd functions of other simpler diffusion processes [81. That helps 
us to obtain analytical solution which is relatively easily computable and was already 
applied by us in the analysis of a single ATM node [9]. 

The article is organised as follows. Sections 2 reviews briefly basic concepts of dif­
fusion approximation and recalls its main results concerning the steady-state multiple 
class models of a single server and of an open network of servers. Section 3 summarizes 
the diffusion model of the single ATM node with a space priority push-out mechanism 
presented and validated in [9J. It is based on G/G/I/ N diffusion model and on an itera­
tive procedure reflecting the mechanism of the buffer management. The procedure can 
be easily replaced if a new mechanism is to be studied. Section 4 presents our transient 
solution of the diffusion model of a single multiclass G / G / I server and of a network of 
G/G/I servers. Time-dependent arrival and service processes are admitted as well as 
time-dependent routing matrices. The results are expressed in terms of Laplace trans­
forms and numerically converted. Section 5 applies both types of results (steady-state 
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and transient) to a network of stations in series representing a virtual path in an ATM 
network. The queueing network of G/G/1 stations is used to study the dynamics of 
nonstationary traffic along virtual path. Then the G/G/1/N Push-Out models can eva­
luate the time-dependent cell loss at each node subjected to time-varying load. Two 
classes of cells with distinct loss requirements are considered. The interaction between 
virtual circuit traffic and local traffic is taken into account; both types of traffic have 
two classes of customers and are subjected to changes in time. An equivalent simulation 
model would be costly because of very low loss rates and consequently long simulation 
runs which should be performed. 

The diffusion approach seems to be a natural tool to deal with the transient states 
and particularily well suited to model ATM networks. 

2. STEADY-STATE DIFFUSION APPROXIMATION OF A SINGLE 
SERVER AND OF AN OPEN QUEUEING NETWORK 

Let A(x), B(x) denote the interarrival and service time distributions in a service 
station. The distributions are general but not specified, the method requires only their 
two first moments. The means are: E[A] = 1/)", E[B] = 1/ It and variances are YarrA] = 
O"~, Var[B] = 0"1. Denote also squared coefficients of variation C1 = 0"~)..2, C1 = 0"1lt2. 
N(t) represents the number of customers present in the system at time t. 

According to the central limit theorem, the number of customers arriving in suffi­
ciently long time interval [0, t] may be approximated by the normal distribution with 
mean )..t and variance 0"1)..3t. Similarly, the number of customers served in this time 
is approximately normally distributed with mean Itt and variance 0"1lt3t provided that 
the server is busy all the time. Consequently, the changes of N(t) within interval [0, t], 
N(t) - N(O), have approximately normal distribution with mean ().. - It)t and variance 
(0"1)..3 + 0"1lt3)t. 

Diffusion approximation [10] replaces the process N(t) by a continous diffusion pro­
cess X(t) which incremental changes dX(t) = X(t + dt) - X(t) are normally distributed 
with the mean f3dt and variance edt, where f3, a are coefficients of the diffusion equ­
ation which defines the conditional probability density function f(x, t; xo) of X(t). The 
both processes X(t) and N(t) have normally distributed changes; the choice f3 = ).. - It, 
a = 0"~)..3 + 0"1lt3 = C1).. + C11t ensures the same ratio of time-growth of mean and 
variance of these distributions. 

Limit boundaries reflecting constraints of N(t) should be imposed on X(t). In [11] 
diffusion approximation of a G / G /1/ N station was studied as a process X (t) which 
is defined on the closed interval x E [0, N]. Within the interval x E (0, N) X(t) is 
a diffusion process; when it comes to x = 0, it remains there for a time exponentially 
distributed with a parameter )..0 and then it returns to x = 1; when the process comes to 
x = N, it remains there for a time which is exponentially distributed with a parameter 
)..N and then it starts at x = N - 1. The time when the process is at x = ° corresponds 
to the idle time of the system. The sojourn time at x = N corresponds to the time 
during which the queue is full and the arriving cells are rejected; the jump to x = N - 1 
corresponds to the departure of the customer which has been served; a place in the 
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queue becomes available again. Therefore, we choose AO = A and AN = ft. 
Diffusion equations defining function f(x, tj xo), the pdf of the process, are the fol­

lowing [11]: 

