
31
A Method fOll" Software Evaluation
with respect to Quality Standards

Dieter Welzel and Hans-Ludwig Hausen
GMD
53754 Sankt Augustin, Germany. Telephone: +49 2241 14-3224. Fax:
+492241 14-3006. email: lJelzel~gmd.de

Abstract
Based on a set of case studies in eight European countries a method of software evaluation
has been designed within ESPRIT Project SCOPE (Software CertificatiOn Programme
Europe). This method deals with several types of information: software characteristics
and metrics, product and process information, and evaluation techniques. In order to be
applicable, the method is supported by a five step procedure which analyses the quality
requirements, specifies, designs and conducts the evaluation, and finally, reports on the
collection of all documents produced in an evaluation report. The thoroughness of soft­
ware evaluation is expressed by evaluation levels; encapsulations of evaluation techniques,
in order to measure a quality attribute and manage the whole process more easily, are de­
scribed by evaluation modules. Two guides have been produced and have been submitted
to the responsible ISO JIEC JTC1 sub-committee for review and inclusion in normative
documents being developed for the application of ISO/IEC 9126. As terminology stan­
dards IEEE 610 and ISO 8402 were taken into consideration. This method proposed can
work with customised models as well as with standards.

Keywords
software evaluation, requirements for quality, software characteristics, software metrics,
evaluation techniques, verification and validation

1 INTRODUCTION

Quality of IT products is a key element of the European software industry. To be able to
assess software a practical but well-founded method for software evaluation is required.
With a repeatable and unbiased evaluation the quality can be improved and the produc­
tivity of the software development process can be increased. The method to be applied has
to conform with international standards and to contribute to the work of the national, Eu­
ropean and International standardisation bodies. Therefore, the ESPRIT Project SCOPE
(Software CertificatiOn Programme Europe) was launched in 1989 in order to:

S. Bologna et al. (eds.), Achieving Quality in Software

© Springer Science+Business Media Dordrecht 1996

382 Part Eleven Quality Measurement II

Table 1 Objectives stated in ISO/lEC Guide 25

Repeatability Repeated evaluation of the same product to the same evalu­
ation specification by the same testing laboratory gives the
same result.

Reproducibility Repeated evaluation of the same product to the same evalu­
ation specification by different testing laboratories gives the
same result.

Impartiality Evaluation is free from unfair bias towards achieving any
particular result.

Objectivity The evaluation result is obtained with the minimum of sub­
jective judgment.

• develop and experiment with an evaluation procedure, that is both technically well
defined and cost effective,

• promote the use of modern software engineering technology for use in software evalu­
ation and certification, and finally to

• contribute to the improvement of the European software industry.

The SCOPE consortium consisted of partners from eight European countries: Denmark,
Finland, France, Germany, Ireland, Italy, Spain and the United Kingdom. The partners
came from academic institutE!s as well as from industry. The consortium brought in Eu­
ropean state-of-the-art technology used by software houses and testing laboratories. The
project ended in June 1993 (SCOPE Consortium, 1993).

2 REQUIREMENTS FOR EVALUATION

In order to achieve the objectives of SCOPE an evaluation method was designed and
applied in several case studies. The evaluation method was further refined and validated
in two waves of case studies. Experimentation profited from 27 case studies in eight
European countries. The procedure proposed may be applied in connection with:

• first party evaluation, i. e. internal product evaluation,
• second party evaluation, i. e. acceptance evaluation on product delivery, or
• third party evaluation, i. e. independent evaluation by, for example, a testing laboratory.

In order to develop an applicable practical evaluation procedure further objectives
stated in (ISO/IEC Guide 25, 1990) have been considered (see table 1).

At the beginning of the project there was no complete description for an evaluation.
Therefore, several approaches had to have a strong impact in the development of the
method. The approach of GQ:\1 (Goal/Question/Metric (Basili and Rombach, 1988) sup­
ports the finding of metrics. Guidance techniques for this have been developed in the
ESPRIT projects AIM and PYRAMIDE. Combined with a multi-level scheme for quality
assessment (Hausen, 1989) the specifying of product-based quality models can be de­
scribed. For describing the evaluation techniques to be applied in order to measure the
software product or part of it a knowledge-based approach (Neusser and Hausen, 1989)

Software evaluation with respect to quality standards 383

was adopted, where both the features of a technique and the invocation of related methods
and tools are defined in terms of production rules.

3 OBJECT OF EVALUATION

In order to perform an evaluation several types of information have to be distinguished and
used in an evaluation procedure: software characteristics & metrics, product information,
process information, and evaluation techniques.

