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1. INTRODUCTION

In many reliability problems integrals of the following form

Fr)= [ f(r)de 1)

9(Z,T)<0

are of interest. Here f(x,7) is usually a probability density and g(z,7) a limit state
function. Both functions depend on a parameter vector 7. Then F(7) denotes the failure
probability for the parameter value 7.

In the case that only the integrand depends on the parameter T the derivatives are ob-
tained easily by differentiating under the integral sign. But the case that the limit state
function depends on a parameter is of importance in reliability problems, especially in
optimization. An example of such a problem is given in [7]. The concepts of asymptotic
approximation methods for such integrals are outlined in [5].

2. DERIVATIVE OF F(r)

In [3] is was shown that under some regularity conditions the derivative F'(7) is given by

gT Y7 ) .
D/, (=, / e K] ©)

Here D(7) = {y;9(y,7) < 0}, G(r) = {y;9(y,7) = 0} and ds,(y) denotes surface
integration over G(7).

A disadvantage of this relation is that the second term is a surface integral, which is
in general difficult to compute. Using the divergence theorem, we can transform it into
a domain integral. The divergence theorem states that for a continuously differentiable
vector function u(x) defined on a domain F' with boundary G we have for the derivative
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then the following form
[div(u(@)) de = [(n(y),u(y) ds(v). )
F G

Here div (u(z)) = Y, ui(z)/ 9=z, n(y) is the outward pointing normal at y and (e, y)
is the scalar product of 2 and y.

First we assume that the gradient Vy(y,7) does not vanish throughout D(r). If we
define now a vector field u(x) by

f(2,7)g:(=,7)
[Vag(z,)?

we get on the surface G(7) with outward pointing normal n(y) = |Vyg(y, 7)|"' Vyg(y,7)
for the scalar product (n(y), u(y)) the form

u(e) = Vegl(z,T) (4)

f(z,7)g:(2,T)
(n(y),u(y)) = Vag@. ) (5)
and therefore we have that
/ f(y,m Ié’;(gy;/’ ds-(y / div ( 'é’m’g‘;’ ::)|:)ng(‘”,7)) dz. (6)

This gives then for the derivative F'(7) the form

f(=,7)g:(2,7)
|Vmg(21, T)lz

Fl(r) = / [f,(z,r)-div(

g9(®,7)<0

Va:g(w,r))] de. ()

If now the gradient vanishes at a finite number of points in D(7), but the Hessian
H(x) = (¢"(,7))ij=1,..n is regular at all these points, equation (7) remains valid. We
show this for the case of a single point z* in D(r) with vanishing gradient. We consider
a domain D*(7) given by D*(r) = D(r) \ K(e), where K(c) is the sphere around 2
with radius e. The value of € is chosen so small that K(e) C D(7). Then the divergence
theorem is valid for this domain. The boundary of it are the surface G(7) and the surface
S(€) of the sphere K(e). So we obtain, since the outward pointing normal on S(e) is
|z* — y| H=* - y), the following equation

_1]7- Yy, T z,T 97 z, T) )
, div| ==————""Vgg(z,7)| dz
C([)f A v=] (et s vssten
9:(y,7) Vygly,7) 2" -y
, , ds, 8
/ TR oyl Tyaly, ) o=yl @) ®

5(e)

=I(¢)

with ds.(y) denoting surface integration over S(¢).
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For the last surface integral I(€) we get with K = maxyek(q |f(y, 7)g-(y, 7)| the upper
bound

9-(y,7)  Vygly,7) =" —y A1 ds
/ (RO e e e e R SKSZ) [Vya(w, I ds.(y).

Making a Taylor expansion of the first derivatives of g at @* gives

Vyg(y,7) = Hy(2")(y — 27) + o(¢). )

With o = min |g], ..., |#s] > 0, where the ;s are the eigenvalues of H j(¢*) we get for
the norm

[Vyg(y, 7)| 2 poly — 27| + o(€) = poe + o(e)- (10)
This gives then for the integral /(e) that

2,n.n/2

an_ +0(e"%) = 0(¢"™%). (11)

|1(6)I5Ku06'1/ dse(y) = Kpo
5(e)

Therefore equation (7) remains valid if the Hessian is regular and the dimension of the
integration domain is larger than two.

3. QUADRATIC FORMS ON SUBSPACES

In a number of problems the definiteness of a matrix under linear constraints is of interest.
Given is an n x n matrix H and a subspace U spanned by m linearly independent vectors
ay,...,an. To find if the matrix is positive (or negative) on the subspace orthogonal to
U.

