
24

An introduction to a process engineering
approach and a case study illustration of its
utility

P. Kawalek,
Informatics Process Group, Department of Computer Science,
University of Manchester, Oxford Road, Manchester Ml3 9PL. England.
Tel: +44 161 275 6183. Fax: +44 161 275 6200. email:pk@cs.man.ac.uk

Abstract.
This paper introduces an emergent process oriented approach to systems engineering. It has
come to be known within its domain of development as 'process engineering.' The approach
has been developed through collaboration with companies in the services and manufacturing
sectors, and through the 'Process Engineering Framework' Project. A case study is used to
illustrate the approach which relates to the development of software.

Keywords.
Process engineering, process modelling, process architecture.

1 INTRODUCTION.

1.1 Aims

The subject of this paper is a process engineering approach which is known as the Process
Engineering Framework (PEF) after the UK EPSRC project which is developing it. As an
introduction to the approach this paper aims to address its nature, position it in relation to
related approaches and present two of the most important topic areas within it. These are
modelling and architecture.

1.2 The orientation of the approach

At some risk of over generalisation it is suggested that systems engineering is still maturing as
a systems discipline. One is reminded of how systems theory was born as biologists in
particular faced problems of complexity and order. The sort of problem encountered was

J. Browne et al. (eds.), Re-engineering the Enterprise
© Springer Science+Business Media Dordrecht 1995

A process engineering approach and a case study illustration of its utility 249

summarised by Weiss (1968, p.22) who described how in analysing the cell the enquirer

encountered " rather well-defined and relatively stable complexes offunctional and structural

properties which are embedded in, and mutually related through, matrices of much less well­

defined, more fleeting configurations ... " The concept of 'system' is used to understand and

describe the properties that parts have when in relationship with other parts. The concept has

been defined with differing emphases many times, for example by von Bertalanffy (1968, p.55),

Checkland (1981, p.317), and Beishon and Peters (1976 p. 12). Checkland is noted for

applying 'soft' systems theory to the study of social problem situations. Leaving to one side the

main thrust of his argument, it is useful to note his characterisation of systems through two

pairs of ideas; control and communication, and hierarchy and emergence. For the details of this

refer to Checkland (1981, pp. 74-92). Although these ideas are not of direct concern in this

paper, the reader may note how they recur in the later discussions. More directly relevant to

our purpose at this present time is another systems concept, that of systems synthesis. Systems

synthesis can be described as concerned with the understanding of the larger system to which a

part belongs, appreciation of the properties of this larger system and then recognition of the

role played by the part within this larger system (Wardman, 1994). Or, as Weiss puts it "By

raising his sights from single objects to their interrelations with others, man reverses his

direction from analysis to synthesis" (Weiss, 1968, p.6).

An example
A recent project undertaken in collaboration with an insurance company can be used to

describe a practical manifestation of analysis/synthesis. The company have invested heavily in

two world-wide databases, one for in progress work and one for active policies. However,

currently their business processes are characteristically manual. Most work is done using bulky

paper files which contain the policy submissions received from brokers. The files are used by

underwriters who scour the details of the submission as part of their risk assessment. They add

hand-written notes to the files which describe the reasoning which underpins their decisions

about premium quotes and so forth. Administrators use paper forms upon which they hand

write summary details of each submission. These are attached to the files. At specified points in

the process the information contained in these forms is transferred to a database. Cases which

progress to the successful negotiation of a premium will be entered into both databases thereby

requiring duplication of effort. Locally, in order to remedy specific information shortages,

initiatives have resulted in the development of new databases (e.g. containing brokers names)

using systems such as Paradox. Although these do help to remedy the information shortages,

they add to the problem of repeated data entries. They require that additional actions are

carried out by users so as to keep the databases up to date and in accord with other databases.

