
55
A Multi-layer Metrics Combination Model for Reusable Software Components

Sen-Tamg Lai"b and Chien-Chiao Yang'

aDept. of Electronic Engineering, National Taiwan Institute of Technology, 43 Keelung
Road, Section 4 Taipei, T AIW AN

bTelecommunication Laboratories, Ministry of Transportation and Communications, 9 Lane
74, Hsin-Yi Road, Sec. 4 Taipei, TAIWAN

Abstract
Software reuse is an important approach to increase software quality and productivity.

There are many factors may affect the result of software reuse, however, software component
extraction is one of the most important and influential factors. Defining a perfect software
reuse metric is a necessary condition for identity high reusable software components and
retrieve the more suitable candidate components. In this paper, we propose a multi-layer
metrics combination model for reusable component extraction. In this model, each layer
combination can apply different linear combination models for specific purpose. This feature
provides high flexibility to adjust the weighting value of combination model and high capability
to improve measurement of reusable software component. Based on the multi-layer metrics
combination model, we also can create a qualification threshold for extracting the reusable
software component and defining a ranking schema for candidate components in component
retrieval.

Keyword Codes: D.2.m; D.2.8
Keywords: Software Reuse; Software Metrics; Combination Model; Primitive Metrics.

1. INTRODUCTION

Software reuse has the potential to improve software quality, reduce development costs,
and increase productivity. Improving software quality and productivity is the primary
objective of software reuse. There are many problems must be resolved for attaching this
objective. For example, five major steps of software reuse are: extracting reusable software
components, packaging software components, classitying and retrieving software components,
moditying software components, and adapting software components to the new software
system. In first step, software component extraction is one of the most important and
influential factors. Each phase's products of software life cycle has the potential for reuse.
Code reuse is better understand and more prevalent by far than other software development
phase of reuse [1]. Since code components have a high degree of specificity, the most highly
reusable components tend to be small. A code component in a reuse library is likely to be of
little value and the detailed design documents should be very valuable in understanding code
component. Thus it is extremely important that detailed design documents associated with
code modules to be a reusable component [2].

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995

362 Part Eight Reusability

Similarly, each module of the detailed design and coding phase has the opportunity to be a
reusable software component in existing system. In software reuse, to determine the
qualification of reusable software components is one of the most important job [3]. Reusing
high quality software components is a necessary condition for improving software quality and
productivity. Quality of software component is a key point for judge the qualification of
reusable software components. In an important paper by Boehm [4], an attempt is made to
define software quality in terms of some high-level software characteristics. These
characteristics are: reliability, portability, efficiency, human engineering, testability,
understandability, modifiability.

Some software characteristics can help us extract and identitY reusable software
components. These software characteristics are high-level software characteristics which can
be decomposed into several primitive characteristics. On the other side, it is necessary to
combine the primitive characteristics for measuring a particular characteristic. In this paper,
we propose a multi-layer metric combination model which is based on the linear combination
models. In this model, each layer combination can apply different linear combination models
for increasing flexibility. Separate combination for different purposes can improve the
efficiency and capability of measurement. In Section two, we describe the existing software
metrics for design and coding phase. Then we describe the metrics' data collection and
normalization in Section three. In Section four, we discuss the metric combination model and
define the multi-layer metric combination model. Finally, we make a summary and discuss our
future work in Section 5.

2. SOFTWARE METRICS FOR DESIGN AND CODING PHASES

Although, some metrics are impossible to measure or predict directly, there are stilI exist
many software metrics for measuring the characteristic of software. According to the meta­
metr;cs defined by the conte [5], we are interested in metrics that are simple, robust, usefulfor
design and coding phase, and that can be analyzed properly. These metrics include:

(a) Size metric (Lines of code): A line of code is any line of program text that is not a
comment or blank line, regardless of the number of statements or fragments of statements on
the line. It is one of the most familiar software measure.

