54

Rule-based Reasoning Approach for Reusable Design Component Retrieval
Sen-Tarng La#band Chien-Chiao Yang:

2Dept. of Electronic Engineering, National Taiwan Institute of Technology, 43 Keelung
Road, Section 4 Taipei, TAIWAN

bTelecommunication Laboratories, Ministry of Transportation and Communications, 9 Lane
74, Hsin-Yi Road, Sec. 4 Taipei, TATWAN

Abstract

Each phase of software development life cycle has the potential for reuse. However,
according to the viewpoint of cost and reusability, the design phase is the most suitable phase
for packaging the reusable software components. In this paper, we describe the design
component knowledge extraction and representation method for component retrieval. The
design knowledge is based on the principle of structured design and object-oriented design.
According to the valuable and clearly design component knowledge, we generate a rule-
based system which contains the component matching rules and retrieval supporting rules.
Using these rules not only can assist the potential reusers retrieve the more suitable design
component but also can improve component retrieval performance.

Keyword Codes: D.2.m; H3.3;124;1.2.m
Keywords: Software Reuse; Component Retrieval; Knowledge Representation;
Rule-based System.

1. INTRODUCTION

The heart of large software project is design. Software design is conducted in two steps.
Preliminary design is concerned with the transformation of requirements into data and
software architecture. Detail design focuses on refinements to the architectural representation
that lead to detailed data structure and algorithmic representations for software.

Code reuse is better understand and more prevalent by far than other software
development phase of reusef1]. Since code components have a high degree of specificity, the
most highly reusable components tend to be small. A code component in a reuse library is
likely to be of little value and the detailed design documents should be very valuable in
understanding code component. Thus it is extremely important that detailed design
documents associated with code modules to be a reusable design component [2-3]. This
reusable design component is the most suitable software component for reuse.

In this paper, we detailed describe the important design knowledge for component
classification and retrieval, and specify how to extract the knowledge from detailed design
documents. We also propose the methods for represent the design component knowledge and
transfer the design component knowledge into the rule-based system for assisting
component's retrieval. In Section 2, we describe the existing software component's

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



354 Part Eight Reusability

representation approaches for classification and retrieval. In Section 3, we specify the
important atiributes of design component and package them into a frame-based
representation. In Section 4, we explain the features of rule-based component retrieval
system. At last, we make a summary and discuss our future works in Section 5.

2. LIMITATIONS OF EXISTING COMPONENT REPRESENTATION METHODS

In the Priteto-Diaz's faceted classification method which describe the wnit functional
component classification in coding phase [4-5], each component is characterized by a six-
item structure consisting of

<function, object, medium, system type, functional area, setting>

and each tuple can only be specified by one term (keyword).
In [6], the authors applied the idea of conceptual dependency to represent software
component descriptions and software component requests.

These methods have been published many years and applied to the many software library
systems. There are also several drawbacks and limitations need to modify or enhance: (1) An
action verb or a functional keyword just can represent the smaller components which process
the primitive function. Larger numbers of smaller components forces the reuser to spend
more time comparing components to determine the one best suited for the current
application. (2) Internal data structure is a very important item for software component's
retrieval, modification, and adaptation. They did not pay much attention to it. (3) Thesaurus
is not a good approach for resolving the conceptual similar verbs in different applications. (4)
They are not suitable for object-oriented design. For example, to represent the object of
stack, it is necessary to separate three primitive functions in the faceted classification scheme
of Priteto-Diaz and Freeman: <empty, character, table>, <push, character, table>, and <pop,
character, table>. For resolving these limitations and drawbacks, we propose a flexibility
knowledge representation method which describes in next Section.

3. COMPONENTS KNOWLEDGE REPRESENTATION

There are many attributes to represent the software design phase components. Only threc
important attributes are suitable for the criteria of software component retrieval. The three
basic component's attributes are: processing action, internal data structure and component's
interface. In this section, we will discuss how to represent, extract and package the
component's attributes for component retrieval.