Therefore, certain items of information are entered in triplicate to databases and at least once

to paper forms. This is an example of succeeding with analysis but failing with synthesis. That

is, although each of the databases might of themselves be well designed and able to satisfy

some requirement, when we consider how the IT system as a whole serves the company's staff

it is apparent that the relationship is not satisfactory. The desire to be served by a system which

requires data items to be entered once and once only was a something of a leitmotif for the

study.

250 Re-engineering the Enterprise

The emphasis in systems engineering today
Returning to systems engineering, and considering it from an organisational perspective, there
is evidence that the discipline can be characterised by an increasing concern for problems of
synthesis rather than classical problems of analysis (e.g. the bespoke development of a payroll
system). The increased emphasis given to systems integration, business led design approaches,
holistic process reengineering approaches, workflow, business network redesign
(Venkatraman,1991) and to some degree networking more generally, all seem to testify to this
increased concern for synthesis. This is reinforced by the aspiration for reuse of components in
a !ego brick style of development. The approach described in this paper uses ideas from
process modelling to explore, define and evolve the relationship between parts of a system. At
one level these parts can be seen as the social and technical systems within an organisation, and
at another they might be the individual people working for the organisation and their various
tools (e.g. databases).

1.3 Process Engineering and Business Process Reengineering.

In anticipation of some terminological difficulties this part of the paper seeks to separate PEF
from the vaunted Business Process Reengineering (BPR) which, whilst sharing some of the
concerns of PEF, has different origins and emphases. The reader is asked to set aside any
preconceptions he or she has about 'process engineering,' 'Business Process Reengineering,'
'process modelling' and the like, and instead think simply of a sociotechnical system. Very
simply, the social system can be characterised as being made up of people and their concerns
(including culture, politics and structures). An equally simple characterisation of the technical
system might describe it as being made up of tools such as the computer systems that are
ubiquitous in modern enterprises. These systems can be described as having a relationship in
that people in the social system use tools in the technical system to carry out actions. A starting
position is then that the relationship between these domains can be understood by analysis and
synthesis of actions. In simple terms a process is made up of a number of actions which serve
an objective and so we can suggest that the relationship between a social system and a
technical system can be understood by exploration of a process which people seek to carry out.
Both BPR and PEF use the concept of process dually and simultaneously to see how actions
are related to each other and to understand the relationship between social and technical
systems.

This said, and although one of the often expressed concerns of BPR is to achieve maximal
benefit from IT (Hammer, 1990), characteristically its subject matter is the social domain. Its
maxim seems to be that once the capabilities of the technical system are understood, radical but
bountiful changes should be made to the social system to exploit these capabilities. In the
various writings there seems to be little attention given to the form of the technical system
itself (see for example Hammer and Champy, 1993). PEF is different because by origin and
nature its primary subject matter is the technical system. More specifically still its domain is
informatics (which is made up of information and telecommunication technologies). It draws
upon research into the development of support environments which at a minimum level provide
integrative mechanisms between defined sets of tools for users. The emphasis today is upon the
use of modelling and architecture to develop the relationship between social and technical
systems. These topics of modelling and architecture will be considered in more detail later.

A process engineering approach and a case study illustration of its utility 251

The conceptual separation of the social and the technical is very useful and is used for a
number of reasons in a number of circumstances. Here it has been used to characterise BPR as
concerned with the form of the social system and PEF as concerned with the form of the
technical. However, we must appreciate that in a deeper sense the social and technical are not
separate at all. The form of the social system is bound up with the form of the technical system
and vice versa. In our work we have appreciated this and have extended our methodological
concerns to analysis and development of the form of the social system (Wastell et al., 1994).
This work, though not the primary focus of PEF, shall continue as we appreciate that the
development of the technical system is intimately bound up with the development of the
organisation in which it sits.

Finally, although it has been alluded to already it is important to recognise explicitly the
characteristic holism which is shared by BPR and PEF. This like many of the points made in
this paper relates to the idea of systems synthesis which was introduced earlier. In BPR the
emphasis is upon processes which cross functional boundaries, which reach from customer
request to customer satisfaction and facilitate change programmes from an enterprise
perspective rather than from a organisation function perspective (Hammer and Champy, 1993,
p. 35). In PEF the messages are characteristically more technical; that process is a way of
integrating roles, and that the various transactions between tools and roles that are undergone
in satisfying a customer need can be understood as a 'long transaction.'