8f(x,tj Xo) 
8t 

d[Jo(t) 
dt 

dPN(t) 
dt 

a82f(x,tj xo) a8f(x,tj xo) 
2 --"-'8-::-X'-:2~~ - I-' 8x + 

+AoPo(t)8(x - 1) + ANPN(t)8(x - N + 1) , 

. [a8 f (x,t jxo) a ( )] ( ) bm 2 8 -I-'f x,tjXo -AOPo t , 
,'£'-+0 X 

. [a8f (x,t jxo) ( )] ( ) bm --2 8 + (1f x, tj Xo - ANPN t , 
x-+N X 

where 8(x) is Dirac delta function. 

(1) 

In stationary state, when limt_coPo(t) = Po, limt_co PN(t) = PN, limt_co f(x, tj xo) = 
f(x), eqs.(l) become ordinary differential ones and their solution, if (! = }..jft -I- 1, may 
be expressed as: ! >p, (1 - ,-) for O<x~l, 

-(1 

f(x)= APo(e-Z _1)eZX for 1~x~N-1, (2) 

;t (ez(x-N) _ 1) for N-1~x<N, 
-(1 

where z = ~ and Po, PN are determined through normalization. 
The steady-state solution does not depend on the distributions of the sojourn times in 

boundaries but only on their first moments. The boundary conditions with instantaneous 
returns from x = 0 to x = 1 and from x = N to x = N - 1 make the model insensitive 
to the system utilization: diffusion model is not a heavy-traffic approximation and gives 
reasonable results also for light loads. 

When the input stream A is composed of [( classes of customers and A = E1:=l A(k) 
(all parameters concerning class k will have an upper index with brackets) then the joint 
service time pdf is defined as 

hence 

1 K A(k) 1 

;= ET ft(k) , 
and (3) 

Similarily, 

(4) 
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The above parameters yield 0', f3 of the diffusion equation; function f(x) approximates 
the distribution p(n) of customers of all classes present in the queue: p(n) ~ f(n) and 
the probability that there are nk customers of class k is 

k=I, ... ,K. (5) 

In a G / G /1 station the queue is not limited, hence the unique barrier for the diffusion 
process is placed at x = 0; in the system of equations (1) the last (i.e. third) equation 
disappears as well as the last term in the first equation. In solution (2) we put PN == 0, 
N~oo. 

Let M be the number of stations and let us suppose at the beginning that there is 
one class of customers. The throughput of station i is, as usual, obtained from traffic 
equations 

M 

A; = Ao; + L Ajrji , i = I, ... ,M, (6) 
j=1 

where rj; is routing probability between station j and station i; AOi is external flow of 
customers coming from outside of network. 

Second moment of interarrival time distribution is obtained from two systems of 
equations; the first defines Chi - the squared coefficient of variation of Di(X), the 
distribution of interdeparture times from station i-as a function of Cli and C1i; the 
second defines Clj as another function of ChI' ... , ChM : 

1) The formula (7) is exact for M/G/I, M/G/I/N stations and is approximate in 
the case of non-Poisson input [13] 

diet) = e;bi(t) + (1 - e;)ai(t) * b;(t) , i = 1, ... , M. 

From (7) we get 

Chi = e~c1; + Cli(I - (!;) + (!i(I - (!;) . 