We consider first the case that a; = e;, i.e. the vectors a; are the first m unit vectors
and that H is a diagonal matrix with diagonal elements g, ..., stn. Then we have for the
quadratic form T Hz the representation

THz—Eu,m —E/t].’l) + E ;L] (12)
j=k+1

This quadratic form is positive definite under the constraint #; = ... = x; = 0 if the last
n — m diagonal elements fiy41,.. ., fin are positive. We consider now the quadratic form
defined by

TH":::-ZJ: + Z 152 (13)

J=k+1
with H* a diagonal matrix with diagonal elements 1,...,1, fimy1, . .-, pin- This quadratic
form is positive definite if the quadratic form =7 Hz is positive definite under the con-
straint z; = ... = zx = 0. The projection matrix P of projection onto the subspace

spanned by ei,...,e,, is given by the diagonal matrix with the first m elements equal to
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one and the rest equal to zero and the projection onto the orthogonal subspace by I,, — P.
Then we can the last equation in the form

2TH*e = 2T (PP + (I, - P)H(I, — P))=. (14)

In the general case of a subspace spanned by m arbitrary linearly independent vectors
ai,...,Qy, we can reduce the problem to the case above by making a rotation such the m-
dimensional subspace spanned by these vectors is transformed into the subspace spanned
by the first m new coordinate vectors. The projection matrix onto that subspace is given
by

P=A(ATA)'AT (15)

with A = (a@1,...,a,). Then we get for the quadratic form «TH*e the same form
as in the last equation. This gives finally: A matrix H is positive definite under the
constraint ATz = o,, iff the matrix Ht = PP + (I, — P)H(I, — P) is positive
definite. Analogously we have that it is negative definite under these constraints iff
H™ =—-PP+(1,—-P)H(I, — P). If a matrix is positive definite, can be checked easily
by making a Cholesky decomposition. If this algorithm does not break down, it is positive
definite.

In SORM we need the curvature correction factor for obtaining an asymptotic approxi-
mation for the failure probability. It is given in the form

n—1
P(F) ~ 0(=f) T1 (1 - B2 (16)
i=1
Here the &;’s are the main curvatures of the limit surface at the beta point @q (see [2]).
In [6] it is shown that the largest eigenvalue can be obtained during the final stage
of a numerical search for the beta point. The last result about quadratic forms on sub-
spacse gives a simple method, which avoids an eigenvalue analysis for computing the main
curvatures K1, . .., Kn_1, for calculating this curvature correction factor (T2 (1 —#;))~ 2.
By a rotation of the coordinates it can always be achieved that the zn axis is in the
direction of the normal vector of the surface G at o and the tangential space is spanned

by the vectors in the directions of the zy,...,2,-1- axes. The square of the curvature
factor is then, (see [2] , eq.(25))

1+ 91:1(%Lo) 912(%Lo) 91,n-1(L0)

IVa(®o)i IVa(®o)] Ve (o)l
n-1 921(%Lo) 14 yzzﬂwo} . 92,n—1(Lo
H(l — &) = det lVy("L'o)l V()] . . |V9(130)| ) (17)
=1 : e .
n-1,1(Lo) gn—1 2—1(‘”0)
IVs(%o)i T o [Va(@o)l

The g;;(x¢) are the second derivatives of g at ®¢ with respect to z; and ;. If we add a
row and a column with zeros everywhere and only 1 in the main diagonal, the value of
the determinant remains the same and we obtain

1+ 911(Zo) 912(%g) 91,n—1(Lo)

[Va(To)l [Vo(Zo)| e [Vg(To)l

g21(®a) 1+ 922(%o) 92,n-1(Lo)

det [Vg(o)] [Va(®o)] *°~ [Vg(2o)l
gne1 (o) 1 tmaan(®)

Vg(To)| [Vg(2o)]
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14 911(®o) 912(Lo) 91,n—1{Lo) 0
1Vg(o)] [Va(®o)] Tt [Vg(To)|
921(%o 1+ 922{%0) g2,n—1(Lo 0
[Vg(o)l RZIET . |Vg(2o)]
= det : ST s : (18)
In— (m ) 9n—1n— (KE )
atzor - TR 0
0 1
=D
If we set
H(zo) = (&; + V(o)™ gi5(20))i.j=1,...m: (19)
we get that the matrix D can be written in the form
D= PTH(Z())P + enez (20)

with e, = (0,...,0,1)T and P = I, — e,e?. Due to the special choice of the coordinate
system, e,, is the normal vector of the surface G at @ and P is the projection matrix onto
the tangential space of G at @¢. But this formulation is invariant under linear coordinate
changes; we just have to replace e, by the normal vector m in the new coordinates
n = |Vg(2o)|"'Vg(x). So we have for an arbitrary coordinate system the following
expression for the curvature factor

n-1

I1(1 - ki) = det(D) = det(P" H(2o)P + |Vg(20)|*Vg(20)(Vg(20))T) (21)
i=1

with P = I, ~ [Vg(2a)|~*Vg(z0)(Vg(x0))".