3.1. Action statements

In software detailed design phase, one of the task is describe the program logic. In
component retrieval, it is meaningless for the reuser to describe the detailed logic of software
components. They just concern whether the functional specifications of softiware components
match their requirement or not. There are many approaches to represent the component
function (such as keywords, natural language). It is difficulty to build the common
recognition for using natural language to represent component function. Using an action verb
or a functional keyword to represent the component function is too rough. An action
statement can represent five or more program instruction statements. An action statement



Rule-based reasoning approach for reusable design component retrieval 355

contains a single strong action verb and a singular object (such as, open a file, delete a
record). A series of action statements not only can represent the processing action of
component but also can build the common recognition for component designers and
component reusers.

The objective of thesaurus is to resolve the trouble of synonym. But the thesaurus did
not consider the relationship of semantic and limitation of application domain. Based on the
thesaurus, the component designers and the component users can not get common
recognition. In this paper, we propose the uniform action verbs to represent the action
statement of component processing action. Table 1 is the action verbs' table for action
statements.

Table 1.

Action verbs’ table for action statements
accept delete handle put
add dequeue identify queue
allocate detach increment  read
analyze determine  initialize record
build display insert release
calculate edit 1ssue resolve
check encode locate restore
clear enqueue link scan
close enter load schedule
complete establish look_up search
construct execute merge select
control extract modify set
convert find move store
copy fix obtain transfer
create format open translate
decrement  get place updat

write

3.2. Internal data structure

Program consists of data structure and algorithms [7]. Thus it is not surprising that data
and program structure are important and need to be properly related to achieve the goal of
successful programming. Data structures not only affect the operation style of program
algorithm but also contain information and are operated on during the execution of a
program. Two software components doing exactly the same function may look entirely
different, because they use different internal data structures. Clearly define data structure of
software component can assist us to classify software component. In like manner, software
component retrieval, modification and adaptation also need to use the attribute of internal
data structure. It is important to specify the data structure of software components. The C++
Booch Components [8] provide classes for the domain independent data structure: Bag,
Deque, Graph, List, Map, Queue, Ring, Set, Stack, Variable string and Tree.



356 Part Eight Reusability

For enhancing forenamed data structure, we also consider the file structure (such as
Sequential_File, Indexed_File, and Relative File) and primitive data type (such as integer,
character, real, array, record).

3.3. Component's interfaces

Each component can not stand alone. One of the software design process is establishing
relationships and interconnections among components. In [9], the authors used 1/O
parameters to deduce the software component behavior and retrieve the retrieve software.
Interfaces of software components are one of important attributes for retrieval.

3.4. Design component knowledge extraction

In [10], we use module definition, module description, and module data representation
to specify the detailed design documents. These documents are very useful for module
understanding, modification, adaptation. It is not necessary to utilize all of items of these
documents as the attributes of component retrieval. We need extract the useful attributes
which include internal data structure, action statements and component interface from these
detailed design documents. The internal data structure can be gotten from module definition
and module data representation. The action statements can be extracted from module logic
description. The component interface can be abstracted from module definition and module
data representation (see Figure 1).

Based on these valuable attributes, we can package the design component knowledge
into design knowledge frame. In this frame-based knowledge representation, each slot can
contain more than one item. According to the importance, each slot and item can be set
different weight values for component retrieval (see Figure 2).



Rule-based reasoning approach for reusable design component retrieval

Module Name: Char Converter.
Function Description: Convert the lower_case
letter into the capatial letter.
Local Variable:
- index
- buffer
Input File:
Tnput Parameter:
- title_string
Output File:
Output Parameter:
- title_string
Global Data:
Called Modules:
Calling Modules
Modification:
- Date:
- Author:
-Reason:
Designer:

Component Interface:

Internal Data Structuure:
- armay
- integer

Module Definition

Input_part

- Char_string
Output_part
- Char_string

Data Name: index Data Name: boffer
Data type: integer Data type: amay of char
Datarange: 1.. 30 Data range: ASCII code character