(7) 

(8) 

2) Customers leaving station i according to the distribution Di ( x) choose station j 
with probability rij: intervals between customers passing this way have pdf d;j(x) 

d;j(x) = di(x)r;j + di(x) * d;(x)(1 - rij)r;j + di(x) * d;(x) * di(x)(1 - rij)2rij + ... , (9) 

Eq. (9) allows us to obtain Chij = rij(Chi - 1) + 1 and 

2 1 ~ 2 cgjAOj 
CAj = A- L,..rijAi[(CD ; -I)r;j + 1] + -A-' 

J ;=1 J 

(10) 

Parameters AOj, C~j represent the external stream of customers. 

For K classes of customers with routing probabilities r!;) (let us assume for simplicity 
that the customers do not change their classes) we have 

M 
,(k) = dk) + '"' ,(k) (k) 
1\, 1\01 L.J 1\) rJ1 , i=l, ... ,M; k=I, ... ,K, (11) 

j=1 
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and 

K ,(k) 
""' Ai (k)2 2 

Ai ~ (k)2 [CBi + 1] + 2!/i(1 - !/i) + (CAi + 1)(1 - !/i) - 1 , 
k=1 Ili 

k = 1, ... , ~11,2) 

1 K K [(A(k) ) ] K ctk)2 A(k) (k) i 2 (k) OJ OJ :x.- LLrij A; T(CDi -1) rij + 1 + L A. . 
J 1=1 k=I' k=1 J 

(13) 

Eqs. (8), (10) or (12), (13) form a linear system of equations and allow us to determine 
C1i and, in consequence, parameters (3i, O!i for each station. 

3. G/G/l/N MODEL WITH THE PUSH-OUT POLICY OF REPLACE­
MENTS 

The nodes of an ATM network are represented in our model by G/G/l/N stations 
with the push-out policy of replacements. While the number n of customers in such a 
station is inferior to N, it acts as a conventional G/G/l/N station serving two classes 
of customers. During saturation periods, i.e. when n = N, the ordinary customers in 
queue are being replaced by privileged ones arriving in these periods. In [9] an iterative 
algorithm to calculate the effective arrival rates under replacement policy is proposed. 
The function f(x) and the values of Po, PN are obtained via G/G/l/ N model. The pro­
cess enters the saturation period with probability p(N). The probability c that a class-l 
customer arriving at a saturation period may replace a class-2 customer is obtained and 
the corrected flows A~~, A~~ are calculatted as 

(14) 

The relative loss of class-l and class-2 customers is 

A(1)_A(I) 
L (I) - eff - (1 ) - A(I) - PN - c , (15) 

The reader is referred to [9] for details. In the case of time-varying input the above 
steady-state model uses transient solution of G/G/l/N station presented also in [9]. In 
order to correct A~~, .\~~, the algorithm reflecting the push-out mechanism should be 
restarted every fixed time-interval chosen sufficiently small with respect to the time-scale 
of changes of input parameters. 

In practice, the rate of loss is very small and we may neglect it in the analysis of 
flow dynamics. Therefore, to simplify the numerical side of the problem, we replace the 
network of G/G/l/N stations with push-out or other mechanism by the same network 
of G/G/l stations in order to predict the propagation of time-variable flow. Transient 
analysis of the G/G/l queueing network is presented in the next section. Once the 
time-dependent input parameters for each station in the network are obtained, the 
stations are studied separately with the use of G/G/l/ NPush-Out transient model to 
determine the loss probabilities as a function of time. 
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4. TRANSIENT SOLUTION OF G/G/1 DIFFUSION MODEL AND OF AN 
OPEN NETWORK OF G/G/1 STATIONS 

Transient solution to G/G/1/N model was presented in [8, 9J; G/G/1 model is its 
simplification. 

Consider a diffusion process with the absorbing barriers at x = 0, started at t = 0 
from x = Xo > O. Its probability density function <ft(x, t; xo) has the following form [14]: 

e~(x-xo)-f.,t [(Z-ZO)2 (z+zO)2] 
<ft(x,t;xo)= J2Ilat e- 2a' -e- 2a' • (16) 

If the initial condition is defined by a function 1j;(x), the pdf of the process is obtained 
as <ft(x, t; 1j;) = 1000 <ft(x, t; 01j;(Od~. 