2 MODELLING.

2.1 Introduction

Although the focus is upon the form of the technical system, the process engineering approach
of PEF starts with models of process in the social system that it seeks to serve. Hierarchical
and coordinative models are both used. Hierarchical models are useful because they allow us to
develop control structures which are important for process change. They are not dealt with in
this paper. Coordinative models are useful because they allow us to explore the composition of
components in a process and the communication between these components. These models
may represent an existing situation or a desired one. The difference is obviously critical in real
world projects and for the purposes of this paper it is helpful if you bear in mind that all the
examples presented are a design for an as yet unrealised process.

The case study
The examples in this paper result from an evolutionary, non-radical redesign exercise
undertaken by the author. The project was undertaken in collaboration with a British company
who operate a number of large chemical plants. The subject of the study was a software
development team who are located at one of these plants. There are sixteen software
engineers divided into two groups. Most of the work is concerned with the development of
software for complex instruments used around the plant. Some of these instruments are
classified 'safety related' by the EC and many more are in other ways critical to the operation
of the plant. It is therefore imperative that the team are able to develop high quality software
and the team have a very good track record in this respect. The project is motivated by three

252 Re-engineering the Enterptise

goals in particular. First, it seeks to evolve the social system/technical system relationship in
order that certain minor frustrations such as the need to discontinuously maintain a quality
tracking system are overcome. Secondly, it seeks to allow a greater degree of flexibility over
the way in which certain, non-safety related projects are currently handled. Thirdly, recognising
that the organisational and economic circumstances of the team are changing, the project is
concerned with making the process easier to evolve in the face of future, as yet unknown
circumstances.

2.1 Coordinative Models.

In order to understand the relationships between components of a system, we need to be able
to express what these components are and how they interact with each other. The following
model is a fragment of the design for a new process. It shows the components of a process and
the interactions between these components.

Figure 1

role: played by programmer
agent:= programmerX

r----------
:ed~t/testlcompile
I SUite L _________ _

An example of a Role Activity Diagram.

role: played by programmer
but -programmer X
agent:= programmerY

role: played by programmer
but -programmerX
agent:=programmerZ

est

A process engineering approach and a case study illustration of its utility 253

The notation used in this example is the Role Activity Diagram (RAD). This originates from
the work of Holt et al. (1983). There is not yet a RAD standard although a complete definition
has been given by Ould, (1992). A RAD is a state based diagram in which the vertical lines
between boxes represents different states. The boxes are actions. Interactions between roles
are a special kind of action and are identified by a horizontal line linking each end. Where one
end of an interaction is not shown the horizontal line has an arrow head indicating direction.
The triangles represent the commencement of a thread in a part refinement. Each thread in a
part refinement can be thought of as a sub-state to the main thread. Therefore as this implies
there is no ordering between threads within a part refinement. In the above example loops are
allowed. These are lines with arrow heads and a black circle at their commencement. The start
and finish of each role is marked by a black rectangle. Finally, the role itself is represented by
the rectangle grouping around an action thread (i.e. 'Module Writing,' 'Module Reviewing'
and 'Module Testing'). Roles are made up of actions which are related by the internal structure
of the role, and thereby the role has the property of emergence. Ould has defmed a role as " .. a
set of activities which, taken together, achieve some particular goal" (Ould, 1992). Roles are
played by people and so we might speculate that roles for a lecturer might include 'lecture
giving,' 'notes preparing,' 'research direction setting' (gerunds are the convention). Although
there are good reasons for wanting a more rigorous definition than this within PEF, this will do
for our purposes in this paper. All the roles in this fragment are undertaken by programmers.
There are rules which require that the same programmer does not write and review the same
module or that he/she does not write and test the same module. These rules are shown as
annotations on the diagram. There is one other annotation which shows that the tools which
make up the 'edit/test/compile suite' are used in the 'Test Module' action. Annotations which
show the technology required by actions are important. Each action shown in the diagram
could have been annotated this way. Only one example is given in the example because of the
problem of clutter in the restricted confines of the page.