(b) Data structure metric: An intra-modular measure of the information flow complexity
of each moduleM in a system is defined by the Henry-Kafura [6], as follow:

Complexity of module M = length (M) * (fan-in (M) * fall-out (M)) ** 2

The Shepperd [4] refines the above formation like the following:

Complexity of module M = (fan-in (M) * Jan-out (M)) ** 2

(c) Logic structure metric (McCabe's Cyclomatic complexity): McCabe has observed that
the difficulty of understanding a program is largely determined by the complexity of the
control flow graph for that program [7]. For each module of a system, we can draw the
control flow graph G for that module. The cyc10matic complexity metric for the module,
denoted V(G), is the number of regions into which G divided the page. McCabe has shown
that V(G) is equivalent to one more than the number of decisions in the flow diagram.

A multi-layer metrics combination model for reusable software components 363

(d) Nesting level of program construct: As a general guideline, nesting of program
constructs to deprhs greater than three or four levels should be avoided.

(e) Ratio of statement and branch coverage: There are many coverage measures for unit
programs testability: statement coverage, branch coverage, decision coverage, and path
coverage. Statement and branch coverage are more useful in unit testing.

(t) Coupling and cohesion: Coupling is a measure of the degree of interdependence
between modules. Cohesion is an attribute of individual modules, describing their functional
strength.

3. DATA COLLECTION AND SCALE NORMALIZATION

In this Section, we describe how to collect the metric data and normalize the metric data
for combination.

3.1. Data collection
Using static program analyzer and each metric definition or formula, we can compute

the values of Halstead's Measure, Information Flow Structure Metric, McCabe's Cyclomatic
Complexity and nesting level of programming structure. Based on the test coverage analyzer.
we can get the values of statement coverage and branch coverage of unit testing. About the
coupling and cohesion, there are a number of proposed classes of coupling and cohesion that
are believed to provide an ordinal scale of measurement. It is difficult to determine the scale of
coupling and cohesion by traditional software tools. According to the clearly definitions of
scale of coupling and cohesion, we apply them into a rule-based system which can help us
determine the scale of coupling and cohesion, from highest to lowest.

3.2. Scale normalization
In general case, a potential software characteristic is combined by several pnnutlve

characteristics. Some software primitive metrics which are concerned with the quality of
software component, have different scale values in their representation. For combining these
primitive metrics, we recommend all scale values of the primitive metrics shall be normalized
among 0 and 1. Near to 1 represent the most desirable value, and near to 0 represent the least
desirable value. The following two tables are the examples to represent the normalized value of
primitive metrics: Table 1 is the normalized value oflines of code and Table 2 is the normalized
value of nesting level of program construct.

Table 1. Table 2.
Normalized value of Lines of Code Nonnahzed value of nesting level of program construct

LOC Normalized Level of nesting Normalized
Value of llrogram constl1ld Value

I-~ 1.0 0- I 1.0

51-100 0.8 2-3 0.8

100-150 0.6 4-5 0.5

150 -200 0.4 6-7 0.3

200-250 0.2 8-9 0.1

.>250 0.0 >9 0.0

364 Part Eight Reusability

4. METRICS COMBINATION

In [4], each high-level software characteristic can be decomposed into several primitive
characteristics. On the other side, it is necessruy to combine the primitive metrics for
measuring a particular characteristic. In this Section, we will discuss the metric combination
models.

4.1. The linear combination
The goal of metrics combination is to improve the measurement capability and flexibility.

In this Section, we consider three linear combination models:
(a) Equally Weighted linear Combination:
This model is the simplest combination to form. Each primitive metric has an equal weight

constant.

I n

HIM=- ~PM;
n ,.1

where,
• PM: Normalized value of Primitive Metric
• HIM: High-level Metric

(b) Unequally Weighted Linear Combination:
In this model, according to the optimistic and pessimistic predications, different weights

are assigned to different primitive metrics. Such that,

, and

where Wi is the weight constant ofith primitive metricPM;.

(c) Dynamically Weighted Linear Combination:
In this model, we can adjust the weights of any primitive metric for adapting different

applications.

