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1. INTRODUCTION 

In many reliability problems integrals of the following form 

F(T)= j f(z,T)dz 
g(Z,T)$0 

(1) 

are of interest. Here f(z,r) is usually a probability density aud g(z,r) a limit state 
function. Both functions depend on a parameter vector T. Then F(T) denotes the failure 
probability for the parameter value T. 

In the case that only the integrand depends on the parameter T the derivatives are ob­
tained easily by differentiating under the integral sign. But the case that the limit state 
function depends on a parameter is of importance in reliability problems, especially in 
optimization. An example of such a problem is given in [7]. The concepts of asymptotic 
approximation methods for such integrals are outlined in [5]. 

2. DERIVATIVE OF F(r) 

In [3] is was shown that under some regularity conditions the derivative F'( r) is given by 

(2) 

Here D(r) = {y;g(y,r) < 0}, G(r) = {y;g(y,r) = O} and ds.,.(y) denotes surface 
integration over G( T ). 

A disadvantage of this relation is that the second term is a surface integral, which is 
in general difficult to compute. Using the divergence theorem, we can transform it into 
a domain integral. The divergence theorem states that for a continuously differentiable 
vector function u(z) defined on a domain F with boundary G we have for the derivative 
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then the following form 

j div(u(:v)) d:v = j(n(y),u(y)) d8(y). (3) 
F G 

Here div (u(:v)) = L:i=1 ou;(:v)fox;, n(y) is the outward pointing normal at y and (:v, y) 

is the scalar product of :v and y. 

First we assume that the gradient Vy(y,r) does not vanish throughout D(r). If we 

define now a vector field u( :v) by 

( ) _ f(:v,r)gT(:v,r)V ( ) 
u:v- IV:vg(:v,r)l2 ;vg:c,r (4) 

we get on the surface G( T) with outward pointing normal n(y) = IV yg(y, r)I-1V yg(y, r) 
for the scalar product (n(y), u(y )) the form 

( ( ) ( )) = f(:v, r)gT(:v, r) 
ny,uy IV:vg(:v,r)l, (5) 

and therefore we have that 

J f( ) gT(y, r) ( ) j . (f(:v, r)gT(:v, r) ( )) 
y, T IV ( r)l dsT y = dJv IV (:v r)l2 V;vg :v, T d:v. 

G(T) yg y, F ;vg ' 
(6) 

This gives then for the derivative F'( r) the form 

'( ) j [ ( ) . (f(:v, r)gT(:v, r) )] 
F T = fT :v,r -d1v IV:vg(:v,r)l2 V:vg(:v,r) d:v. 

g(:V,T)$0 

(7) 

If now the gradient vanishes at a finite number of points in D( T ), but the Hessian 

H 9 (:v) = (gii(:v,r))i,i=J, ... ,n is regular at all these points, equation (7) remains valid. We 
show this for the case of a single point :v* in D( T) with vanishing gradient. We consider 

a domain D*(r) given by D*(r) = D(r) \ K(t), where K(t) is the sphere around :v* 

with radius L The value of t is chosen so small that K(t) C D(r). Then the divergence 

theorem is valid for this domain. The boundary of it are the surface G( T) and the surface 

S(c) of the sphere K(t). So we obtain, since the outward pointing normal ou S(c) is 

l:v*- yl-1(:v*- y), the following equation 

J f( ) gT(y,r) d ( ) j . (f(:v,r)gT(:v,r) ( )) d 
y,r IVyg(y,r)l 8T y = dJV IV:vg(:v,r)l2 V;vg :v,r :v 

G(T) F 

- j f(y,r) gT(y,r) (Vyg(y,r)' :v*-y) ds,(y) 
IVyg(y,r)l Vyg(y,r) l:v*-yl 

S(<) 

=l(<) 

with d8,(y) denoting surface integration over S(t). 

(8) 
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For the last surface integral I(t) we get with /{ = maxyeK(<) lf(y,r)g,.(y,r)l the upper 
bound 

J g,.(y,r) 'llyg(y,r) ~·-y j _1 
f(y,r)IV ( r)I(V ( r)'-1~·-l)ds,(y) :S:I< IVyg(y,r)l ds,(y). 

S(<) yg y, yg y, y S(<) 

Making a Taylor expansion of the first derivatives of g at ~· gives 

'llyg(y, r) = H9(~*)(y- ~·) + o(t). (9) 

With J-Lo = min IJ-LII, ... , IJ-Lnl >O, where the /t;'s are the eigenvalues of H9 (~*) we get for 
the norm 

l'llyg(y, r)l 2': J-LoiY- ~·1 + o(t) = /lof + o(t). (10) 

This gives then for the integral I ( t) that 

J 21fn/2 
II(t)l ::S: KJ-LoE-1 ds,(y) = KJ-Lor(n/2) fn- 2 + o(tn-2) = O(tn-2 ). 