In the RAD, as well as actions, structuring of actions and interactions we see information
about role players and technology. Fully annotated it would be a map of a social system/
technical system relationship. We see person to person and person to technology relationships.
Technology to technology relationships can also occur although they do not in this fragment.
RADs are valuable as representations of current process or as blueprints of process designs.
They show co-ordination within and between roles. It is argued that their production and
reading can help develop shared understanding amongst individuals involved in a study, that
they can help make covert problems manifest and can help rationalise process and procedure
(Ould, 1992), (Kawalek, 1994). All of this is important. However, perhaps more interesting is
to ask what we could have if the RAD were not just a passive model but somehow enactive.
What if instead of just being a representation or blueprint, the RAD represented an encoded
prescription of the behaviour we want of the technical system? Thus, for the programmer
playing the role of 'Module Testing' the system would manage the interactions with other roles
to obtain the module and the test script. It would present the programmer with an icon 'Test
Module.' On clicking this icon, the tools necessary for the programmer to carry out the action
('test/edit/compile suite') would be presented. The programmer could fmish the test and use
the system to send the feedback to the role which created the module.

254 Re-engineering the Enterprise

Process modelling languages
This simple sketch of the concept of an enactive model describes the essence of a process
modelling language. The development of PEF is particularly closely associated with an early
example of this genus which is fittingly known as the Process Modelling Language (PML)
(Bruynooghe et al., 1994). PML is a high level language within which the basic building block
is a role. PML roles carry out actions and have interactions with other roles. To this extent
there is a clear mapping between PML and RAD primitives. PML was developed as the
language of the IPSE 2.5 software engineering environment (Warboys, 1991). It has been
further developed as the language of the derivative ICL ProcessWise Integrator (PWI) which is
used for support of business processes in general. PWI provides a user interface and a PML
application interface so that external applications (e.g. 'test/edit/compile suite') can be
integrated into the user's on-line work context. The form of this work context (i.e. which
actions and technology are available) will vary according to which roles the user plays and the
state of the process of which these roles are a part.

2.2 The relationship between passive and enactive models.

The enactive model encoded in a language like PML serves as a centre of co-ordination and
control within a system of many different parts. Thus, Snowdon (1992) has talked of using
process modelling to develop IT systems from " .. an overall systems level." The attraction of
using a high level process modelling language lies with the establishment of constructs which
serve both analytical purposes in organisational design activity and as a prescription for the
behaviour of the technical system. This suggests that the RAD fragment shown previously
could be dually a design for organisational behaviour and an enactable prescription for the way
in which the technical system will serve the organisation. Thus the requirement for the designer
to invert an organisational view in order to consider the design in the language of the IT
system, which is essentially a language of calculation, is much reduced or even eradicated.

Methodological issues
It is important to consider the methodological issues involved in the translation of a model
from a passive representation to an enactive, working component in the behaviour of an
organisation. Is it really possible to take a simple step between passive and enactive domains?
The author has observed development practice for PWI and some similar systems. Currently,
for a number of reasons including non-functional considerations, the 'translation' between
passive and enactive domains is not normally straightforward. Indeed there is a notable
distortion of the role structure of the passive model in developing the enactive model. The
temptation is to see the development of such systems as more akin to a conventional process
through which requirements are met by an (inverted) programming of the system. One
significant issue is that passive models created as part of (social system) redesign exercises are
not normally intended to be rigid prescriptions of behaviour. They are simplified interpretations
of real world behaviour which are usually used to represent a typical case to users. However
the reality of work tends to be characterised by exceptions and the need for creative,
extemporising behaviour by users (Fikes, 1982). Even in the very simple RAD fragment which
was shown previously we can see how, interpreting the model strictly (as software would do),
the 'Module Writing' role will have to undertake and complete the action 'Write Module'