The probability density function J(x, t; 1j;) of the diffusion process with elementary 
returns is composed of function <ft(x, t; 1j;) which represents the influence of the initial 
conditions and of functions <ft(x, t - r; 1) which are pd functions of diffusion processes 
with absorbing barrier at x = 0 started earlier at time r at points x = 1 with density 
91( r): 

J(x,t;1j;) = <ft(x,t; 1j;)+ 191(r)<ft(x,t-r;1)dr. (17) 

Density 10(t) of probability that at time t the process enters to x = 0 is 

10(t) = Po(0)5(t) + [1 - Po(O)h,p,o(t) + l 91(rl!1,0(t - r)dr, (18) 

where 'Y1,U(t) is the density the first passage time between x = 1 and x = O. The function 
1,p,O(t) denote density of probability that the initial process, started at t = 0 at the point 
~ with density 1j;(0 will end at time t. We may express 91(t) with the use of function 
'Yo(t): 

91(r) = ['Yo(t)lo(r - t)dt . (19) 

Laplace transforms of eqs. (18,19) give us gl(S): 

- [ - 1 lo( s) 91(S) = Po(O) + [1 - Po(O)h,p,o(s) 1 I ()- () 
- 0 S /1,0 S 

(20) 

and the Laplace transform of the density function J(x, t; 1j;) is obtained as 

j(x,s; 1j;) = ~(x,s; 1j;) + gl(S) ~(x,s; 1). (21) 

The inverse transforms of these functions could only be numerical but they may be 
easily obtained with the use of an inversion algorithm; for this purpose we have used 
Stehfest's algorithm [15J. 

The above transient solution assumes that parameters of the model are constant. 
However, in a network of queues the output flows of stations change contineuously, hence 
the input parameters of each station are also changing during transient period. We are 
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A(vc,l) ~A(VC'l) 

1 "2'" 
1 f?OI1lJ 2dvc,2) .•. 

A (1,1) A (1,2) \ (1,2) A (1,1) 
1 1 "1 1 

Figure 1. Queueing model of the virtual path. 

obliged to discretize this changes and keep the parameters constant within relatively 
small time interval Lit. Transient sol¥tion at the end of each interval .1t allows us to 
determine l!;(t) and then .xi(t), Dc;l and D~i for any station i. This solution serves 
also as the initial condition for the solution in the next interval: for n-th interval, t E 

[(n-l).1t,n.1t] the density function of the diffusion proces of station i is i;(x,t;1/Jn(x)) 
where 1/Jn(x) = ii[X,t = (n -1).1t;1/Jn-1(X)], 

This method was already successfuly applied in [16] for another diffusion model and 
in analysis of a single ATM node [9]. 

5. DYNAMICS OF FLOW ALONG A VIRTUAL PATH IN AN ATM 
NETWORK 

We consider a model displayed in Fig. 1: a virtual path in an ATM network is 
represented by a queueing network of M stations in series. 
At each node two streams of customers representing virtual path cells and local traffic 
cells are mixed together. Each of these streams is composed of two classes of customers 
that correspond to priority (class 1) and ordinary (class 2) cells. Let us denote .x!vc,k) 

the throughput of class k, k = 1,2, of customers belonging to virtual circuit in station 
i, i = 1, ... ,M, and .x~,k) the throughputs of local traffic. At the first station the 

parameters .x~vc,k), cl;c,k)2 are given, for other stations they are obtained from equations 
(12-13) which for this particular topology are reduced to the form of Eqs. (25-27). The 

input parameters .xll,k), C~;k)2 of local traffic are given at each station. The service times 
are constant and equal for all customers and for all stations: 

1 1 
(vc,k) (T,k) , 

JLi JLi JL 

C(vc,k) 2 
Bi 

C(I,k)2 
Bi 0, k = 1,2, 

The throughput of station i is obtained as 
2 

.xi = L .x!vc,k) + .x!I,k) , 

k=l 

(22) 

i= 1, ... ,M. (23) 

