
3

Protocol Conformance Test Case Verification Using Timed­
Transitions

Kshirasagar Naik and Behcet Sarikaya

School of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu City,
Fukushima, 965 JAPAN, (k-naik,sarikaya)@u-aizu.ac.jp

Keyword Codes: C.2.2; D.2.4; D.2.5
Keywords: Network Protocols; Program Verification; Testing

Abstract
We develop a methodology to verify the correctness of test cases designed to check

timed behavior of protocol implementations. The verification process consists of four
steps. First, we model a protocol specification, a test case, and an underlying service
provider as Timed Extended Finite-State Machines (TEFSM) and define the resulting
system as a Test Verification System (TVS). Next, we algorithmically obtain a model,
i.e., a predicated global state space, from the TVS. Test case properties are formulated
in terms of safety and liveness using branching time temporal logic. Finally we verify
the test case properties on the model of the TVS using a model checking algorithm. We
apply the verification technique to a test case for the Inres protocol. A few errors are
detected in the design of the test case. We observe that without the use of TEFSM
model, it would not have been possible to detect any time related errors in the test case.

1 Introduction

Presently test suites for OSI protocols are manually developed and standardized.
These test suites may, however, contain several errors [BS93]. Therefore interest in
verification of these test suites using formal specification of the protocol is growing [DB90,
NS93]. Standards organizations have defined various formal specification languages such
as SDL [CCI92]. The Tree and Tabular Combined Notation (TTCN) [IS091] is defined
to specify abstract test suites.

The notion of time can be found in many communication systems. It is used in
two ways: first, in the form of limeouts for the desired operations of the system and
second, as a performance parameter of the system. In the present conformance testing
framework, only the first use of time is taken into consideration. To control and observe
timer activities, the test specification language TTCN defines the appropriate constructs.
SDL uses the notion of time in the form of timeouts and delay statements.

S. T. Vuong et al. (eds.), Protocol Specification, Testing and Verification XIV
© Springer Science+Business Media Dordrecht 1995

104 Session Two : Verification Methodology Based on FDTs

Many test cases in various test suites heavily depend on timer actions to generate
test events and to assign Pass, Fail, or Inconclusive test verdicts. Test cases in those test
suites are designed with the purpose of testing various retransmission timers in protocol
implementations. Thus, to verify the correctness of test case properties, the notion of
time must be incorporated into the individual transitions of the component entities of a
test system, into the global behavior of a test system, and into the test case properties.

An outline of the test verification methodology presented in this paper is as follows.
Because protocols and test cases are generally specified using different languages (SOL
and TTCN, respectively), it is essential to represent them in a common notation for the
purpose of being able to obtain their global behavior. Thus, we define a kind of TEFSM.
The notion of time in protocols is important to the proper functioning of communication
systems. Delay and timeouts are two well known timed operations. Therefore, we use the
notion of a timed transition [OST90] in our model of a TEFSM. We define the notions
of safety and liveness properties of test cases. These properties are then verified, using a
model checking approach, on the global behavior of the test verification system.

In Section 2, we define the protocol specification and test case models. A TEFSM
model is developed in Section 3. The mapping from SOL and TTCN to TEFSM is shortly
explained. In Section 4, we discuss the model generation and timed reachability analysis.
In Section 5, test case safety and liveness properties are formulated in terms of constructs
for specifying the ordering of timed events and specified as temporal formulas. Section 6
is on temporal formula verification using model checking.

2 Protocol and Test Case Specification

The protocol is assumed to be specified in SOL [CCI92]. In SOL it is possible to
define timers that can be set/reset by a SOL process. If a timer times out, it is treated
as an input to the process and thus transitions can be fired upon a time-out. Test cases
can be specified in TTCN [IS091].

2.1 lnres Protocol

Inres is a connection-oriented protocol that operates between two protocol entities
Initiator and Responder. Inres is described in detail in [BHS91, SAR93]. We will shortly
describe the Initiator entity and its SOL specification.

A connection establishment is initiated by the Initiator-user at the entity Initiator
with an ICONreq. The Initiator then sends a CR to the entity Responder. After out­
putting the CR, a timer is started with a value of P (5) units. Responder answers with
CC or DR. If Initiator receives a DR from Responder, the disconnection phase is entered.
This behavior is specified in SOL as two transitions from the initial state "disconnected":

start;
STATE disconnected;

INPUT ICONreq;
TASK counter := 1;
OUTPUT CR;
SET (NOW+P, T);

NEXTSTATE wait;

Protocol conformance test case verification using timed-transitions 105

INPUT DR;
OUTPUT IDISind;

NEXTSTATE disconnected;
ENDSTATE disconnected;

If Initiator receives nothing at all within 5 seconds, CR is transmitted again. If, after 4
attempts, still nothing is received by Initiator, it enters the disconnection phase. In SDL
all this is specified as:

STATE wait;
INPUT T;
DECISION counter < 4;

(true) OUTPUT CR;
TASK counter := counter + 1;
SET (NOW+P, T);
NEXTSTATE wait;

(false) : OUTPUT IDISind;
NEXTSTATE disconnected;

ENDDECISION;

In case the Initiator receives a CC in the state "wait" it issues an ICONconf to its user,
and the data phase ("connected state") can be entered.