Each information type is described separately in a model. The characteristics of a
software product as well as of its software development process and the attached met­
rics define the quality model. For the software characteristics the six characteristics of
(ISO/IEC 9126, 1991) are referred. They are functionality, reliability, usability, efficiency,
maintainability and portability. Product and process information is defined by an informa­
tion model. Requirements specification, system specification, programs or handbooks are
all examples for documents containing product information; management report, quality
assurance report or project file are examples for documents containing process informa­
tion. The techniques and tools model embraces the evaluation techniques and tools that
are to be used to evaluate software attributes. Evaluation techniques contain verification
methods, validation techniques, measurement procedures and assessment methods.

Thus, an evaluation process is defined by the identified relationships between the dif­
ferent models. In order to reduce the variety of evaluation and to achieve a reasonable
evaluation procedure standardised descriptions of the information types can either be
selected or have to be developed.

Which software characteristics and metrics are evaluated is a decision of the product
provider who engages, for example, a testing laboratory. To support the identification of
the metrics is a fundamental concern and the first step of each evaluation. This is the
reason why the method proposed is called metric-based. Two basic concepts have been
developed to simplify the evaluation: the evaluation levels and the evaluation modules.

4 EVALUATION LEVELS

Evaluation levels express the thoroughness of the evaluation in terms of the evaluation
techniques to be applied. Each technique determines metrics and measurements. The
specification of metrics selection is supported by three steps. Environmental, personal
and economic aspects of the product to be evaluated give a first selection of an evaluation
level (see table 2). There are four levels where D is the lowest level and A is the highest
level.

Table 3 shows to which level the evaluation techniques are attached. The '+' notation in
the table indicates the additional techniques when moving to a higher level. The next step
requires the agreement on the metrics and their values. The required threshold value can
be defined by using table 4. Generally, the contents of all tables are not fixed. They were
developed by the industrial partners of SCOPE. But before an evaluation is started, the
tables should be fixed and be the subject of a contract between the provider and the testing
laboratory. Product-based standardised tables will simplify the process of identifying the
quality requirements.

384 Part Eleven Quality Measurement II

Table 2 Guideline for selecting an evaluation level

Level Environment Person Economic

D small damage to no risk to people
property

negligible economic
loss

c

B

A

damage to property few people disabled significant
economic loss

recoverable envi- threat to human large economic loss
ronmental damage lives

Unrecoverable envi- many people killed financial disaster
ronmental damage

Application

entertainment,
household

fire alarm, process
control

medical systems, fi­
nancial systems

railway systems,
nuclear systems

Table 3 Guideline for selecting evaluation techniques

Level D Level C Level B Level A

FUnctionality functional testing + inspection + component + formal proof
(black box) of documents testing

(check lists) (white box)

Reliability programming lan- + fault + reliability + formal proof
guage facilities tolerance analysis growth model

Usability user interface + conformity to + laboratory + user mental
inspection interface standards testing model

Efficiency execution time + benchmark + algorithmic + performance
measurement testing complexity profiling analysis

Maintainability inspection of doc- + static + analysis of + traceability
uments analysis development evaluation
(check lists) process

Portability analysis of + conformity to + environment + program
installation programming constraints design evaluation

rules evaluation

5 EVALUATION MODULES

The concept of an evaluation module was introduced to support the structuredness and
manageability for the whole process. Without an appropriate structure evaluation would
quickly become intractable, unwieldy and complex. Therefore, a well-structured, encap­
sulated description of software characteristics and the metrics and evaluation techniques
attached to them had to be id.entified. Such a description lists the evaluation techniques
applicable for software characteristics and names the product and process information
required. It also defines the evaluation procedure and the format for reporting the re­
sults of applying the metrics and techniques. In addition the information necessary for an
estimation of the costs is provided.

Thus, an evaluation module encapsulates

Software evaluation with respect to quality standards 385

Table 4 Guideline for selecting metrics

level technique threshold metric threshold value

A white box testing statement coverage 100 %
branch coverage 95 %

condition coverage 90 %
expression coverage 90 %

B white box testing statement coverage 95 %
branch coverage 90 %

condition coverage 85 %
expression coverage 85 %

C white box testing statement coverage 91 %
branch coverage 85 %

condition coverage not necessary %
expression coverage not necessary %

D white box testing statement coverage 85 %
branch coverage 80 %

condition coverage not necessary %
expression coverage not necessary %

• the definition of one or more atomic evaluation procedures applied to the product or
process information in order to measure software characteristics or sub-characteristics,

• the attachment of metrics and evaluation levels to those characteristics, - the descrip­
tion of the assessment procedure to be applied,

• the format for reporting the results and cost figures.

In other words an evaluation module also contains, beside the information needed,
the way of how measurements can be performed on (parts of) the software product. An
example of an evaluation module is given in (Hausen and Welzel, 1993b, Annex) and an
example in table 5.