4.2. Multi.layer metrics combination model
In this paper, we select six primitive metrics to measure the reusable characteristic of

software component. These metrics are simple, valid, robust, useful for development, and that
can be analyzed properly. According to the different characteristics of primitive metrics, we
divide them into three groups:

(a) Complexity metrics: include control flow, information flow, line of code, and nesting
level of program construct.

(b) Modularity metrics: include coupling and cohesion.
(c) Testability metrics: include statement coverage and branch coverage.

A multi-layer metrics combination model for reusable software components 365

For combining these primitive metrics, we take three steps. In first step, we consider the
characteristics which are potentially contradictory. For example, reduces in logic structure
complexity usually result in increased data structure complexity. Then, we combine the
primitive metrics which belong to same class in step two. Finally, we combine these three
classes' metrics into a software reuse metric. We call this combination model a multi-layer
metrics combination (MIMe) model (see Figure 1). In this model, each layer combination can
apply different linear combination models for increasing flexibility. Separate combination for
ditTerent purposes can improve the efficiency and capability of measurement.

Data Structure
Metric

Logic Structure
Metric

ture metric: • Data stmc
Sheppred
jlowMe

• Logicstm
McCable
Measure

Information
asure
cture metric:
's Complexity

r-

Lines of
Code r-

Program Metric of
Structure Complexity
Metric

Level of nest
Construct

Metric of
Cohesion

Metric of Software

Modularity Reuse

Metric of Metric

Coupling r-

Statement
Coverage

Metric of
Testability

Branch
Coverage

Figure 1. The Mutli-Iayer metrics combination model

366 Part Eight Reusability

5. CONCLUSIONS

A potential software characteristic is composed of several primitive characteristics.
Combination these primitive characteristics is a major approach to measure the potential
characteristic. In software reuse, it is necessary to consider more than one primitive
characteristic for extracting suitable and reusable software components. In this paper, we
propose the multi-layer metric combination model which based on the linear combination
models for reusable components. The goal of this combination model is to improve the
measurement capability and flexibility for reusable software components. In MIMC modeL
each layer combination can apply different linear combination models for specific purpose.
This feature provides high flexibility to adjust the weighting value of combination model and
high capability to improve measurement of reusable software component.

Based on the MIMC model, we also can create an automatic extraction tool for
extracting the reusable components from existing software and define a ranking schema for
candidate components in component retrieval. We propose a component extraction approach
which based on the primitive metric's combination model. Using this approach, we can clear
define the extraction qualification for reusable components.

Our future work is to define the qualification threshold for extracting reusable software
components from existing software with the MIMC model. For improving the practically of
this model, we will use mass experiment data help us adjust the weight constants and
normalization value of primitive metrics. Further, to develop an automatic reusable software
component extraction tool is helpful in software reuse.

REFERENCES
1. LANERGAN, R.G. and GRASSO, CA.: 'SOFTWARE ENGINEERING WITH

REUSABLE DESIGNS AND CODE', IEEE Trans. Software Eng., 1984, Vo1.10, (S),
pp.498-S01

2. TRACZ, W.: 'SOFTWARE REUSE MYTHS', ACM SIGSOFT Software Emgineering
Notes, 1988, VoU3, (1), pp.17-21

3. CALDIERA, G. and BASILI, V.R.: 'IDENTIFYING AND QUALIFYING
REUSABLE SOFTWARE COMPONENTS', IEEE Computer, 1991, Vo1.24, (2), pp.
61-70

4. BOEHM, B.W., BROWN, lR. and LIPOW, M.: 'QUANTITATIVE EVALUATION
OF SOFTWARE QUALITY', Proceedings of the Secondard International Conference
on Software Engineering, 1976, pp. S92-60S

S. CONTE, S.D., DUNSMORE, H.E. and SHEN, V.Y.: 'SOFTWARE ENGINEERING
METRICS AND MODELS', Benjamin/Cummings, (Menlo Park, 1986)

6. FENTON, N.E.: 'SOFTWARE METRICS - A REIGOROUS APPROACH',
(Chapman & Hall, 1991)

7. MCCABE, T.: 'A COMPLEXITY MEASURE', IEEE Trans. Software Eng., 1976,
Vo1.2, (4), pp.308-320