A process engineering approach and a case study illustration of its utility 255

before passing the code for review by 'Module Reviewing.' This may be perfectly reasonable
for many cases but it precludes any other behaviour. Perhaps tackling a particularly difficult
module the 'Module Writing' programmer wishes to half complete it and pass it over to
'Module Reviewing' for initial comments whilst continuing to complete the rest of the module.
This is very reasonable behaviour in the actual domain which places a lot of emphasis upon
peer reviews and informal support. However, if we were to simply take this RAD and convert
it into software the system would not support this reasonable way of working.

This means that we need to explicitly design the behaviour of the enactive model. However,
it is the author's contention that the structural integrity of the model should be consistent
across passive and enactive domains. This is achieved in the case study by preserving the roles
('Module Writing,' 'Module Reviewing,' and 'Module Testing') and the pre and post­
conditions to these roles across the passive and active domains. All that has been changed is
the internal structure of the role so that a pleasant and flexible working environment is created
for each user. It no longer strictly enforces typical case behaviour but provides a context for
flexible handling of many cases. Incidentally, these design decisions were taken in consultation
with users and managers. The following example expresses as a RAD the behaviour of the
enactive PML model for the role 'Module Writing.' The other roles have been omitted from
this diagram.

Module Writing

Provide Code
(to Module Reviewing
- interaction no
shown)

role payed by programmer.
agent:=programmerX

Provide Module
(mteraction not sho

Receive Feedback
(interaction not
shown)

Figure 2 A representation ofthe behaviour of the enactive model

Thus far we have seen how process modelling can be passive and enactive. It can be described
as passive where it is an analytical activity whose subject matter is the form of the social

256 Re-engineering the Enterprise

domain. Passive models are used for development of understanding, representation of
complexity and the development of designs. Process models can be described as enactive
where they are used in real time to define the behaviour of the technical system and hence the
real world relationship between social and technical systems. The simple example of a RAD
and PML is used to illustrate how the structural integrity of a model can be maintained across
the passive and enactive domains.

3 ARCHITECTURE.

3.1 The enactive model as an architectural component.

It is important to consider the implications of the enactive model for the overall system
architecture. How does it affect the form of the system to have this model, which has been
described as a kind of hub of co-ordination and control, as a component within it? Although
research in this area is still in its very early stages we can speculate that the architectural
implications of the active process model could be of profound consequence.

We can start by considering the infrastructure of the software development team in the case
study.

• They have a structure of process, roles and actions with associated rules.

• They use non-electronic media such as paper for many informal and some formal purposes.

• They have a number of IT applications, databases, networks and platforms. For purposes of
illustration applications of note are the edit/test/compile suite which has its own database, a
text editor and a quality tracking database.

• The active process model will be used as a coordinative mechanism and will, when activated
influence the way work is performed.

We can explore how the enactive model can serve as a coordinative mechanism between some
components in this infrastructure. The effect of this is to enable a greater degree and order of
synthesis within the system as a whole. The degree of synthesis that is beneficial is a design
issue. The reader should not infer that process engineering will motivate a pendulum like swing
from a need for integration to a fully (perhaps overly) integrated system. Indeed, the use of the
enactive model to integrate components within a system can be thought of as a way of
achieving the loosest possible level of integration between components of the system. From
this may arise benefits of flexibility.

The relationship between people and tools.
Repeatedly in this paper two important aspects of the enactive process model have been
emphasised. These are discussed by Warboys (1991). The first is that it acts as an "upward
facing" framework for supporting the interaction of users in a human organisation. The second
is that it acts as a "downward facing " integration framework for disparate tools and
databases. The following diagram depicts the enactive model in this role as a coordinative
component within a system (social and technical) of people, applications and tools. It was first
presented by White and Kawalek (1993).