6 STEPS OF EVALUATION

As an example of the evaluation method proposed a five step procedure was designed
within the SCOPE project. The intended use of the procedure is for actually running
an evaluation (including case studies). The view of an independent testing laboratory is
taken. The procedure describes the activities carried out by the testing laboratory and
the interaction between the testing laboratory and the client (e. g. producer, distributor,

386 Part Eleven Quality Measurement II

Table 5 Example of an Evaluation Module

EM Requirements
scope of application: 'off-the-shelf' end-user software products
software characteristic: ISO/IEC 9126 Usability
evaluation level: Level D
evaluation technique: Inspection by checklist

EM Specification
sub-characteristics: installability-from-scratch (INST), learnability (LRN), use-efficiency (UE),

customisability of interface by the user (CUS),
experienced-user-migration-ease (UME)

metrics attached to
sub-characterIStiCS:

Metric ID.: 1.11 related to: INST, UME

selection constmint: new directories are automatically created

Metric

IF new directories are automatically
created, is the user informed?

Value

yes, in all cases - > 2
no, in all cases - > 0

aggregation of metrics: total number of 'points' per sub-characteristic

EM Application Procedure
how to get the information to be able to answer the questions

EM Application Report
document the evaluation procedure, collect all measurements and assessment results,
prepare a cost report

buyer, or user). The client is the person or institution who negotiates the evaluation
specifications with the testing laboratory.

Figure 1 provides an overview. It describes the sources of input for the evaluation and
the steps of the evaluation procedure.

6.1 Analysing Evaluation Requirements

The evaluation requirements are formal records of the agreement between client and test­
ing laboratory of what has to be achieved by the evaluation process. It provides a nominal
list of software characteristics which are to be evaluated at which evaluation level and
identifies the source of data and evidence which might be used in the evaluation process.
Software characteristics may be functionality, reliability, usability, efficiency, maintain­
ability, portability (from ISO/lEe 9126).

6.2 Specifying the Evaluation

The evaluation specification contains the more formal description of the evaluation re­
quirements. It includes available documents identified and received items classified into
product, process and (for the evaluation process) supportive information. The classifica­
tion makes use of an information model which identifies the types of information needed
for an evaluation (compare figure 2).

Software evaluation with respect to quality standards

to be provided by the client

Application standards
and regulatIons

CharacteristIcs and
evaluation level

10 be provided by the testing laboratory

delivered to the client
or to the certification body
or to both

Figure 1 The Evaluation Procedure

The analysis of the product comprises two phases:

• identification of the product, and

387

• classification of the received items into product, process, and supportive information.

In the identification phase the following should be considered:

• document identifier
• document title
• condition of document (physical appearance, abnormalities)
• date of receipt
• legal implication of document handling (document security, confidentiality)

In the classification phase the items received are classified into the following:

• product information
• process information, and
• supportive information.

It is not required that the structure of the documentation received exactly follows the
information model, but it must be possible to identify and extract the required infor­
mation from the material received. The information model covers the development of a
complete system which may include both hardware and software, but only the software
part is subject for evaluation. In general, not all types of information are required for
an evaluation. The required information depends on the selected characteristics and the
corresponding evaluation levels.

The specification of the evaluation should be organised according to the quality char-

388 Part Eleven Quality Measurement II

I Software System and its Application Environment j Identification
and

t Classification I Identification of Items received by the Testing Laboratory ~ of
Product

I Identified Information as provided by Client I and
t Process

~I Classification of identified Infonnation by the Testing LaboralOry [Information
Evaluation ---- t ---Requirements

i.e. Process Product Supportive
characteristics Information Information Information evaluation levels ;, 1.e. ;,

regulations process model req.speoficatlOn addiuonalproducl,
responsibilities projeclfile sy~tem ~pet1ficatJOn processor

quaJilyassurance programs enl'ironment
configuration annotations inf01malion

J~
./

Evaluation
l~dentification of Detruls for I. Knowhow

V&V&M I Identification of Details L l.e.

to provide Evidence f
,./"

techniques
and

t""
Text of: [, data flow

modules

requirements specifications control flow
system specifications state transition

I process certi1cates I programs

~ annotations

t Evaluation
I Documentation of Identification and Classification Items

Figure 2 Specifying the Evaluation

acteristics, in this case the characteristics of ISO JIEe 9126. The evaluation specification
associated with each characteristic must be formulated as a combination of the following
types of statements:

• an exact reference to statements in a requirement specification document, user manual,
or possibly other information, which should specify the program requirements that are
to be evaluated,

• a statement about the software product which is either missing in the program speci­
fication or needs to be explained more carefully for the evaluation

• an exact reference to statements in identified standards and in regulations documents
where additional program requirements are given which should also be included in the
evaluation specification.

Only functional and non-functional requirements mentioned or referred to in the specifi­
cation are subjects for evaluation. Therefore the evaluation specification must be detailed
and complete.