(24) 
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the input parameter C1i is 

(25) 

because of Eq. (23) the diffusion parameters are: Qi = AiC1i, f3i = Ai - fl. 
The squared coefficient of variation in the output stream is expressed as 

(26) 

and for the cells of the virtual circuit becomes: 

2 A (vc,k) 
C(vc,k) = _i_ (C 2 -1) + 1 

D. Ai D. . (27) 

For virtual path cells we take C1~c,k)2 = Cl;'(~'~~) 2, i = 2, ... ,M, - the output of station 
i-I is directly the input of station i. 

In steady state, Eqs. (22-26) may be applied directly; all parameters of these equ­
ations are constant and the virtual circuit throughput is the same for all stations: 

A (vc,k) = A (lvc,k) . , i=2, ... ,M. (28) 

The service times are constant, hence the density functions of the number of custo­
mers n present in a station and of the time R spent in this station have the same shape: 
waiting time is equal to nlfL. The solution J;(x) of diffusion equation for station i gives 
the approximation of the number of customers in this station. It is also an approximation 
of the response time Ri (waiting time plus service time) spent by cells in this station: 
its pdf Ti(Y) is 

Ti(Y) = fLfi(fLY - 1). (29) 

The argument of f is shifted by 1 because of service time of a considered customer 
which should be also taken into account. We can estimate the joint response time for m 
stations forming virtual circuit: 

m=2, ... ,M. (30) 

In transient analysis, all parameters Ai, C1i' Cbi are changing with time. We should 
distinguish the flows in and out of a station. Their densities will be denoted Ai,in(t) and 
Ai,out(t). The output of a station is modelled as 

Ai,out( t) 
Cbi(t) 

1 1 
E[di(t)] = ~(t) [1 - gi(t)] + - , 

J,ln Jl 

C~i(t)[l - gi(t)] + gi(t)[l - gi(t)] , 

where gi(t) = 1 - PiO(t). 

(31 ) 

(32) 

At the moment of the change of input parameters the composition of existing queue 
is determined by old parameters, i.e the probability that a customer belongs to class k 
is defined by old values of Alk) and Ai. This old composition, together with new gi will 
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determine the output parameters of the queue for a certain time. If the service time is 
constant and equal to 1/ /l, this time is equal x/ /l where x is the queue length, hence 
the pdf of this time has the same form as the queue pdf at the moment t = tch of the 
change of the input parameters: 

1 
q(t) = f(x, tchj xo)8(t - x/ /l) = - f(t/l, tchj xo). 

/l 
(33) 

Our algorithm assumes that parameters change at the beginning of each time-interval 
.:1t and remain fixed within this interval. Denote the value of any parameter, e.g. Ai, 
within the j-th interval, i.e. for t E [j.:1t, (j + 1).:1t), by Ai(j). Let (}i,~~(j) be the ratio 

f I k . h' f' . . h" 1 ' (}(k) ( ') .x\~~(j) o c ass customers m t e mput stream 0 statIon Z WIt m mterva J: i,in J = .x::in(i)' 

At the end of the interval (j - 1) the queue length distribution Pi( nij j - 1) = J;[ni' t = 
j.:1t, tJ>(x,j -1)] is known, as well as the distribution p;(n;jj -2) at the end ofthe previous 
interval. Using these two distributions we may determine the distribution 7T;(n;,j -1) of 
the number of customers that came during interval (j - 1) and are present in the queue 
at t = j.:1t: p;(n;jj -1) is the convolution of p;(n;jj - 2) [probabilities are shifted by 
the number of customers served during period (j -1)] with 7T;(n;,j - 1). 