STATE wait;
INPUT CC;

RESET (T);
TASK number := 1;
OUTPUT ICONconf;

NEXTSTATE connected;

If the Initiator-user issues an IDATreq, the Initiator sends a DT to the Responder and
is then ready to receive another IDATreq from the user. IDATreq has one parameter, a
service data unit ISDU, which is used by the user to transmit information to the peer user.
This user data is transmitted transparently by Initiator as a parameter of the protocol
data unit DT. After having sent a DT to Responder, Initiator waits for 5 seconds for
a respective acknowledgement AK. Then the DT is sent again. After 4 unsuccessful
transmissions, Initiator enters the disconnection phase.

2.2 Test Case

A test case in TTCN for lnres protocol is shown in Fig. 1. The purpose of this test
case is to check that the Implementation Under Test (IUT) retransmits a Connection
Request (CR) PDU in case of timeout and sends a IDISind (Disconnect Indication) to
its user after four unsuccessful attempts. The test case interacts with the IUT at two
PCOs, one at the lower (L) and one at the upper (U) service boundary of the protocol
entity. The test case sends an ICONreq to the IUT through PCO U. Then it starts a
timer and waits for a CR PDU at PCO L. Upon receiving the first CR from the IUT,

106 Session Two : Verification Methodology Based on FDTs

Test Case Uynam1c Hehav10r
Test Case Name: T01
Reference: INRES/Initiator/Valid Behavior/Connection Establishment
Purpose: To check that the IUT retransmits CR PDU in case of timeout

and releases the connection after four successful attempts
Default:
Comments:
Nr L Behavior Description CRef v c
1 U!ICONreq User issues CONre

2 L?CR START TM(5)(c:=1) IUT transmits CR
3 LA L?CR START TM(5) (c:=c+1) CR retransmitted
4 [c<4] -->LA
5 [c>=4] CANCEL TM
6 U?IDISind p IUT releases conn
7 U?OTHERWISE F
8 L?OTHERWISE F
9 ?TIMEOUT TM F IUT not respondin
10 L?OTHERWISE F
Detailed Comments:

Figure 1: TTCN Description of the Test Case

the test case starts a timer of 5 seconds. Since the test case does not send a CC PDU to
the IUT through PCO L at all, the IUT should retransmit the CR upon a timeout of 5
seconds. The test case is designed to check if the JUT makes four attempts to establish a
connection by sending a CR PDU each time. However, on all the occasions, the test case
does not respond by sending a CC PDU and the IUT should send a disconnect indication
to the test case by sending a IDISind to PCO U. If the test case receives a IDISind at
PCO U, the objective of the test case is fulfilled and a Pass test verdict is assigned to
the IUT. If the test case receives any event except a CR at PCO L, it assigns a Fail test
verdict to the IUT.

3 Timed Extended Finite-State Machine Model

We define a communicating TEFSM as F = < S,S1, V, R,sinit. Z, ho,Cr,Co >,where
S is a finite set of states, S1 = {(s, x) is E S and x is a tag value } is a tagged set of states,
V = {v1, ... ,vn} is a finite set of data variables of types {tl, ... , tn}, respectively, R is
a finite set defined below, s;,.;1 E S is the initial state, Z <;;; S is a set of final states, h0

is a set of assignment functions initializing some variables in V, Cr(Co) is a set of input
(output) FIFO channels.

R is a set of transitions of the form r = < s,s',a,e,h,m,[l,u] >,where sis the
from state and s' is the to state of the transition, a is the action or event clause causing
the transition to fire, e is the enabling predicate of the transition, h is a set of value

Protocol conformance test case verification using timed-transitions 107

assignments to a subset of V, m is a priority number of the transition in a set of alternative
transitions with the same from state. The components I and u in [I, u] represent the lower
and upper time bounds, respectively, on r. The set Rp denotes the set R from TEFSM
F and e,. denotes the enabling predicate e of transition r. For the tick transition, I is set
to 0 and u is set to oo; for a timeout transition, I = u = T and for any other transition
l = u = 0.

We assume that there is an external global clock which ticks infinitely often. The time
clause [I, u] of a transition contains lower and upper time bounds. The lower and upper
time bounds are measured with respect to the ticks of the clock, and can thus be used in
modeling timed properties including delays and timeouts. Once a transition's enabling
predicate becomes true, the transition is fired within lower and upper time bounds from
the moment the transition is enabled. A transition with upper time bound infinity is
called a spontaneous or nondeterministic transition. In addition to the state and data
variables, the variable set V always contains a clock variable t to hold the present clock
tick number, which is a non-negative integer value. The global clock is represented by the
following tick transition: tick=< FROM, TO, NULL, TRUE, [t := t + 1], 1, [O,oo] >,
where FROM and TO are states in the global state space of the test system, NULL
represents a null event, the tick function (t := t + 1] denotes the fact that the occurrence
of tick results in t being incremented by 1 and all other state and data variables except
timer variables remaining the same. The priority of tick is 1 because there is no executable
transition alternative to tick. The idea behind associating a tuple [0, oo] with a tick is to
be able to give a physical interpretation to tick in the sense that a tick represents a logical
unit of time that can be implemented by a suitable real-time interval. Let T /r and TIs
be the set of active timer identifiers in the test case and specification, respectively. When
a tick occurs the timer identifiers are updated as: [v; := v; - 1lv; E Th U TIs].