A process engineering approach and a case study illustration of its utility 257

User interface

Enactive process model

Applications

Databases

Figure 3
model.

An interpretation of a system architecture incorporating an enactive process

The arcs in this diagram represent four different forms of co-ordination. These are as follows;

• Inter-personal (not mediated by IT),

• Inter-personal mediated by the enactive process model,

• Inter-personal mediated by a shared database,

• Between databases (or alternatively between applications) mediated by the enactive model.

It would be valid to denote other forms of co-ordination in this diagram. However those

shown are particularly interesting in that we see in points two and four respectively the upward

and downwards roles of the enactive process model. The diagram also recognises forms of co­

ordination outside of the coactive process model (points one and three).

An example
To illustrate this a small part of the RAD model in Figure 1 is considered. It relates to the

interaction between the 'Module Writing' and 'Module Reviewing' roles. Exploring this in

more detail shows that the programmer playing the 'Module Writing' role uses the

edit/test/compile suite to carry out the action 'Write Module.' The edit/test/compile suite has

its own database with version control. It does not share this database with any other

application. The 'Provide Code' interaction sends a prompt from the 'Module Writing' role to

the 'Module Reviewing' role. On picking up this interaction the 'Module Reviewing' role is

connected into the edit/test/compile suite where the module is examined. In carrying out the

action 'Review Code' the role has access to a simple text editor for writing a report. All

completed reviews must be kept in the Quality Tracking Database. When the review has been

completed the programmer playing the role clicks a 'Finished' icon provided by the active

258 Re-engineering the Enterprise

model. The enactive model will then enter the review into the Quality Tracking Database and
place a 'Review Comments' icon on the screen of the 'Module Writing' role. When this icon is
clicked the programmer concerned will have access to the Quality Tracking Database to read
the review. This is expressed in Figure 4.

Edit!fest/Compile
Suite

Edit!fest/Compile
Suite Database

!Text Editor

Figure 4 An interpretation of the architectural role of the enacted process model in a small
part of the case study example.

Structural holism and functional clarity
This simple example gives us the opportunity to identify two important facets of the PEF
approach to architecture. First, it is holistic in a structural sense in that as well as developing
models which represent and contribute to the dynamism of human behaviour in organisations,
it develops models of the way in which the technical system contributes to the organisation.
The approach is concerned simultaneously with interactions supporting the organisation's
processes and acting as an integration framework for tools. These are the upwards and
downwards roles described by Warboys (1991). Thus we recognise, after Heidegger (1977),
that objects such as computer systems become part of a background of 'readiness-to-hand' to
their users. The users are not concerned with them as such but with the actions they seek to
accomplish. If we wish to consider the actions that people carry out then we have also to
consider the tools upon which these actions rely. Warboys (1991) argues that modelling
approaches which suggest a separation of the upwards and downwards will have a " ... short
life."

This holism leaves us with a problem of complexity. One of the ways in which this
complexity must be managed is through functional clarity. We have seen earlier how this can
be achieved in the RAD models where roles boundaries were defined, their interrelationships
mapped and their technology dependencies were annotated. We see it also in the architectural
approach whereby we have conceptually separated co-ordination and control from the rest of
the system capabilities and classified these other capabilities as applications and databases.
Nothing in this architectural approach should be understood to be anything other than an initial
response to a very difficult problem.

A process engineering approach arul a case study illustration of its utility 259

4 CONCLUSION.

This paper has positioned the PEF approach as concerned with relationships between parts of a
system. At its most abstract the relationship of concern is that which exists between social and
technical systems. This is worth pondering. This relationship has the potential to become ever
more complex. On the one hand a climate of commercial competitiveness and insecurity
requires that people and organisations are flexible, creative and innovative. On the other hand
the number of technical solutions available in the market-place continues to multiply. Attempts
to try and control the import of new tools or the creation of new databases in an organisation
are likely to be confounded by the growth of networks and the easy access to hardware.
Ultimately the very complexity of the domain may serve to stifle those aspects which are most
precious, namely flexibility, creativity and innovation. Any wish to bring structure and
simplification to bear will have to start with fundamentals. We need to understand the essential
dependencies which bind the work of one person to the work of another. We need to ask what
a user wishes to do, what he or she needs from someone else, and what he or she expects to
deliver. We can understand these things by understanding process.

