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1. INTRODUCTION 

The state of a structure can be described in terms of the complete set of state 
variables at any given time in its lifetime [1,2,4,5,7]. If the state of the structure 
is independent of the loading history, the structure is referred to as load path­
independent. For such a case, the state of the structure can be expressed in 
terms of the current values of the loads and common response statistics. In these 
cases, there exists a unique surface in the basic variable space which divides the 
space into two regions, representing safety and failure of the structure. This limit 
state can be written in the form g(x) = O. As will be discussed, the concept 
of such a function is not valid for load path-dependent structures. lnstead, the 
concept of survival and failure paths must be used, and incipient failure directions 
determined for critical points. 

As a first step toward the goal of developing general path-dependent meth­
ods which are more efficient than Monte Carlo methods and can provide insight 
into the nature of the problem, some fundamental concepts in time-varying re­
liability analysis of path-independent problems will be examined in the context 
of load path-dependency. New concepts that can help in the understanding of 
path-dependent reliability will be introduced. 

2. LIMIT STATE REGIONS IN THE BASIC VARIABLE SPACE 

Let X(t) bea vector of random processes, and define the basic variable space, 
X, as a space whose axes are the sample space of each component of X(t). Then, 
for structures whose response is not load path-dependent, there is, in general, a 
unique limit state surface that divides X into a safe region and a failure region 
[10]. When the structural response is load path-dependent, however, there is 
no such division between a failure region and safe region [8,12]. At some point 
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x E X, the structure may or may not fail, depending on the path which the vector 
process X(t) has taken to reach x. To see how the points in X are related to the 
state of the structure under investigation, the following definitions are helpful. 

A structure is critical if an infinitesimal change of X(t) from its current value 
in the next moment will bring it to failure. A point x E X is a critical point if 
the structure with basic variables X(t) = x is critica!. A path to x is a sample 
function, x( T), T ~ t, of the vector process X(t) with x(t) = x. A survival path 
to x is a path to x, under which the structure has not failed before moment t, 
and is safe or critica! at t. A final survival path to x is a path to x for which 
the structure may or may not have failed before moment t, but is safe or critica! 
at t. A structure may have "failed" before moment t, but be safe at t in the 
case, for example, of a serviceability limit state. A survival path to x is also a 
final survival path to x. A final survival path may not be defined if some of the 
basic variable processes, such as material properties, have no definition after the 
failure of the structure. An immediate survival direction at x is a direction 
in which an infinitesimal step away from x will not cause failure to the structure. 
An immediate failure direction at x is a direction in which an infinitesimal 
step away from x will cause failure to the structure. 

It appears that there are only three types of points in the basic variable space: 

Type f: Points which have no survival path reaching them. 

Type t: Points which for some survival paths reaching them, have both imme­
diate survival and failure directions. 

Type s: Points which ha ve no immediate failure directions for any survival path 
that ends at them. 

Regions in X can be defined correspondingly, 

failure region: 
transition region: 
safe region: 

{Ali type f points} 
{Ali type t points} 
{Ali type s points} 

These three regions are mutually exclusive and collectively exhaustive. 

(1) 

For any point x E D~, there wili, in general, be paths to x which do not have 
failure directions (i.e., failure is not imminent ). By the definition of a type t 
point, however, there exists at least one path to x which has failure directions 
(i.e., x is critica!). Define q(x; t) to be the likelihood that x is critica!. Then 

q(x; t) = q1 (x; t)q2(x; t) 

where 

and 

qz(x; t) 

the likelihood that there is a survival path to x 

the likelihood that there is an immediate failure 
direction at x for any survival path to x 

(2) 

(3) 

(4) 

q1 can be viewed as the traditional reliability function LT over space, and qz the 
traditional hazard function h(t) over space. q2(x, t) can be defined to equal unity 
over region D1 without conflict with Eq. 4. 
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Regions D., Dt and 1J" and quantities q and q2 are iHustrated in J.<'ig. 1. It is 
conceivable that one or even two of the three regions may not exist, depending 
on the specific problem. 