3.1 TEFSM Model of Specification

The first step in obtaining a TEFSM from an SDL specification is normalization,
where one TEFSM is obtained from one SDL process. Syntactic transformations are
applied to eliminate the decision clauses so that the normalized transitions contain single
paths. Also channel names are assigned to input and output signals. We describe some
details of normalization related to time constructs. For SET(NOW+P,T), a transition
of the form: < From, To, null, true, h, 1, [0, 0] > is created, where h is the set of
assignments containing T := P, and Tis the timer identifier. Similarly for the RESET
construct, T := 0 is generated in the h clause. For a timeout transition, INPUT T, we
create a transition: <From, To, null, true,{}, 1, [T,T] >.

If a transition in SDL generates one or more outputs, a normalized transition is
generated for each output statement. Normalization of SDL specifications described in
[SAR93] allows several output statements in the normalized transitions while the TEFSM
has transitions with only a single (input or output) event. For specifications containing
several processes, several TEFSMs are obtained after normalization. A second step is
needed to calculate the product of all the communicating TEFSMs using the traditional
reachability algorithm. TEFSM model of the Inres Initiator can be generated from its
SDL specification. For example the transition from "disconnected" with ICONreq as
input is modelled as three transitions (numbered SPi) of the form:

108 Session Two : Verification Methodology Based on FDTs

TCI: 1,2,U!IC0Nreq,[true],(),1,[0,0]

TC2: ...

Figure 2: TEFSM model of the Test Case

SPl :<disconnected, tempi, ISAP?ICONreq, true, {counter:= 1}, 1, [0, 0] >
SP2 :<tempi, temp2, MSAP!CR, true,{}, 1, [0,0] >
SP3 :< temp2, wait, null, true, {T := P}, 1, [0, 0] >

The other transitions are similarly generated. For example the true branch of the decision
transition from "wait" state is modelled as:

SP22 :< temp3, temp4, MSAP!CR, true,{}, 1, [0,0] >

3.2 TEFSM Model of Test Case

A TTCN test case is mapped to a TEFSM in three steps. In the first step, constraints
are processed and default behaviors are expanded. A send constraint is translated to a
set of assignments and a receive constraint is translated to a conjunction of predicates.
In the second step, a TEFSM is derived from the main tree and for each of the subtrees
in the dynamic behavior part of the test case. In the third step, subtree attachments are
resolved by combining the corresponding TEFSMs. For example, TTCN event lines are
processed as follows. An event line:

L!P_CONreq[x = 2](a := l)P_CON_base,
where P _CON_base is a constraint on the output event P _CONreq, is translated to a
transition

< sl, s2, L!P _CONreq, [x = 2], (a:= l)U jl, 1, [0,0] >,
where fl is a set of assignments obtained by processing the constraint P _CON_base.
TTCN timer events START, CANCEL, and TIMEOUT(T) are semantically similar
to SDL SET, RESET and INPUT T, respectively and thus they are processed similarly
as in SDL. TTCN alternatives are translated into transitions going out from the same
state. For OTHERWISE a transition of the form:

< sx, sy, OTHERWISE, [p], j, n, [0, 0] >
where p is the conjunction of predicates associated with OTHERWISE, f is a set of
assignments and n is the priority number.

Priority numbers are assigned in the top-down order of the syntactic appearance of
event lines in a set of alternatives. The first event line in a set of alternatives is assigned
a priority of 1, the second line a priority of 2, and so on. TEFSM model of the example
test case in Fig. 1 is shown in Fig. 2.

Protocol conformance test case verification using timed-transitions 109

4 Model Generation

Model generation consists of two steps: (i) generation of global state space from a
TVS using a timed reachability analysis algorithm and (ii) generation of a model from
the global state space by associating a set of predicates with each state.

4-1 Timed Reachability Analysis

A Test Verification System (TVS) is defined to be a 5-tuple, TV S = < ~, n, P, Ill, C >,
where~ is a TEFSM corresponding to the Lower Tester, n is a TEFSM corresponding
to the underlying service provider, P is a TEFSM corresponding to the protocol spec­
ification, Ill is a TEFSM corresponding to the Upper Tester, and C is a set of channel
functions defining the interconnection among ~, n, p, and Ill.

A channel function channel(TEFSMJ, TEFSM2) denotes that TEFSMl outputs
messages to the channel which are received by TEFSM2.

The global state s of a test verification system TV S = < ~, n, P, Ill, C > is defined as
a 6-tuple < ~., n., P., Ill., C., II >, where ~., n., P., and Ill. represent the present states
of~, n, P, and Ill, respectively, and C. is a set of states consisting of the present states of
each channel in C; II is a set containing values of aJI the variables in the TEFSMs in the
TVS including v, a unique variable used to hold the test verdict, and t, another unique
variable to hold the global time tick value.

The initial global state s0 is defined as follows:
< Sinit(~), Sinit(!1), Sinit(P), Sinit(lll), Cempty, init(II) >,

where Sinit(~) is the initial state of~' Sinit(!1) is the initial state of !1, Sinit(P) is the initial
state of the protocol specification entity P, sinit(lll) is the initial state of Ill, Cempty denotes
all the channels in C to be empty, and init(II) = { h0 (~) U h0 (!1) U h0(P) U h0 (\ll) U { t :=
0, v := null}}, where the function h0 denotes initial assignments to the variables in the
corresponding TEFSM. Notationally, the present state of a TEFSM M is denoted by the
function notation ps(M).

The set of enabled transitions in a global state s consists of all the transitions, whose
enabling conditions evaluate to true, in the present states, contained in s, of the com­
ponent TEFSMs. Without any timing constraints, the set of enabled transitions can be
used to perturbs to generate a set of successor states of s. However, in a timed transition
system, the lower time bound l of an enabled transition r must elapse before r can be
used to perturb s [OST90]. Therefore, we split the set of enabled transitions into two
sets: a set of executable transitions and a set of pending transitions.