We can distinguish several zones in the queue i. Each of them is characterized by 
its proper ratio of class-1 and class-2 customers, corresponding to the ratio in the input 
stream at the epoch when the customers of the zone arrived. At the head of the queue 
there is a zone composed of the most ancient customers. Their origin cannot be more 
distant than that of the period (j -h), where h = ~t' N is the capacity ofthe queue and 
/l.:1t is the number of customers which may be served during .:1t (suppose for simplicity 
that N is a multiple of /1.:1t). This zone with the ratio (}!~~(j - h) exists with the 
probability 

N 

P[n; > (h -1)/1.:1tjj - h + 1] = E 7Ti(n;jj - h + 1) 
ni=(h-l)/J..:1t+1 

which is equal to the probability that at the end of the period (j - h) there was in the 
queue more than (h - 1 )/l.:1t customers which arrived during the last period: only in 
this case at the beginning of j-th interval there are still some of them which have not 
been served. Otherwise this zone has already vanished and at the head of the queue 
are customers from a more recent period. Thery are from (j - h + 1) interval which 
composition is characterized by (}!:~(j - h), provided that at the end of this interval 
there was in queue more that (h ...:. 2)/l.:1t customers that arrived during this interval, 
etc. Therefore the composition of the departure stream of the queue i during period j 
is expressed as 

6(k) (') 
i,out J = Plni > (h - l)/lLl;j - h + 1]6!~~(j - h) + 

PIn; :5 (h - l)/lLljj - h + 1] PIn; > (h - 2)/lLljj - h + 2]6!~~(j- h + 1) + 
PIn; :5 (h - l)/lLljj - h + 1] PIn; :5 (h - 2)/lLljj - h + 2] 

Plni > (h - 3)/lLl;j - h + 3]6t:~(j - h + 2) + 
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Pin; ~ (h -l)/LLljj - h + 1] Pin; ~ (h - 2)p,Lljj - h + 2]·.· 

Pin; ~ (p,Lljj -1](J!~~(j -1) = 
h h-l 

L: Pin; > (1- l)p,Lljj -I + 1] (J!~~(j -I) II Pin; ~ mp,Llj m] + 
1=2 m=1 

h-l 
(J!~~(j -1) II Pin; ~ mp,Lljm], 

m=1 

with n~=aO == 1 if b < a. 

357 

(34) 

The response time has time-dependent pdf r;(y, tj tP) = JL!;(JLY -1, tj tP). The density 
rl. .. m(Y, tj tP) of joint response time of m stations in series may be obtained in the same 
way as in Eq. (30). It characterizes the random delay due to queueing in multiplexing 
stages, i.e. the phenomenon of jitter. Various measures of this delay, such as squared 
coefficient of variation or quantiles can be derived from its density. 
Numerical examples 

We consider a network of 4 nodes, M = 4j the service time is equal to the time-unit: t = 1. We suppose that the parameters of local traffic are constant and same for all 

stations: A~I,I) = A~I,2) = 0.25 and C~/)2 = C~;2)2 = 1. The traffic of priority cells in 
virtual circuit which enters first station is a function of time: during low activity period 

(ve'l) (ve'I)2 (ve" 1) (ve" 1)2 Al ' = 0.05, CAi ' = Ij during bursts Al ' = 0.50, CA;' = 0.50. Bursts have 
lenght of 20 units of time while interburst periods are 80 time-units long. The traffic of 

ordinary cells in virtual circuit has constant parameters A~ve,2) = 0.05, Cte,2)2 = 1. 
Fig. 2 presents the flow Al,;n(t) at the entrance of first station and flows A;,out, 

i = 1, ... ,4 at departure of each station. The steady-state queue distribution (with low 
activity period parameters) was chosen as initial condition at t = 0, i.e. t/J(x) = f(x)j 
Lit = 5 time-units. Propagation times were not taken into account. During the first 
burst period some minor differences among Ai,out are visible, during next bursts the 
flows are practically indistinguishable. Fig. 3 presents squared coefficient of variation of 
interdeparture times: the influence of fixed service time and the decrease of Cb; with 
the number of station is visible. Several solutions of It (x, tj tP) during bursty and silent 
periods are plotted in Figs. 4,5j the same density functions are traced in logarithmic 
scale in next figure in order to visualise small probabilities at the tail of the queue 
distribution. Fig. 7 presents the evolution of mean queue lengths E[Ni(t)] corresponding 
to the dynamics of flows displayed in Fig. 2. Fig. 8 gives squared coefficients of variation 
of response time observed at stations. 