Based on the classified items and the evaluation level a first feasibility study can be
performed.

Software evaluation with respect to quality standards

Selection of Evaluation Module I
valuation Specification

indicates a particular
technique for
verification.
validation

i.e.
set of approved

evaluation
modules

independent of
particular

software tools

Evaluation Items

Minimalisation of Evaluation Modules
i.e. reducing set of applicable modules by selecting

represen[atives of equivalence classes
w.r.t cost-effectiveness

esting Laboratory's
Environment

Optimized Set of
Evaluation Modules

Figure 3 Selection of Evaluation Modules

6.3 Designing the Evaluation

389

In the design step the evaluation modules are selected from the evaluation module library.
The selecting process is implied by two criteria:

• the module must be known and recognised to be useful in the evaluation of the char­
acteristic for which it is to be used,

• the module must be applicable to the product part on which it is to be used.

However, this set of modules may not be optimal for carrying out the evaluation. Some
modules may be redundant and some may be missing. It must be decided whether new
modules should be developed or whether missing modules can be substituted by a com­
bination of existing modules. The purpose is to make the final planning of these modules
for the evaluation. The planning must be done in order to optimise the coverage of and
the cost of conducting the evaluation.

The optimised set of modules requires product, process and perhaps supportive infor­
mation as imposed by their input interface. So a refinement and adoption step may be
necessary to relate the information needed by the modules to the items identified by the
application of the information model.

The evaluation plan includes a list of modules to be applied. Each evaluation module
includes information from which the cost of its application can be derived. Hence, it is
possible to give a fairly good estimate of the cost of conducting the evaluation at this
point.

390 Part Eleven Quality Measurement II

Conducting an Evaluation

Results (orm information identification and c:lu.s.sific:ation

Optimized

Set

of

EvaluaLion

Modules

Figure 4 Conducting an Evaluation

6.4 Conducting the evaluation

Conducting the evaluation then comprises the application of the set of optimised eval­
uation modules on the related documents and collecting for each of them the results of
validation, verification, measurement and assessment.

Measurements can be manual, computer aided (e.g. using a check list manager for
applying check-lists), or automatic (e.g. measuring complexity in a source code component
using a static analyser).

The main task is to collect the measurement result and also to keep any information
about the measured product part that could be helpful for an acceptance decision.

The selected evaluation modules are applied according to the schedule given in the
plan. The results of applying the individual modules are recorded in the evaluation report.
Observations made during the process also have to be included in the evaluation report.

The application of an evaluation module comprises three steps:

• measurement according to metrics identified by the module,
• assessment by comparing measurement results with the acceptance criteria,
• recording the measurements results and results of the assessment.

Depending on the results of evaluation modules an aggregation of the module results
is necessary.

6.5 Reporting the Evaluation

The final step of the evaluation is that of producing the evaluation report. The table
of contents of the report follows the steps described above, and each of the steps are
documented during the evaluation process.

Software evaluation with respect to quality standards 391

The following table of contents is suggested for the report:

1. Preface - identification of producer and evaluator
2. Evaluation requirements - product overview, quality characteristics, evaluation level
3. Evaluation specification - identification and classification of items, detailed specification
4. Evaluation plan - selected evaluation modules, evaluation process planning
5. Evaluation results - results of applying evaluation modules
6. Conclusion of the evaluation results - including signature, responsibilities, limits of

results, distribution of report

7 CASE STUDIES

The SCOPE project used 30% of its total effort to conduct case studies. This was in order
to gain practical experience with the evaluation procedure produced, and also to ensure
that the approach can be applied in practice. The case studies were conducted in two
phases. In the first phase six case studies were carried out in an experimental fashion. They
tried out different approaches to software evaluation together with different evaluation
techniques. The case studies of this phase were selected based on their availability and
not on any particular selection criteria. The experiences from these evaluation experiments
were carefully analysed. The result of the exercise was a stepwise procedure for conducting
an evaluation.

In the second phase 21 case studies were carried out. The main objective was to demon­
strate the practical feasibility of the evaluation method proposed as described in the
procedure. To achieve this the case studies were selected according to different criteria:

• They should be concerned with products representative of those most likely to be in
need of evaluation and certification.

• Evaluation techniques, application areas, and fields of software engineering should be
well covered.

• The evaluation procedure should be tested to demonstrate that it is practical and
robust.

As a consequence of this careful selection process, the resulting set of case studies
covered a wide range of applications including administrative and technical systems, soft­
ware tools, communications protocols, and embedded systems, see table 6. In addition
a wide range of commonly applied development approaches was covered. This included
standard third generation life-cycles, prototypes and systems developed in 4GL. The trial
evaluations covered the quality characteristics defined in ISO/IEC 9126 with a focus on
functionality, maintainability, and usability. Most evaluations were at the low to medium
level of stringency. That is, most case studies conducted evaluation at the C and D levels
and only a few at the B and A levels. The actual distribution of case studies on levels
and characteristics is shown in table 7 which reflects the actual demand of the case study
providers for thoroughness of the particular evaluation.