A transition remains pending from the instant it becomes enabled until the elapse of
its lower time bound I at which point the transition becomes executable. Therefore, a
history must be maintained of when each transition became enabled, so that it can be
determined when the transition becomes eligible for execution. The history field is needed
for construction of the reachability graph, but can be discarded once the complete graph
has been obtained. A global state s can be extended to incorporate a history field to
generate a node in the global state space. Formally, a node is denoted as n = (s, ET(n)),
where the set of enabled transitions ET(n) is called the history field of n.

The set of enabled transitions ET(n), occurring in the present global states= < ~.,
n.,P., w.,C.,II >in node n in TVS = < ~,n,P,Ili,C >is defined as the set of all

110 Session Two : Verification Methodology Based on FDTs

transitions, in the TEFSMs ~, !1, P, and Ill, whose enabling conditions evaluate to true,
that is,

ET(n) = {rlr E {RE URn U Rp U R~} 1\ frum(r) E {~.,n.,P., 111.} 1\ e.= true}.
Since the evaluation of er involves accessing the channel contents and taking the

priority number of a transition in a set of alternative transitions in a TEFSM, ET(n) is
computed in the following manner:

ET(n) = {Exec(~,s) U Exec(Ill, s) U Exec(P,s) U Exec(!1,s)}, where the procedure
Exec returns those transitions from s whose enabling conditions evaluate to true [NS93].

The set of executable transitions XT(n) in a node n = (s,ET(n)) is defined as
follows:

XT(n) = {rlr= < From,To,a,e,h,m,[l,u] > E ET(n)/\1= 0}.
The set of pending transitions PT(n) in a node n = (s, ET(n)) is defined as follows:

PT(n) = {rlr = <From, To, a, e, h, m, [1, u] > E ET(n) 1\ 1 > 0}.
Therefore, ET(n) = XT(n) U PT(n). The firing of an executable transition can be

delayed until the elapse of its upper tick bound. Thus, we define a set of must transitions,
which are executed before the next clock tick.

The set of must transitions MT(n) in node n = (s, ET(n)) is defined as follows:
MT(n)= {rir=<Frum,To,a,e,h,m,[1,u]>EET(n)/\1= u = 0}.
When the clock ticks, the lower and upper time bounds of enabled transitions are

decremented by one. Decrementing 1 = 0 leaves 1 at 0 and decrementing u = oo leaves
u at oo. By default, ET(n) always contains the lick transition. In the state perturbation
process, the transitions in MT(n) must happen from node n prior to the next clock tick
in order to meet the upper time bound requirements on those transitions.

In the perturbation process, we use two notations: e.(s), which is the enabling con­
dition of a transition r in global states and h.(s), which is a state obtained from s by
applying the transformation function h in r to s.

Given any node n = (s, ET(n)) in the global state space, successor nodes are defined
as n' = (s',ET(n')) when a transition r = < Frum,To,a,e,h,m,[l,u] >E XT(n) is
used to perturb n. There are two cases to be considered:
Case 1 : If the transition r is not a tick transition, then s' = h.(s) and ET(n') is the
newly computed set of enabled transitions in state s'. In this case, the value of the time
variable l is unchanged.
Case 2 : If the transition r is a tick transition, s' is the same as s with the global time
variable t updated as t := (t + 1) and the bounds [I, u] in the transitions in ET(n) are
decremented by one, i.e.,

ET(n') = {< Frum,To,a,e,h,m,[l',u'] > lr = < Frum,To,a,e,h,m,[l,u] >E
ET(n) and l' := (1- 1) if l > 0 otherwise 0, and u' := (u- 1)}

If I = 0 then it stays at zero, and decrementing u = oo leaves it at infinity. If tick
is taken for perturbing a state, then no r E ET(n) has u = 0. Thus, u can always be
decremented without becoming negative.
ALGORITHM
Input: A test verification system and the capacities of the channels in it.
Output: Global state space S.

Sl: Define a set of global nodes N and a set of global transitions R. Initially, N
contains only the initial global node n1 = (st, ET(nt)) and R = ¢>.

S2: Find a member n = (s, ET(n)) E N of the set of global nodes whose pertur-

Protocol conformance test case verification using timed-transitions 111

bations have not been determined. If no such member exists, then strip all the history
fields from N to obtain S and stop.

S3: If MT(n) f. t/>, then XT(n) := XT(n)- tick.
S4: Compute NP, a set of global states by perturbing n. Initially NP = tf>.
Vr = <From, To, a, e, h, m, [!, u] >E XT(n), do {
compute n' := (s', ET(n')), where s' := hr(s);
set NP := NP U {n'};
setR:= RU{<s,s',a,e,h,m,[!,u]>}}
S5: If NP is an empty set, report n as a terminal node in the global node space.
S6: Vn = (s,ET(n)) E NP do {
if channeloverflow(s) then mark n "perturbed" and set N := N U {n}
else if n i. N then mark n "unperturbed" and set N := N U { n}}
S7: Go to step 82.
Termination of Step 2 of the above algorithm is guaranteed if at least one TEFSM has

a finite behavior. We will shortly explain an example execution of the above algorithm
for constructing the global state space for the Inres example. The s component of the
initial state n1 is:
(1 ,227 ,E,E,E,E, {counter:= 1 ,c:=O, v:=null,TM:=O,t:=O})
and ET component is the union of XT which is:
{ < 1, 2, U!ICONreq, [T], {}, 1, [0, 0] >}
and PT which is {}. Now, n1 is perturbed using the transition in XT to reach n2 :

n2= ((2,227,ICONreq,E,E,E,{counter:=l,c:=O,v:=null,TM:=O,t:=O})
{ < 227, 157, I?sp(1), [T], {}, 1, [0, 0] > }{})