S(<) 

(11) 

Therefore equation (7) remains valid if the Hessian is regular and the dimension of the 
integration domain is larger than two. 

3. QUADRATIC FORMS ON SUBSPACES 

In a number of problems the definiteness of a matrix under linear constraints is of interest. 
Given is an n x n matrix H aud a subspace U spanned by m linearly independent vectors 
a 1 , •.. , am. To find if the matrix is positive (or negative) on the subspace orthogonal to 
u. 

We consider first the case that a; = e;, i.e. the vectors a; are the first m unit vectors 
and that H is a diagonal matrix with diagonal elements /ll, ... , Jln· Then we ha ve for the 
quadratic form ~T H ~ the representation 

n m n 

~T H ~ = L Jl;X~ = L JljXJ + L ţtjX;. (12) 
i=l j=l j=k+ 1 

This quadratic form is positive definite under the constraint x 1 = ... = Xk = O if the last 
n - m diagonal elements /lm+l, ... , /ln are positive. We consider now the quadratic form 
defined by 

k n 

~TH·~ = "Lx] + L Jlix]. (13) 
j=l j=k+l 

with H* a diagonal matrix with diagonal elements 1, ... , 1, Jlm+l, ... , Jln· This quadratic 
form is positive definite if the quadratic form ~T H ~ is positive definite under the con-
straint x 1 = ... = Xk = O. The projection matrix P of projection onto the subspace 
spanned by e1 , ... , e". is given by the diagonal matrix with the first m elements equal to 
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one and the rest equal to zero and the projection onto the orthogonal subspace by In- P. 
Then we can the last equation in the form 

zTH+z = zT (PP +(In- P)H(I,.- P))z. (14) 

In the general case of a subspace spanned by m arbitrary linearly independent vectors 
al! ... , am, we can reduce the problem to the case above by making a rotation such the m­
dimensional subspace spanned by these vectors is transformed into the subspace spanned 
by the first m new coordinate vectors. The projection matrix onto that subspace is given 
by 

(15) 

with A = (al! ... , am)· Then we get for the quadratic form zT H+z the same form 
as in the last equation. This gives finally: A matrix H is positive definite under the 
constraint AT:r: = Om iff the matrix H+ = PP + (I,.- P)H(I,.- P) is positive 
definite. Analogously we have that it is negative definite under these constraints iff 
H- = -P P +(In- P)H(In- P). If a matrix is positive definite, can be checked easily 
by making a Cholesky decomposition. If this algorithm does not break down, it is positive 
definite. 

In SORM we need the curvature correction factor for obtaining an asymptotic approxi­
mation for the failure probability. It is given in the form 

n-1 

P(F) "'<~>( -/3) II (1 - f3";rl'2· (16) 
i=I 

Here the K;'s are the main curvatures of the limit surface at the beta point zo (see [2)). 
In [6) it is shown that the largest eigenvalue can be obtained during the final stage 

of a numerica! search for the beta point. The last result about quadratic forms on sub­
spacse gives a simple method, which avoids an eigenvalue analysis for computing the main 
curvatures "1! ... , Kn-h for calculating this curvature correction factor (Ili:11 (1-K;))-112 • 

By a rotation of the coordinates it can always be achieved that the Xn axis is in the 
direction of the normal vector of the surface G at :r:0 and the tangential space is spanned 
by the vectors in the directions of the x1, ... , x,._1- axes. The square of the curvature 
factor is then, (see [2] , eq.(25)) 

912 ~o 
Vg(:llo)l 

1 + 922(:1lo) 
jVg(:llo)l (17) 

jVg(:llo)l 

The 9ii(:r:0 ) are the second derivatives of g at :Ilo with respect to x; and Xj. If we add a 
row and a column with zeros everywhere and only 1 in the main diagonal, the value of 
the determinant remains the same and we obtain 

91 n-1 :Ilo) ) jVg(:llo 
92,n !(:Ilo) 

jVg(:llo)l 

1 + Dn-l,n-1 {:Ilo) 
jVg(:llo)l 
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= det 

If we set 

1 + ou(:Co) 
IVo(:Co)l 

021 :Co 
IVg(:Co) 

Yn-11 :Co) 
jVg :Co) 

o 

91,n ,(:Co) 
IVg(:Co)l 

92,n-d:Co) 
IVo(:Co)l 

we get that the matrix D can be written in the form 

D = PTH(:co)P + ene~ 

o 
o 

o 
(18) 

(19) 