A number of different evaluation modules were tried out. 19 out of 21 case studies used
checklist-based evaluation modules. They are applicable in most cases, easy to use and
very flexible. Static analysis tools were applied in 11 case studies. It is not always possible

392 Part Eleven Quality Measurement II

Table 6 Case Study Application Areas

Case study product application include:
Process control Accounting
Electronic mail Traffic control
Medical Application Stock management
Phone exchange Operating systems
Desktop :publishing Management info system
Electronic point of sale Process monitoring
Picture generation Message handling
Image processing Graphical analysis
Fire alarm

Table 7 Distribution of Case Studies on Levels and Characteristics

Level D Level C Level B Level A

Functionality 4 13 1 (1)
Reliability 1
Usability 7 6
Efficiency
Maintainability 2 13 1
Portability 3 2

to apply such tools, but when it is possible they are thorough and efficient. A variety of
other evaluation techniques were used in 7 case studies. These techniques, which often
require specific application support, include Petri net analysis of software specifications
and reliability modeling. An overview of evaluation techniques and evaluation modules
applied in the case studies is given in table 8.

The main objective of the second phase case studies was to allow the collection of
practical experiences with the evaluation procedure, and to ensure that the approach is
applicable in practice. This was indeed the main conclusion in most of the case studies,
each of which gave feedback on many aspects of the evaluation procedure. They iden­
tified points with a need for refinement of the procedure. These refinements were then
implemented in the procedure. The efficiency and effectiveness of the evaluation method
was assessed by monitoring the effort incurred from applying the evaluation modules as
well as their impact on the result of the evaluation. All evaluation modules were tried out
in one or more of the studies. In conclusion, the case studies successfully achieved their
goals.

Essentially all the case study providers were very positive towards the evaluation pro­
cess, the results, and the experience they had gained through their participation. The case
studies showed that it is feasible to carry out software product evaluation according the
procedure proposed.

Software evaluation with respect to quality standards

Table 8 Evaluation Techniques and Evaluation Modules used in Case Studies

Evaluation techniques applied

Checklists wed in 1 9 case studies
- easy to use
- subjective results
- applicable in most cases

Static analysis tools wed
in 11 case studies
- efficient and thorough
- meaning of measurement
- value not clear
- application not always possible

Other techniques wed
in 7 case studies
- inspection, interviews, tools
- each applied in one case study
- application support necessary

Evaluation modules applied

checklists wed to asses
Requirements (5 Modules), Design (9),
Source code (16), Test documentation (5),
User manual (10), Safety/security aspects (8)

Static and dynamic analysis
- application of Logiscope and QUALMS
- measurement of structural parameters
- measurement of test coverage

Petrinet Analysis
- application of Design/CPN
Reliability Analysis
- application of SW reliability modeling
programs

8 RESULTS OF THE CASE STUDIES

393

It is reasonable to expect that the software products evaluated in the case studies were
representatives of the high quality part of the software available on the market. How­
ever only about half of the evaluated products successfully passed the acceptance criteria.
Many of the products had a pronounced lack of quality. Often documents necessary for the
evaluation were completely missing or the contents were clearly unsatisfactory. Obtain­
ing design documentation was especially difficult in many case studies. Other problems
encountered were missing functionality and omissions in general.

These case studies which worked with their own reduced version of the evaluation
procedure asked for more details and for objective decision support. Therefore it was
decided to include all possible details into the an evaluator's guide.

The application of the evaluation modules also resulted in many comments. Checklist
based evaluation modules were most popular in the case studies and consequently most
experiences were accumulated for these evaluation modules. One conclusion was that if
checklists are carefully designed with thorough explanations to each question and if the
checklist includes at least 25-30 questions, then the subjectivity involved in this evaluation
technique is within acceptable limits.

Static analysis techniques were experimented with in half of the case studies. This
technique gives objective measures but their interpretation was considered as being dif­
ficult. However, the evaluation modules applying these techniques were very efficient for
identifying program modules containing problems.

The evaluation modules applied in the case studies were not developed and documented
in a common way. This resulted in confusion and misunderstandings which could have
been avoided. Therefore the need for a guideline for producing evaluation modules became
evident.