After a few perturbation steps we reach node n5 :

n5= ((2,162,E,E,CR,E,{ counter:= 1,c:=O,v:=nu1l,TM:=O,t:=0})
{ < 162, 165,i, [true], {counter:= counter+ 1}, 1, [0,0] >,
< 2,4,L?CR, [true], {TM := 5,c := 1}, 1, [0,0] >}{})

We perturb n 5 using the two transitions of its XT component to obtain the nodes n6

and n7 (see Fig. 3):
n6= ((4,162,E,E,E,E,{ counter:=1,c:=l,v:=nu1l,TM:=5,t:=0})

{ < 162,165, i, [T], {counter := 1 }, 1, [0, 0] > }{})
n7= ((2,165,E,E,CR,E,{counter:=2,c:=O,v:=null,TM:=O,t:=O})

{ < 2,4,L?CR, [T], {TM := 5,c := 1}, 1, (0,0] >}
{< 165, 169,i,[T], {}, 1, (5,5] > })

4.2 Associating Predicates with Global States

There are five types of predicates that can be associated with the global states of
a test verification system: state predicate, variable predicates, event predicates, PCO
predicates, and verdict predicates. The state predicate INIT holds only in the initial
state. The variable predicates are assertions about the values of the variables in the global
state space. The event predicates characterize the possibility or the actual execution of
specified events. The two event predicates are AT and AFTER. PCO predicates state
assertions on the PCOs and the input/output directions of events occurring at the PCOs.
The verdict predicates are assertions on the test verdict and is one of the following three:
(v = Pass), (v =Inconclusive), and (v = Fail) where vis the unique variable.

112 Session Two : Verification Methodology Based on FDTs

~
@

!NIT, UPPER, OUTPUT, UPPER_OUTPUT,
AT(Tsend{U1, ICONreq))
counter= 1, c = 0, v =null, TM = 0, t = 0

UPPER,INPUT,AFfER(Tsend(U1,ICONreq)),AT(Sreceive(U1,ICONreq))
counter= 1, c = 0, v =null, TM = 0, t =0

NULL,LOWER,INPUT,AT(Treceive(L1,CR)), AFfER(Ssend(L1,CR))
counter= 1, c = 0, v =null, TM = 0, t = 0

n7 LOWER, INPUT, AT(Treceive(Ll,CR))
counter= 2, c= 0, v= null, TM= 0, I= 0

(). NULL, AFfER(Treceive(L1,CR))
~-.counter= 1, c= 1, v= null, TM= 5, t= 0

·.<\

Figure 3: Global State Space with Predicates

The association of predicates to the global states is straight forward. The variable
predicate associated with a global state is simply the set of the enabling predicates of
the outgoing transitions from the state. The verdict predicate for each state is obtained
from the value of the verdict variable v associated with the state.

The event predicate is associated with a state when there is an external event in
any transition leading to or outgoing from the state. If the event is a receive test
case(specification) event then AT(T(S)receive(Channel, Event)) is associated with the
from state and AFTER(T(S)receive(Channel, Event)) is associated with the to state.

The PCO predicate is associated with a state when there is an external event in any
transition outgoing from the state. If the event is an input (output) event at the lower
PCO then the predicate LOWER (LOWER, LOWER_OUTPUT) is true. Otherwise,
if the event is an input (output) event at the upper PCO then the predicate UPPER
(UPPER, UPPER-OUTPUT) is true. If the transition is an internal transition then the
PCO predicate INTERNAL is associated. For all other transitions the NULL predicate
is associated (NS93].

4.3 Example

The Inres Initiator Test Verification System global state space can be generated fol­
lowing the above two steps. A total of 126 states and 135 transitions results from this
process. The complete global system is drawn in Appendix A. A part of the global system
is shown in Fig. 3 with predicates assigned to each state.

5 Temporal Formula Generation

First the temporal logic is introduced. Next a set of constructs to characterize the or­
dering of events in timed CSP (Communicating Sequential Processes) is used to describe
test case properties at a high level (KR93]. Finally these properties are formally defined

Protocol conformance test case verification using timed-transitions 113

in temporal logic [CES86]. Incorporating real-time requirements in temporal formulas
can be done in three ways: bounded temporal operators, freeze quantification, and ex­
plicit clock variable [ALHE91]. We take the explicit clock variable approach because it
facilitates direct use of the model checking algorithm. In addition, use of a clock variable
to keep track of time makes the reachability analysis process easier.

5.1 Temporal Logic

Let AP be a set of atomic predicates. A Branching Time Logic (BTL) structure is
defined as a 5-tuple: M = < S, V, R, P., Sinit >, where S is a finite set of states, V is
a finite set of variables, R ~ (S x S) is a set of transitions among the elements of S,
Pr : S --7 2AP assigns to each state the set of atomic predicates evaluating to true in that
state, and Sinit E S is the initial state [CES86].