In general, the first two stations (i = 1,2) have different characteristics that reflect 
the features of the virtual circuit input stream. Then the influence of input stream is 
filtered and the performances of further successive stations of the virtual path (i > 2) 
become almost identical, provided that the properties of local traffic are similar. 

In case of m stations in series with the same C~ response time, the C~, ... R= of the 
total response time is C~, ... R= = ~Ck 

Figs. 2-8 refer to the global stream of customers. In Fig. 9 the output flows Al~~!)(t), 
A~::~~)(t) of priority and ordinary cells of virtual circuit as well as At~~t(t), A~:~~t(t) of 
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priority and ordinary cells of local stream are plotted and compared with A;{t). Fig. 10 
repeats the curve A!~~~){t) in a more convenient scale. At the beginning of the bursty 

period the flow A!~~!){t) grows proportionally to {I;{t) (i.e. to A;{t)): the composition of 
customers in service is determined by old, characteristic for interburst period parameters. 
Then the zone of higher density of class-1 virtual circuit customers comes to the head 
of the queue and the output flow A!~~!){t) increases abruptly, even over its maximum 
input value. 

Fig. 11 presents squared coefficients of variation ci;t,l)\t), ci;t,2)\t) for priority 
and ordinary cells leaving any station i in the virtual circuit. When the custemers of a 
given class are comparatively rare, their coefficient of variation is not far from unity, cf. 
Eq. (12). 

Fig. 12 presents relative loss L(l){t) and L(2){t), as defined by Eqs. (15) of class-l 
and class-2 cells at node 1 for bursty and interbursty periods as in Fig. 2. They were 
obtained with the use of model of Section 3; the length of the buffer N = 15. Similar 
curves were obtained for the next nodes. 
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Figure 2. The density of input flow at first station and densities of output flows at 
successive nodes. 
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Figure 3. Squared coefficient G}Yi(t), i = 1, ... ,4, of interdeparture time distributions. 
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Figure 4. Transient queue length distribution /l(X,t;1/J) during bursty period. 
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Figure 5. Transient queue length distribution !I (x, t; I/J) during silent period. 
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Figure 6. Queue length distributions !I (x, t; I/J), the same as in Figs. 4-5, represented in 
logarithmic scale. 
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Figure 7. Time-dependent mean queue lengths E[N;(t)] at nodes i. 
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Figure 8. Squared coefficient of variation of response time at nodes i. 
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Figure 9. The densities >.l~:~!)(t) and >.l~:~~)(t) of priority and ordinary cells in virtuaJ 
circuit compared with density of the global stream. 
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Figure 10. The density >.l~:~~)(t) of ordinary cells in virtual circuit stream. 
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Figure 11. Squared coefficients of variation e);;",I)\t), e);;",2)\t) of interdeparture times 
from any station i in virtual circuit. 
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Figure 12. Relative loss L(1)(t) and L(2)(t) of class-l and class-2 cells at node 1 for bursty 
and interbursty periods. 

6. CONCLUSIONS 

Diffusion approximation seems to be particularily well suited to model 
time-dependent flows in ATM networks because they are composed of the flows ,!f large 
number of small cells. It allows us to take into account the variances of incoming flows, 
the priority of cells and gives the estimations of time-dependent queue lengths at each 
node and time-dependent response times for one node or a series of nodes. Hence, the 
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time-dependent cell loss as well as jitter may be predicted. The numerical effort lies 
rather in carefull programming to ensure satisfactorily small computation errors then in 
consumed CPU time; typical examples demand few minutes of a workstation time. 
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