Since the function ||? has a local minimum at the point ¢ under the constraint g(z) =
0 the matrix H (o) is positive definite under the linear constraint nTa = 0, if the
extremum is regular. Therefore in this case the determinant of D can be found from the
Cholesky decomposition of P¥ H (24) P + |Vg(20)|"2Vg(2o)}(Vg(0))7.

In the same way we can obtain the asymptotic approximation in the case of non-normal
random variables with p.d.f. f(z). Here the asymptotic approximation is given by

n-1)/2 f(=)
P ~ ) T E 7 22

with {(z) = In(f(x)) the log-likelihood function (see [4]). The matrix H*(x*) is defined
by

H*(z*)) = ATH(z")A. (23)
Here H = (IV(z*) — |VI(z*)||Vg(=*)|"' ¢"(2"))i j=1,.n and A = (ay,...,a,_1), Where

the a;’s form an orthonormal basis of the tangential space of the limit state surface at «*.
If the log-likelihood function has a regular maximum with respect to the failure domain
at =*, then we can compute det(H™(x*)) again as

det(H*(2")) = det (PH(2")P — n(=")n(=")") . (24)
Here P = I,, — n(z*)n(z*)T.
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3. PARAMETER DEPENDENCE OF THE PML-POINT

We consider the problem that the reliability problem is a function of a parameter 7. Then
the point of maximal likelihood (PML) depends on this parameter value. The change of
the beta value in FORM theory under parameter changes was treated in [1]. We consider
an integral as in equation (1), but with only a scalar parameter 7.

Following from the results of the last paragraph the failure probability is approximated
making a Taylor expansion of the log-likelihood function around the PML and using the
Laplace method. We asssume that for all feasible values of 7 there is exactly one PML
@* = 2*(7) on the limit state surface G(7).

The gradients of these functions with respect to the first n variables z,...,z, are
denoted by Vg f (resp. Vgg) and the partial derivative with respect to 7 by f, (resp.
g-). The Hessian of a function f(x,7) with respect to the first n variables is written as
Hy.

We assume that for a fixed value of 7 there is a unique PML «*(7) and we write in a
shorthand notation 2*. The vector of the first derivatives of &* with respect to T is written
as 7. This point is a stationary point of the Lagrangian function L(x, A, ) defined by

L=f-)g (25)
Therefore for the point 2*(7) the following equation system
Vaf—AVgg = o, (26)
g = 0.

must be fulfilled.

To find the derivatives of the coordinates of the PML with respect to parameter changes,
we differentiate this system with respect to 7 and set all derivatives equal to zero. This
gives then
Hfz:-*_vmff —/\.,Vmg—/\(Hg:c: +ng7.) = 0O,

(ngv m:) + Gr 0. (27)

Rearranging the terms gives

a
(Hy— AH,)z} + a7 (Vaf=AVag) = AVag
(Vag,z) = —g.. (28)
Since always Vg f — AVazg = 0,, we get deleting this term

(= MH)z, = A\ Vag

(Vag),27) = —g-. (29)
This gives then for the vector «} the form
e = \(H; - H,) 'Vgg. (30)

To determine the value of A, we compute the scalar product of 2} and Vgg, yielding

(Veg, ) = M\ (Veg)T(Hy - AH,) ' Vag. (31)
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From equation (29) follows then that the lefthand side is equal to —g, and so we get

gr = “/\T(V:B.‘])T(Hf — AH,)™'Vag. (32)
This gives then for the derivative \; then
-1
A== [(Vag) (H; = \H,) ' Vag| ™ gr (33)
Inserted into equation (30) we obtain
2t = - I (Hy +\H,) ' Vag. (34)

T (Veg)T(H;— AH,) 'Veg
The change of the value f* = f(x*(r),7) is given by
fF={(Vaf,}) + fr. (35)

Due to the Lagrange multiplier theorem, we can replace the gradient of f by the gradient
of g, giving

fr = MNVa0,2) + fr. (36)
From equation (29) we get then

If f; = 0, the Lagrange multiplier A gives the change of the value of f* relative to the
negative change of g with respect to 7. If the constraint is given in the form g(2) —7 =0
and the p.d.f. depends not on 7, we obtain the simple form

f7=A (38)
If we consider the approximation for the failure probability given in equation (22) and
we neglect the change of the quantities in the denominator we get approximately
OP(F) _ (2m)~(-1)/2
O |Vi(e)|| det(H (7)) [/

(=Ags + f1). (39)
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