Of: structura 
absolutely 
has failed 

the chance point x being on the "failure surface" 
if the structura has not failed until this moment 

Xz 

Dt : the state of the structura depends 
~IJ. on the path of x(t), and its safety 
t~ in next moment depends on the 

direction of x(t) 

Os : structura will be safe in the next moment 
if it has not failed till this moment 

__ the chance point x being on the 
"failure surface" 

Fig. 1 Regions in the Basic Variable Space 

Consider an arbitrary point x E Dt, and an arbitrary survival path to x 
which has failure directions at x. If there exists a segment of surface which passes 
through x and separates the failure directions from the survival directions, this 
segment of surface can then be defined as the limit state surface of the structure at 
point x of path x(t). It is similar to the limit state surface in the path-independent 
problems, except that it must be defined pointwise and pathwise. 

If the segment of the failure surface at x of path x(t) is smooth, it is neces­
sarily a hyperplane. A failure direction, n, of unit length perpendicular to the 
hyperplane can be defined as the unit outnormal vector to the failure surface at 
x by path x(t). It is dependent on path x(t) and time t: 

N = n(X(t); t) (5) 

The upper case N is used in Eq. 5 to re:fl.ect the fact that the outnormal 
vector is a random quantity. The probability density function of N over the 



284 Part Two Technical Contributions 

basic variable space X, if it exists, should depend on time t and location x, and 
therefore has the form, 

fN(n;x,t) (6) 

When the segment of surface is not smooth, a normal vector does not ex­
ist. The density function in Eq. 6 is nevertheless useful if it is redefined as the 
likelihood that an arbitrary direction n is an immediate failure direction. 

With the basic definitions of regions and failure directions, it is possible to 
address the reliability problem in terms of vector outcrossing theory. A general 
approach is introduced next. 

3. OUTCROSSING RATE ANALYSIS 

In path-independent problems, the rate at which the basic variable processes 
cross the limit state surface into the failure zone can be related directly to the 
probability of failure of the structure if outcrossing is a rare event [3, 13]. This 
should hold for path-dependent problems also, if the limit state surface is taken 
as defined in the previous section. The formulas for outcrossing rate computa­
tion are derived for path-dependent problems for the one- and multi- dimensional 
cases and for discrete X(t) in this section. 

3.1 upcrossing rate- one-dimensional case 

Consider a problem involving two random processes, the load process X(t), 
and the barrier process B(t). B(t) depend on the entire history of X up to time 
t. Failure is defined as X 2: B. 

For an upcrossing to take place during (t, t + D.t), the following conditions 
must be rnet [9]: 

X(t) < B(t) and X(t + D.t) > B(t + D.t) (7) 

That is, X(t) must be below the barrier at time t and above it at time t + D.t. 
When D.t is small, the approach of Rice [1944] can be used, and the second 

inequality in Eq. 7 can be written as 

X(t) + X(t)D.t 2: B(t) + B(t)D.t (8) 

or equivalently, 

X(t) ;::: B(t)- [X(t)- B(t)]D.t (9) 

The conditions for an upcrossing to occur is thus, 

B(t) ;::: X(t) ;::: B(t)- [X(t)- B(t)]D.t (10) 

Note that in Eq. 10, b(t) and b(t), realizations of B(t) and B(t) respectively, 
are different for different sample functions, x(r), of X(r) (O :::; r :::; t). This is 
the critical difference from the path-independent problems, where b(t) and b(t) 
are constants for fixed t, x, and :i:. B(t) and B(t) now are also random variables 
whose distributions depend on the nature of the process X(t). 
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Assume that the joint distribution of X(t), X(t), B(t) and ÎJ(t) exists. The 
probability associated with Eq. 10 for given b(t) and b(t) is the integration of the 
joint pdf over the shaded area in Fig. 2. Then the probability that an upcrossing 
(U.C.) takes place during (t + ~t), is, 

l oo 1oo .loo 1b(t) . 
P[U.C.] = db db . dx . fB(t),B(t),X(t),X(t)(b,b,x,x;t)dx(ll) 

-oo -oo b(t) b(t)-{:i:(t)-b(t)]~t 

Equation 11 can be simplified using the mean value theorem for integration, 

P[U.C.] = ~t 1 00 db1oo dh (oo [x(t)- h(t)]f8 (t),B(t),X(t),X(t)(b, b, b, x; t)dx {12) 
-oo -oo J;,(t) 

x(t) 

b(t) 

x(t) 

Fig. 2 Likelihood of an Upcrossing 

Assume that ~t is so small that the occurrence of more than one upcrossing 
during {t, t + ~t) is negligible, and detine N+ tobe the number of upcrossings 
during this period. The expected number of outcrossings in (t, t + ~t) is then, 

E[N+] = 1 · Prob[U.C.] +O· Prob[no U.C.] = Prob[U.C.] 