5 ACKNOWLEDGEMENTS.

The architecture section "borrows" from a project undertaken jointly with Dick Thomas of
Thomas Partnership. Thank you to Mark Greenwood and Martyn Spink for comments.

6 REFERENCES.

Beishon, J. Peters, G., (1976) Systems Behaviour, Second Edition, The Open University Press,
Harper and Row, London.

Bruynooghe, R.F., Greenwood, R.M., Robertson, I., Sa, J., Warboys, B.C., (1994) PADM:
Towards a Total Process Modelling System in Software Process Modelling and Technology
(ed. Finkelstein, A., Kramer J., Nuseibeh, B.) Research Studies Press Ltd., Taunton.

Checkland, P. (1981) Systems Thinking Systems Practice, John Wiley and Sons, Chichester.

Fikes, R.E., (1982) A commitment based framework for describing informal cooperative work,
Cognitive Science, 6, 331-347.

Hammer, M., (1990) Reengineering Work: Don't Automate, Obliterate, Harvard Business
Review, July-August 1990.

Hammer, M., Champy, J., (1993) Reengineering the corporation, a manifesto for business
revolution, Nicholas Brealey Publishing, London.

Heidegger, M., (1977) The Question concerning Technology, Harper and Row, New York,.

Holt, A.W., Ramsey, H.R., Grimes, J.D., (1983) Coordination system technology as the basis
for a programming environment, Electrical Communication 57(4).

260 Re-engineering the Enterprise

Kawalek, P., (1994) Comments on the use of RADs in case studies, !OPener, Newsletter of
the IOPT Club, Volume 2, Number 3.

Ould, M, Process Modelling with RADs, Parts 1-3, /OPener, Newsletter of the IOPT Club,
Volume 1, Number 5 to Volume 2, Number 2.

Snowdon, R.A., (1992) Process modelling is more than sequencing work, !OPener, Newsletter
of the IOPT Club, Volume 1, Number 3, February 1992.

Venkatraman, N., (1991) IT Induced Business Reconfiguration in The Corporation of the
1990s, Information Technology and Organizational Transformation (ed. Scott-Morton,
M.S.), Oxford University Press, Oxford.

von Bertalanffy, L. (1968) General System Theory, Foundations, Development, Applications,
Allen Lane, London.

Warboys, B.C., (1991) The practical application of process modelling, some early reflections,
Proceedings of the First European Workshop on Software Process Technology, Milan,
AICA Press.

Wardman, K.T., (1994) From Mechanistic to Social Systemic Thinking, A digest of a talk by
Russell L. Ackoff, The Systems Thinker, Volume 5, Number 1, February 1994.

Wastell, D.G., White, P., Kawalek, P., (1994) A Methodology for Business Process Redesign:
Experiences and Issues, Journal of Strategic Information Systems, Volume 3, Number 1.

Weiss, P.A., (1968) The Living System: Determinism Stratified in Beyond Determinism: New
Perspectives in the Life Sciences (ed. Koestler, A., Smythies, J.R.) Hutchinson, London.

White, P., Kawalek, P., (1993) A framework for business process management, lPG
report, Informatics Process Group, Department of Computer Science, University of
Manchester.

7 BIOGRAPHY.

Peter Kawalek is a Research Associate of the Informatics Process Group in the Department of
Computer Science, University of Manchester. He has undertaken ten collaborative projects
with industrial partners. Currently, as well as working on further collaborative projects he is

contributing to the EPSRC funded 'Process Engineering Framework.' The results of this
project shall be published.