394 Part Eleven Quality Measurement II

This ultimately led to the presentation of the guide that describes how to design, pro­
duce and maintain an evaluation module. The procedure of developing an evaluation
module comprises five steps. After analysing the requirements of the module to be de­
veloped (step one) the module is to be specified (step two). The writing of the module
(step three) has to follow the required evaluation module structure. A validation of the
module (step four) ensures the fulfillment of its requirements. Validation comprises both
a technical review to ensure that the module represents state-of-the-art and practical tri­
als on real software products to ensure the modules' applicability in practice. Finally, the
module has to be embedded into the Evaluation Module Library (step five).

The case studies stated the need of storing the experience gained in a data base in order
to make them available for further investigations which could lead to an improvement of
evaluation procedures or particular techniques. In order to achieve an effective evaluation
process it is necessary to reflect experience gained with evaluation modules and the module
library, appropriateness of levels and software characteristics, appropriateness of product
representation, appropriateness of process representation, calculation of actual costs in
order to improve cost estimates, appropriateness of the evaluation method.

The case studies have shown that the evaluation procedure can already be used in a
wide range of contexts such as:

• Product Certification: Software product certification can be defined and performed in
compliance with the various standards and constraints using a fully defined evaluation
procedure.

• Independent Evaluation: Software product evaluation can be performed by an indepen­
dent testing laboratory according to the Evaluator's Guide.

• Acceptance Testing: Departments in charge of performing acceptance testing of deliv­
ered software products could use the Evaluator's Guide to assist them when specifying
and organising their activity.

• Contractual Requirements: Specifying a software to be subcontracted could be comple­
mented by the technical quality requirements to be met and by appending the set of
Evaluation Modules to be used for the final acceptance testing.

• Product Ranking: The comparison of two software products regarding quality can be
performed by comparing how they behave against the results of a fixed and repeatable
evaluation procedure such as the one developed.

One of the most important aspects of the resulting technology is its potential ability to
adapt to the ever changing world of software engineering. Among the various foreseeable
changes, we have considered, for instance

• Evaluation Tools: As the evaluation activity grows and matures, many new supporting
(software) tools and products will appear, the integration of which within our frame­
work will have to be as straightforward as possible while still preserving the know-how
of the parties involved,

• Evaluation Techniques: Similarly, the overall evaluation technology itself will progress,
while, hopefully, not making the fundamental results of the task obsolete,

• Development Technology: The need to be able to adapt to ever more programming
languages or environments has been a constant driver to the design of the documents
as for instance, the Evalua,tion Modules and their structures illustrate,

Software evaluation with respect to quality standards 395

• Harmonisation with Other Fields: The search for quality is one of the major drivers
of a lot of work in the software fields. Security and safety domains become more and
more important. Thus, we must keep an eye on future harmonisation and convergence.

With this flexibility the circumstances of any testing laboratory can be taken into
consideration. The testing laboratory can find out which kind of software evaluation it
can offer.

What are the final conclusion form the case studies? First, an evaluation by improper
qualified personnel, immature methods and without the Evaluator's Guide (or a similar
guidance) produce results which are not useful for management. Therefore, both a cer­
tified procedure and a certified staff are required. Secondly, most of the evaluation tools
available were immature because, amongst other difficulties, different tools produced dif­
ferent results for the same metric. This shows the need for well-instrumented metrics
and measurements. Consequently, metrics and measurements have to be standardised.
Product-type specific metrics are needed. Finally the integration of the evaluation proce­
dure into software engineering process models (such as VORGEHENSMODELL, SSADM,
MERISE) is considered as being necessary to ensure at quality assurance.

9 STANDARDISATION OF THE METHOD

With the five step procedure guidance is provided on what has to be done, how the
work has to be carried out and how it has to be documented. The procedure supports
planning, designing and controlling of an evaluation process tailored to specific circum­
stances. To help the evaluator two guides have been produced (Hausen and Welzel,1993b,
and ISO /IEC 9126: Guides to software evaluation, 1993) that have been submitted to
ISO/IEC JTC1/SC7 "Software Engineering" for review in WG 6 "Evaluation and Met­
rics" (Begh et al., 1993). They are parts of normative documents currently being produced
for the practical application of the International standard (ISO/IEC 9126, 1991). They
are dedicated to particular aspects:

• an Evaluator's Guide (EG), which describe the five-step procedure.
• a Guide to Developing, Documenting and Validating an Evaluation Module (GDDV),

which describes how to design, create and maintain an evaluation module.

The evaluation process is defined using the EG and applies evaluation modules which
are developed and documented according to the GDDV.

Although the present guides explicitly refer to ISO /IEC 9126 similar quality models
can be applied without severe changes to the underlying evaluation procedure.

Figure 5 shows how the Evaluators Guide and the Evaluation Module Development
Guide fit into the set of guides being discussed in ISO/IEC JTC1/SC7/WG6.

To demonstrate an application of the Evaluation Module Development Guide, an ex­
ample of an evaluation module, which defines usability evaluation, was formatted along
the proposed evaluation module structure and was included in the guide (Hausen and
Welzel, 1993b, part 2).