Using the propositional logic operators -., 1\, and V and the Until(U) operator, for­
mulas of a BTL structure are defined as f, -.J,J 1\ g,J V g, A[JU g], and E(JU g], where
f,g E AP and AU and EU are referred to as the universal and existential Until oper­
ators, respectively [CES86]. We use a standard notation to express the truth value of
a formula f in a BTL structure M : (M, s0 I= f) means that the temporal formula f
holds at state s0 in structure M. When the structure M is understood, we simply write
s0 I= f. The following abbreviations are also used in writing BTL formulas:
AF(f) = A[TrueU f] means that f holds in the future along every path from s0 •

EF(f) =: E[TrueU f] means that there is some path from s0 that leads to a state at
which f holds. EG(f) = -.AF(-.f) means that there is some path from s0 on which f
holds at every state. AG(f) = -.EF(-.f) means that f holds at every state on every
path from sa. (fi ~h)= AG(!J --7 AF(h)) (read "/J leads to h'') means that for any
time at which fi is true, h must be true then or at some later time.

5.2 Temporal Formula for Safety

Based on the idea that nothing bad happens during a test case execution, the safety
properties of a test case can be classified into three distinct categories [NS93]: trans­
mission safety, reception safety, and verdict safety. All of the above properties can be
expressed using the temporal formula corresponding to the following two constructs in
timed-CSP:

CONS!: A causes B = After A there must be a B.
CONS2: A causes B unless C = After A there must be a B, unless a C occurs.
CONSl is used to specify transmission safety properties such as:
After a send event in the test case (protocol specification) there must be a receive event

in the protocol specification (test case). This property is stated in temporal logic as:
sinit I= (AFTER(Tsend(Q,E)) ~ AFTER(Sreceive(Q,E)))
sinit I= (AFTER(Ssend(Q,E))~ AFTER(Treceive(Q,E))).
CONS2 is used to specify reception safety properties such as:
Arriving at a state causes a receive event in the test case (protocol specification) unless

an internal event occurs. This property is stated in temporal logic as:
sinit I= (AT(Treceive(Q;,Ei)) ~ AFTER(Treceive(Q;,E;)) V AFTER(Tinternal))
s;nit I= (AT(Sreceive(Q;, E;)) ~ AFTER(Sreceive(Q;, Ei)) V AFTER(Sinternal)).
CONSl is used to specify the safety property about verdict assignment as follows:

114 Session Two : Verification Methodology Based on FDTs

After a receive (send) event in the test case there must be an assignment verdict =f.
Fail. This property is stated in temporal logic as:

Sinit f= true~ AG(--.(v =Fail)).

5.3 Temporal Formula for Liveness

A test case that has the liveness property means that the test behavior satisfies the
test purpose and eventually assigns a pass verdict. This can be expressed in temporal
logic as: Sinit f= (!1 ~ (v = Pass)), where / 1 is a temporal formula representing
the test purpose. Test purposes expressed in natural language can be converted into
temporal formula in three steps: (i) rewrite the test purpose as a collection of primitive
test purposes, (ii) express each primitive test purpose as a temporal formula, and (iii)
combine the temporal formulas corresponding to the primitive test purposes into a single
temporal formula. The following four constructs from timed-CSP are used in expressing
primitive test purposes.
CONS3: An Event Happens During Interval T0 : The primitive test purpose for
stating that the predicate p8 is true at time T and the event Ej is received through
channel Q3 during an interval of length T0 such that the predicate Pr is true is stated as:

(p. A (t = T)) ~ (Pr A AFT ER(Treceive(QJ> E3)) A (T ~ t ~ T + T0))

CONS4: An Event does not Happen During T0: The primitive test purpose for
stating that the predicate p8 is true at time T and the system waits for an interval To,
then no event is received during this period is stated as:

(p. A (t = T)) ~ (p. A --.AFT ER(Treceive(ANY, ANY)) A (T ~ t ~ T + T0))

CONS5: An Event A must Happen Only If a B Event Happens: An event E;(B)
is sent through channel Q; with the predicate p. is true, then an event E3(A) through
channel Qj is received and Pr holds is expressed as:

(p. A AFT ER(Tsend(Q;,E;)) A (t = T)) ~ (Pr A AFT ER(Treceive(Q3, E3)) A (T ~
t~T+To))
CONS6: After an A There Can Be no B During T0 : An event E; is sent through
channel Q; at time T with predicate p8 true and no event is received during To can be
expressed as:

(p.AAFTER(Tsend(Q;,E;)) A(t = T)) ~ (p.A--.AFTER(Treceive(ANY, ANY))A
(T ~ t ~ T+To))

Primitive test purposes can be composed using the logic operator of "and" (A). This
way higher level, meaningful test purposes can be specified in temporal logic as a sequence
of primitive test purposes.

6 Temporal Formula Verification

Temporal formula verification is done using a known model-checking algorithm [CES86],
where a temporal formula is represented in a tree structure. Leaf nodes contain atomic
predicates and all other nodes contain temporal operators. Showing that the formula
holds is done by traversing the formula tree from leaf nodes to the root node and verify­
ing each subformula. The entire formula is said to be verified if the root node subformula
holds. We describe model checking in detail and give examples of safety and liveness
property verification.

Protocol conformance test case ver(fication using timed-transitions 115

6.1 Model Checking Algorithm

For each formula, the model checker maintains two arrays nf and sf The lengths of
the arrays nf and sf are the length of the formula. nf[i] stores the ith subformula and sf[i]
is the list of indices into the array nf to denote the position of successor subformulas of
ith subformula. Essentially these two arrays maintain the formula in prefix notation.