Hence, the mean rate of upcrossing at time t is given by, 

= E[N+] 
~t 

= joo dbj"" db ("'[x(t)- b(t)]f8 (t),B(t),X(t),x(t)(b,b,b,x;t)dx 
-oo -oo Jb(t) 

(13) 

(14) 
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or, equivalently, 

v+(t) = loo fx(t)(b)dbloo db (oo [x(t)- b(t)]f(B(t),B(t),X(t))IX(t)(b, b, x; t)dx (15) -oo -oo Jb(t) 

3.2 Outcrossing Rate - Multi-Dimensional Case 

In outcrossing analysis, the attention is focused on the time period (t, t + L\t) 
[6,11]. What happened before t is not important as long as the structure is not 
in a failure state at t. Accordingly, for the convenience of outcrossing analysis, 
points in X can be re-classified using the concept of final survival path described 
previously. 

Define, 

Type fo: Points which have no final survival path entering them. 

Type to: Points which for some final survival paths entering them, have both 
immediate survival and failure directions. 

Type so: Points which have no failure directions for any final survival path that 
ends at them. 

and, correspondingly, 

failure region: 
transition region: 
safe region: 

{A ll type fo points} 
{AU type to points} 
{AU type so points} 

D,0 , Dto and Dfo are also mutually exclusive and collectively exhaustive. 

(16) 

With these definitions, outcrossings can only take place in region Dto· A fail­
ure surface at point x for a path x(t) is now a segment of surface that divides 
the immediate failure directions from the immediate survival directions of a final 
survival path x(t). The chance that an arbitrary point x E D1 is on a failure sur­
face of a final survival path will be denoted as qo(x; t), which can be decomposed 
into two components, 

q0 (x; t) = q~(x; t)q~(x; t) 

where 

q~(x; t) 

and 

q~(x; t) 

the likelihood that there is a final survival path 
to x 

the likelihood that there is a failure direction 
at x for any final survival path to x 

(17) 

(18) 

(19) 

Since a survival path is also a final survival path, the following relationships 
hold, 

(20) 
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Moreover, 

qHx; t) 2:: q1(x; t) and q~(x; t) 2:: q2(x; t) 
-t q0 (x; t) ;?: q(x; t) 
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(21) 
(22) 

For any path reaching x at time t, only those velocity vectors, X(t) that 
satisfy 

Xn =X· n >O (23) 

will cause failure at the next moment, where n is the outnormal vector to a failure 
surface, or an immediate failure direction if the surface is not smooth. 

Assume that the joint pdf of N(t),X(t),X(t) at time t exists. Emulating the 
extension of Rice's upcrossing formula to the multi-dimensional case [Melchers, 
1987], the likelihood of an outcrossing at time t, which equals the mean rate of 
outcrossings at t when outcrossing is a rare event, is 

(24) 

In Eq. 24, q0 is the likelihood that x is on a limit state surface; fN,X,X is the like­
lihood that a path x(t) reaches point x, having velocity vector x and outnormal 
vector n; and x · n is analogous to :i;- b in Eq. 15. fN X X vanishes in regions 
Dto and Dso by the definitions of these two regions. ' ' 

Define, 

(25) 

which determines the mean rate of outcrossing at a given point x E X. Equation 
25 then takes the form, 

(26) 

where fx is the joint pdf of X. Equation 26 is very similar to its counterpart 
for the path-independent problems. However, the integrand and the integration 
domain here have quite different interpretations. 

4. SUMMARY AND CONCLUSION 

The concept of limit state surface in the basic variable space is discussed 
in this paper. The traditional concept of limit state surface for the load path­
independent problems is not applicable to load path-dependent problems. In­
stead, there is a transition zone in which each point may be on a limit state 
surface, which is a segment of surface that separates the immediate failure di­
rections from the immediate survival directions. This piece of failure surface is 
in general different for different points in the transition zone, and is different for 
different paths to the same point. 

Formulas computing the outcrossing rates are derived for load path-dependent 
problems. It can be observed that the major difference between these formulas 
and their counterparts in the path-independent problems is that an extra term, 
which represents the chance that the current point is on a limit state surface, is 
present in the path-dependent formulation. 
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