(20) 

with en = (0, ... , O, l)T and P = 1 n - e,.eŢ.. Due to the special choice of the coordinate 
system, en is the normal vector of the surface G at :c0 aud P is the projection matrix onto 
the tangential space of G at :c0 . But this formulation is invariant under linear coordinate 
changes; we just have to replace e" by the normal vector n in the new coordinates 
n = IVg(:co)I-1Vg(:c0). So we have for an arbitrary coordinate system the following 
expression for the curvature factor 

n-1 
IT (1- ~~:;) = det(D) = det(PrH(:co)P + IVg(:co)I-2Vg(:co)(Vg(:co)n (21) 
i=l 

with P =In -IVg(:co)I-2Vg(:co)(Vg(:coW. 
Sin ce the function l:c 12 has a local minimum at the point :co under the constraint g( :c) = 

O the matrix H(:c0 ) is positive definite under the linear constraint nT :c = O, if the 
extremum is regular. Therefore in this case the determinant of D can be found from the 
Cholesky decomposition of PTH(z0 )P + IVg(zo)I-2Vg(:c0)(Vg(:c0)f. 

In the same way we can obtain the asymptotic approximation in the case of non-normal 
random variables with p.d.f. f(:c). Here the asymptotic approximation is given by 

P(F) (2 )!n-1)/2 f( :c*) 
~ 7r IVI(:c*)ll det(H*(:c*))l112 

(22) 

with l(:c) = ln(f(:c)) the log-likelihood function (see [4]). The matrix H*(:c*) is defined 
by 

H*(:c*)) = ATH(z*)A. (23) 

Here H = (zii(:z:*)- IVl(:c*)IIVg(:c*)l-1yii(:c*));,;=1, ... ,n aud A = (a~, ... , a,._t), where 
the a;'s form an orthonormal hasis of the tangential space of the li mit state surf ace at :c*. 

If the log-likelihood function has a regular maximum with respect to the failure domain 
at z*, then we can compute det(H*(:c*)) again as 

det(H*(:c*)) = det (PH(:c*)P- n(:c*)n(:c*l). 

Here P = 1,.- n(:c*)n(:c*f. 

(24) 
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3. PARAMETER DEPENDENCE OF THE PML-POINT 

We consider the problem that the reliability problem is a function of a parameter T. Then 
the point of maxima) likelihood (PML) depends on this parameter value. The change of 
the beta value inFORM theory under parameter changes was treated in [1]. We consider 
an integral as in equation (1), but with only a scalar parameter T. 

Following from the results of the last paragraph the failure probability is approximated 
making a Taylor expansion of the log-likelihood function around the PML and using the 
Laplace method. We asssume that for all feasible values of T there is exactly one PML 
:c• = :c*(r) on the limit state surface G(r). 

The gradients of these functions with respect to the first n variables x1 , ••• , Xn are 
denoted by V:cf (resp. V:c9) and the partial derivative with respect toT by f-r (resp. 
9-r)· The Hessian of a function f(:c,r) with respect to the first n variables is written as 
HJ. 

We assume that for a fixed value of T there is a unique PML :c*( T) and we write in a 
shorthand notation :c•. The vector of the first derivatives of :c• with respect to T is written 
as :c;. This point is a stationary point of the Lagrangian function L( :c, \ T) defined by 

L = f- A9. (25) 

Therefore for the point :c*( T) the following equation system 

(26) 
9 o. 

must be fulfilled. 
To find the derivatives of the coordinates of the PML with respect to par am eter changes, 

we differentiate this system with respect to T and set all derivatives equal to zero. This 
gives then 

H1:c; + V:cf-r- A-r V:c9- A(H9 :c; + V:cg-r) 
(V :cg, :c~) + 9-r 

Rearranging the terms gives 

(HJ- AH9 ):c~ + :T (V:cf- AV:cg) 

(V :cg, :c~) 

o. 

Since always V :cf - A V :cg = On, we get deleting this term 

(HJ- AH9 ):c; 
(V :c9 ), :c~) 

This gives then for the vector :c; the form 

:c~ = A-r(H1 - AH9t 1V:c9· 

(27) 

(28) 

(29) 

(30) 

To determine the value of A-r we compute the scalar product of :c; and V :cg, yielding 

(31) 
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From equation (29) follows then that the lefthand side is equal to -g" aud so we get 

(32) 

This gives then for the derivative A-r then 

(33) 

lnserted into equation (30) we obtain 

:v; = (V';vg)T(HJ ~ AHg)-1\l;vg(HJ + AHgtiV';vg. (34) 

The change of the value f* = f(z*(T),T) is given by 

(35) 

Due to the Lagrange multiplier theorem, we can replace the gradient of f by the gradient 
of g, giving 

(36) 

From equation (29) we get then 

(37) 

If f-r = O, the Lagrange multiplier A gives the change of the value of f* relative to the 
negative change of g with respect toT. If the constraint is given in the form g(z)- T =O 
aud the p.d.f. depends not ou T, we obtain the simple form 

J; =A. (38) 

If we consider the approximation for the failure probability given in equation (22) aud 
we neglect the change of the quantities in the denominator we get approximately 

(39) 
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