As an example, the temporal formula :
sinit I= (t = 0) '"'-'+ (AFTER(Treceive(L1, C R)) A (0 ~ t ~ 0 + 5)) is stored as:

nf[l]("-'> ((t = 0) A((AFTER(Treceive(Ll,CR))(O ~ t ~ 0+ 5))))) sf[1] (2 3)
nf[2] (t=O) sf[2] nil
nf[3] (/\((AFT ER(Treceive(Ll, CR))(O ~ t ~ 0 + 5)))) sf[3] (4 5)
nf[4] AFTER(Treceive(Ll,CR)) sf[4] nil
nf[5] 0 ~ t ~ 0 + 5 sf[5] nil

A bit array L of the same length is defined for each state in the model. The verification
starts with the formula nf[/;] where J; is the length of f. In the above example, first the
formula 0 ~ t ~ 0 + 5 is considered. All the states s E S of the model are labeled by
setting L[s][5] to true for all s where nf[5] holds. This marks all states after INIT where
the time is less than or equal 5 (units). Next the subformula AFTER(Treceive(Ll,CR))
corresponding to J; = 4 is processed similarly.

The subformula (1\((AFTER(Treceive(Ll,CR))(O ~ t ~ 0 + 5)))) corresponding to
J; = 3 is processed by setting L[s][3] to true for all s E S for which L[s][4] and L[s][5]
are true. The subformula (t=O) corresponding to J; = 2 is processed as the subformulas
J; = 4 or J; = 5. Finally the root node subformula J; = 1 is processed by checking on all
the paths whether Sj E Sis a successor of s; E S with L[sJl[3] and L[s;][2] set to true.

6.2 Verification of Test Case Safety and Liveness Properties

In Appendix A we show the structure of the global state space of the Inres Protocol
TVS. The predicates are omitted to save space. Appendix A contains one initial state and
four final states. Let us denote a sequence of states from the initial state to a final state
as a path and represent the path by the function path(n;, nj), where n; and nj are initial
and final states, respectively. We will analyze the test case properties with respect to
four paths, path(nb n97), path(n1, n11s), path(n1, nu4), and path(nb n7o). Though there
are many sequences of states leading from the initial state to a final state, the result of
this analysis is the same for all such sequences.

6.2.1 Safety Properties

Following Section 5.2, we derive 3 transmission (one for the test case and two for the
specification), 3 reception (for the test case), and one verdict safety properties. All 3
reception safety properties are proved to be true on the global state space. We will show
that the transmission safety property formulated using CONSl in Section 5.2 for the test
case holds:
s;nit I= AFTER(Tsend(Ul,ICONreq)) '"'-'+ AFTER(Sreceive(Ul,ICONreq)).
The predicate AFTER(Tsend(Ul,ICONreq)) holds in the global state denoted by node
n2 and the predicate AFTER(Sreceive(Ul,ICONreq)) holds at node n3. Since node n3

appears on all the paths from the initial state to the final states, the above property is

116 Session Two : Verification Methodology Based on FDTs

satisfied by the model.
The safety property due to the transmission of the first CR

Sinit f= AFTER(Ssend(Ll,CRt)) 1\ (t = 0) "-" AFTER(Treceive(Ll,CRt)) 1\ (0:::; t:::;
oo)
can easily be shown to hold.

The safety property due to the transmission of the second C R from the specification
given below:
Sinit f= AFTER(Ssend(Ll,CR2)) 1\ (t = 0) "-" AFTER(Treceive(Ll,CR2)) 1\ (0:::; t:::;
5).
does not hold. The predicate AFTER(Ssend(Ll,CR2)) holds in the states corresponding
to nodes n22, n39, and ns6, but the predicate AFTER(Treceive(Ll,CR2)) does not hold
in any of the states on the paths from n22 to n97, from n39 to nus, and from ns6 to n 124.
This safety error arises because of a timeout in the test case as explained in the following.

From the node nts, there are two possible transitions,
< nts,TC5,n2t >and< nts,SP22,nt6 >,

which are due to the TC5 and SP22 transitions in the test case TEFSM and the protocol
specification TEFSM, respectively. Transition TC5 represents a timeout event in the test
case and SP22 is a transition that outputs a CR PDU. That is, in this test case, the length
of the timer is such that the timeout occurs in the test case before the specification can
output the desired CR PDU. Hence, in order to eliminate this safety error, the duration
of the timer in the test case must be suitably adjusted.

Now we consider the verdict safety property, which is given by
Sinit f= AG(-,(v = Fail)). This property does not hold because the predicate (v = Fail)
holds in many states such as n97, nus and n124. The significance of a verdict safety error
is that the test case is likely to assign a Fail verdict to a correct implementation of the
protocol on some executions.

6.2.2 Liveness Property

In the following, we show that the test purpose is not properly implemented in the test
case. The test purpose is specified as follows: To check that JUT retransmits CR_PDU
in case of timeout, and releases the connection after four unsuccessful attempts.

Following Section 5.3 we first express the test purpose as a temporal formula. We
rewrite the test purpose as a sequence of basic steps:

(i) When the TEFSM sends a ICONreq to the IUT at PCO U, the IUT sends a CR
PDU to the TEFSM at PCO L.

(ii) If the TEFSM waits for five seconds, it receives a CR from the IUT at PCO L.
(iii) (Step (ii) repeats four times.)
(iv) The TEFSM receives a IDISind at PCO U.