Circulation of the guides through ISO /IEC provides a world-wide audience which could
not have otherwise been reached. It also increases the awareness of the concept of third

396

evaluation module
library

Part Eleven Quality Measurement II

is used by

software
evaluation
know-how

Figure 5 Guides supporting the Evaluation Method

party software evaluation and hopefully also the demand for this service similar to the
situation of the ISO 9000 series of quality management standards.

10 PERSPECTIVES

The results supporting the evaluation process and the development of high quality evalua­
tion modules, have been made available to both industry and academia. European as well
as non-European industry have expressed much interest, especially in the method. Some
small and medium enterprises as well as some large system integrators have adopted or
are about to restructure their quality assurance with respect to the method developed. In
addition, academia are considering other results, such as the way of modeling products,
process and quality, for inclusion in educational circles and further research projects.

Based on the experience gained in the SCOPE project DELTA has implemented a
commercial evaluation service, MicroScope, which is an instantiation of a subset of the
Evaluator's Guide. The MicroScope approach (Kyster, 1993) follows closely the evaluation
procedure as described, but a full set of evaluation modules is not yet available for com­
mercial use. Therefore, commercial evaluations can only be offered for some combinations
of quality characteristics and evaluation levels.

At the moment several organisations in Europe are setting up a network of testing
laboratories offering harmonised software product evaluations according to ISO standards
viz. the Evaluator's Guide. Feedback from the case studies showed that the software
industry accepted the software evaluation concept. Furthermore the need for a certification
scheme based on an approach like the Evaluator's Guide has been expressed. Such a
scheme is expected to be implemented in the near future.

The evaluation method itself is specified by production rules {Hausen and Welzel,

Software evaluation with respect to quality standards 397

1993a). Such a (semi-) formal description improves the possibility of using the computer
itself to automate (or to assist a human in performing) some of the tasks associated with
the process. Therefore, in addition, a concept of an advisory system has been designed
(Hausen, 1992).

The rule-base specification allows a translation to PROLOG predicates in order to val­
idate the evaluation method itself and to run a software evaluation. For efficiency reasons
this might be implemented into an object-oriented software engineering data base system,
such as the European Portable Common Tool Environment PCTE (ECMA standard 149,
1991). A feasibility study has shown that this can be achieved.

The usage of the evaluation method within a software development project is more
highlighted in (Welzel and Hausen, 1994) and (Welzel, 1993). The effects to the organisa­
tional regulations of the project as well as of the whole company are still under research.
The installation of the method has already contributed to process improvement (business
re-engineering) .

For specifying the Quality of Service (QoS) - network service - the techniques of this
evaluation methods has been applied. The quality model for QoS uses characteristics of
ISO/IEC 9126 and standards valid for network service (Bogen, Hausen, Worst, 1994).

REFERENCES

Basili, V.R. and Rombach, H.D. (1988), The TAME Project: Towards Improvement­
Oriented Software Environments. IEEE 'Iransactions on Software Engineering, 14/6,
758-73.

Begh, J., Hausen, H.-L. and Welzel, D. (1993) A Practitioners Guide to Evaluation of Soft­
ware. Proceedings of the IEEE Software Engineering Standards Symposium, September
1993, IEEE Computer Society, p. 282-8.

Bogen, M.; Hausen, H.-L. and Worst, R. (1994) Handling of QoS Characteristics. Com­
puter Networks for Research in Europe, a supplement to Computer Networks and ISDN
Systems, Volume 26 (1994), Supplement 2,3, pp. 107-18, Elsevier Science Publishers
B.V.

ECMA standard 149 (1991). Portable Common Tool Environment (PCTE), Abstract
Specification, European Computer Manufacturers Association.

Hausen, H.-L. (1989) Yet Another Quality and Productivity Modeling 1 YAQUAPMO I·
ACM, IEEE, HICSS-22, Hawaii International, Conference on System Sciences (ed. B.C.
Shriver), Hawaii, January 1989, p. 978-987.

Hausen, H.-L. (1992) A Specification of an Assessment and Certification Advisor.ACM,
Annual Conference of the ACM (ed. J.P. Agrawal, V. Kumar, V. Wallentine), March
1992, Kansas City, MO, 20 p.

Hausen, H.-L. and Welzel, D. (1993a) A Rule-Based Specification of Software Evaluation
and Certification - Formal Model-. SCOPE report, SC.93/019, Version 02, GMD Sankt
Augustin, May 1993.

Hausen, H.-L. and Welzel, D. (1993b) Guides to Software Evaluation (comprising: The
Evaluators Guide, The Evaluation Module Development Guide). Arbeitspapiere der
GMD, No. 746, GMD Sankt Augustin, April 1993.