The primitive test purposes in temporal logic corresponding to the above steps can be
formulated using CONS3 in Section 5.3:

(i) AFT ER(Tsend(Ul, ICONreq))""" AFTER(Ssend(Ll, CR)).
(ii) (t = T)""" (AFT ER(Treceive(Ll, C R)) 1\ (T :::; t :::; T + 5)).
(iii) (Step (ii) repeats four times.)
(iv) AFTER(Treceive(U2,ID!Sind))l\(t ~ 15).
We compose these basic test purposes using the 1\ operator to give rise to a formula

Protocol conformance test case verification using timed-transitions 117

for the entire test purpose as follows:
f 1 = AFTER(Tsend(U1,ICONreq))"-' AFTER(Ssend(L1,CR)) 1\

(t = 0)""" (AFTER(Treceive(L1,CR)) A (0:::; t:::; 0 + 5)) 1\

(t = 5)""" (AFTER(Treceive(L1,CR)) 1\ (5:::; t:::; 5 + 5)) 1\

(t = 10)""" (AFT ER(Treceive(L1, CR)) 1\ (10 :::; t :::; 10 + 5)) 1\

(t = 15)""" (AFTER(Treceive(L1,CR)) A (15:::; t:::; 15 + 5)) 1\

AFTER(Treceive(U2,ID!Sind)) A (t ~ 15)
Then, the liveness property of the test case is stated as Sinit f= (h """ (v = Pass)). The
predicate (v = Pass) holds in node n1o- However, f1 does not hold on path(n1, n1o).
The predicate AFTER(Tsend(U1, ICONreq)) holds in node n2 and the predicate AF­
TER(Ssend(L1, CR)) holds in node n5 • The atomic predicate (t = 0) is satisfied in
nodes n1 through n8 and the predicate (AFTER(Treceive(L1,CR)) 1\ (0:::; t:::; 0 + 5))
is satisfied in node n17. The predicate (t = 5) is satisfied in nodes n1s through n2s

and the predicate (AFTER(Treceive(Ll,CR)) 1\ (5:::; t:::; 5 + 5)) is satisfied in node
n34 . The predicate (t = 10) is satisfied by the nodes n35 through n42 and the predicate
(AFTER(Treceive(L1, CR)) 1\ (10:::; t:::; 10 + 5) is satisfied in node n51 . The predicate
(t = 15) is satisfied in nodes n 52 through n 59 , but no nodes following these nodes satisfy
the predicate (AFTER(Treceive(L1,CR)) 1\ (15 ~ t:::; 15 + 5)).

The above analysis of the test purpose temporal formula suggests that the test case
receives only three retransmissions of the CR PDU and not four as stated in the test
purpose. Hence, an error exists in the dynamic behavior of the test case. We attribute
the cause of the above error to a bad initialization of the counter variable c in the test
case. Since the variable c has been initialized to 1 and the behavior of the test case loops
back to receive a CR PDU with the condition c < 4, naturally the test case will receive
only three retransmitted CR PDUs and not four.

7 Conclusions

We presented a methodology to verify timed properties of test cases. Test cases and
protocol specifications are modeled as TEFSMs. Test case properties are formulated in
terms of some general constructs to describe the occurrences of timer events similar to
those in the timed CSP and are expressed as formulas in branching-time temporal logic.
The traditional model checking algorithm is used to verify the temporal logic formulas
of test cases on the model of a test verification system. We applied the verification
methodology to a test case of the INRES protocol. A few safety errors were detected in
the test case. The more important thing was the detection of the liveness error, that is
the detection that the dynamic behavior of the test case did not satisfy the purpose of
the test case for a Pass test verdict to be assigned.

References

(BS93] U. Bar and J.M. Schneider. Automated validation of TTCN test suites. In IFIP
PSTV XII. North-Holland, 1993.
[CCI92] CCITT. CCITT Specification and Description Language (SDL), pages 1-219.
CCITT Recommendation Z.100, 1992.
[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-

118 Session Two : Verification Methodology Based on FDTs

state concurrent systems using temporal logic specifications. ACM TOPLAS, 8:244-263,
April1986.
[DB90] M. Dubuc and G. v. Bochmann. Translation from TTCN to LOTOS and the
validation of test cases. In FORTE-90, pages 141-155. North-Holland, 1991.
[18091] ISO. ISO/lEG 9646: Conformance Testing Methodology and Fmmework, ISO/
IEC JTC1/SC21, 1991.
[ALHE91] R. Alur and T.A. Henzinger. Logics and Models of Real Time: A Survey. In
LNCS 600, pp. 74-106, 1991.
[BHS91] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol
Specification. Prentice-Hall, 1991.
[KR93] A. Kay and J.N. Reed. A relay and guarantee method for timed CSP: A specifi­
cation and design of a telephone exchange. IEEE Tmns. on Software Eng., 19{6):625-639,
June 1993.
[NS93] K. Naik and B. Sarikaya. Test case verification by model checking. Formal
Methods in Systems Design, 2(3):277-321, 1993.
[OST90] J.S. Ostroff. Deciding Properties of timed transition models. IEEE Trans. on
Pamllel and Distributed Systems, 1(2):170- 183, April1990.
[SAR93] B. Sarikaya. Principles of Protocol Engineering and Conformance Testing.
Simon and Schuster, September 1993 .

.APPENDIX A. Global S1:at.e Space

qDINITIAL

C¥>