Hausen, H.-L. and Welzel, D. (1994) Evaluating Software concurrently with and after its
Developement. in: Proceedings of the 11th International Conference on Testing Com-

398 Part Eleven Quality Measurement II

puter Software, Washington, DC, June 13-16, 1994.
IEEE 610, IEEE standard 610.12-1990, (1990). IEEE Standard Glossary of Software En­

gineering Terminology, Institute of Electrical and Electronics Engineers, Inc., 345 East
47th Street, New York, NY 10017, USA, December 1990.

ISO/IEC Guide 25 (1990). General Requirements for the Competence of Calibration and
Testing Laboratories, International Standards Organization, International Electrotech­
nical Commission.

ISO/IEC 8402, International standard, (1990). Quality Concepts and Terminology Part
One: Generic Terms and Definitions, International Organization for Standardization,
International Electrotechnical Commission, December 1990.

ISO/IEC 9126, International standard, (1991). Information technology - Software product
evaluation - Quality characteristics and guidelines for their use, International Organiza­
tion for Standardization, International Electrotechnical Commission.

ISO/IEC 9126: Guides to software evaluation, International standards (1993). part 5: The
evaluator's guide, ISO/IEC JTC1/SC7 N1136, July 20, 1993, part 7: Guide to Devel­
oping, Documenting and Validating Evaluation Modules, ISO/IEC JTC1/SC7/WG6
Technical report, July 26, 1993, International Organization for Standardization, Inter­
national Electrotechnical Commission.

Neusser, H.-J. and Hausen, H.-L. (1989). Knowledge Based Handling of Methods and
Tools, ACM, IEEE, HICSS-22, Hawaii International, Conference on System Sciences
(ed. B.C. Shriver, B. C.), Hawaii, January 1989, p. 142-51.

Kyster, H. (1993). MicroScope: The Evaluation of Software Quality, DELTA, Ven­
lighedsvej 4, 2970 Hoersholm, Denmark.

SCOPE Consortium (1993). SCOPE Technology Report, SCOPE report, SC.93/009, Ver­
sion 03, GMD Sankt Augustin, May 1993 (revised July 1993).

Welzel, D. (1993). A rule-based process representation for software process evaluation, in:
Information and Software Technology, Volume 35, Number 10, pp. 603-10, Butterworth
Heineman, October 1993.

APPENDIX: TERMINOLOGY USED

The terminology used based on (IEEE 610, 1990) and (ISO 8402, 1990). The following
terms are mentioned in order to extend and classify the terminology.

• assessment of software: Process of comparing the values obtained from the measure­
ments with quality requirements.

• classified software: Software which is classified according to product, process and sup­
portive information or other characteristics.

• client: Person or institution (e.g. producer, distributor, buyer, or user) who requests/
negotiates the evaluation.

• evaluation module Encapsulation of the definition of an evaluation (sub-) method ap­
plied on a product or process information in order to measure software characteristics or
sub characteristics by applying metrics, checking pass/fail criteria, delivering evaluation
report and cost report.

• evaluation level: 1. Grade which is defined by a set of evaluation techniques to be ap­
plied and the thresholds of quality metrics being obtained by these techniques.

Software evaluation with respect to quality standards 399

2. Identification of (subcharacteristics and) metrics and attachment of metrics to sub­
characteristics and definition of acceptance criteria by selecting rating levels for each
metric and reference to (sub-) evaluation method to be applied to obtain a metric.

• evaluation report: Final document of the software evaluation. It is progressively com­
pleted during the whole evaluation process and consists of four parts: - evaluation
requirement, - evaluation specification, - evaluation plan, and - evaluation result.

• evaluation item: Entity being evaluated.
• identified software: Software which is identified by document identifier, title, condition,

and of date of arrival as well as handling information.
• measurement: Application of a metric for product quality or process productivity.
• process information: Entities obtained during the software process.
• product information: Entities constituting a complete or part of a software product.
• software evaluation: Process which comprises validation and verification, measurement

and assessment of software.
• supportive information: Entities which are not evaluated but which are necessary for

an evaluation.

Authors

Dieter Welzel
received his degree in Computer Science from the University of Bonn. Since 1990 he has
been working at GMD Institute for Application-Oriented Software and System Technol­
ogy, Sankt Augustin. His main activities involve interface notions for concurrent systems
with modular structure, process modeling and evaluation of software processes.
E-mail: welzel@gmd.de

Hans-Ludwig Hausen
received degrees in Electrical Engineering and in Computer Science from Technical Uni­
versity of Berlin, where he also served as a lecturer in Computer Science. At present he
holds the position of a senior scientist at GMD Institute for Application-Oriented Software
and System Technology, Sankt Augustin. His main interest are computer aided software
engineering and software quality assurance.
E-mail: hausen@gmd.de