Description: index of title string Description: contents of title string

Data Name: title_string
Data type: string of char
Data range: ASCII code character
Description: contents of title string

Data representation Data representation

Set initial values;
REPEAT_UNTIL
Check current char, \
IF Char is lower_case THEN
Convert current char into capital letter, ——
ELSE
Point to next char;
END_IF;
END_REP end_of_string;

Module logic description

Data Representation

Processing Actions:
- Convert (char)
- Check (char)

Figure 1. Extract the important attributes from detailed design documents



358 Part Eight  Reusability

/ Component_ID: C000! \

Processing Actions: [0.4]
- Convert (char) [0.5(0.1)]
- Check (char)  [0.3(0.1)]

Internal data structures: [0.4]
- Array

Interface: [0.2]
Input_Part [0.5]
- Char string
Output_Part [0.5]

- Char string
- J

Figure 2. Frame-based representation for design component

4. COMPONENT RETRIEVAL RULES GENERATION

In the Section 3, we extract and package the design knowledge into a frame-based
representation. In this Section, we will discuss the rule-based system generation which based
on the frame-based representation. We give an example to describe the rule generation. This
is a typical component which converts the lower-case letter into the capital letter (see Figure
2).

According to frame-based knowledge and weight values, system can generate the
difference match ratio rules for component retrieval:
(a) The first set is fully match rules. If reusers provide the query information all meet the
component attributes then these rules will be filed. For example,

Input (char) ~ Output (char) -> Interface (C0001) [O.5+0.5=1.0]
Convert(char) * Check(char) -> Process(C0001) [ (@0.5+0.1) + (0.3+0.D)=1.0]

Data_Structure(array)” Interface(C0001) * Process(C0001) -> Component (C0001)
[04+02*10+04%1.0=10]

(b) The second set is partial match rules. According to the query information of reusers, these
rules can be filed and computed the match ratio for reference. For example,

Convert( ) ® Check( ) -> Process(C0001) [(0.5+0.3)=0.8]
Data_Structure(array) * Process(C0001) -> Component (C0001) [0.4 + 0.4 *0.8=0.72 ]

Data_Structure(array) " Process(Convert) > Component {C0001) f0.4 +0.4 *0.5=0.6 ]




Rule-based reasoning approach for reusable design component retrieval 359

We also provide the more useful rules for assisting component retrieval before reasoning
these basic rules. We call them as retrieval supporting rules. These rules are generated by
analyzing and computing the appearance frequency of action statements in specific internal
data structure of existing software components (see Table 2). Based on the retrieval
supporting rules, reuser can be guided to modify the unreasonable query information and get
the suitable software components. Reducing the unreasonable query information can great
improve the performance of component retrieval.

Table 2.
The table of appearance frequency of action statements in specific
internal data structure
Da::tse:rl::lture Action Statements Frequence
Array
Search 97
Get 53
Check 47
Convert 7
Bag
5. CONCLUSIONS

To improve software quality and productivity are major benefits of software reuse.
However, for increase efficiency, reuse should be considered at design time, not after the
implementation has been completed. Design reuse is more valuable than code reuse. Design
documents combine the knowledge and the experience from software design engineers. It is
very important how to reuse the existing knowledge and experience. In this paper, we
detailed describe the important design component knowledge for component retrieval, and
specify how to extract the knowledge from detailed design documents. Finally, we propose
the methods for represent the design component knowledge and transfer the design
component knowledge into the rule-based system for assisting component's retrieval.

Four major advantages of rule-based component retrieval system are:

(1) high hit-ratio -- the uniform keywords can build the common recognition between

component designers and reusers. According to the common recognition and extension

of component knowledge items for retrieval, reusers have the high hit-ratio for
component retrieval.

(2) high adaptability -- the design knowledge representation not only suit for structured

design methodology but also can apply to the object-oriented design approach.



360

Part Eight Reusability

(3) high maintainability -- it is very easy to insert or delete a reusable software design
component.

(4) high performance -- based on the history data and experience, this system can avoid
the unreasonable query information and great improve the retrieval performance.

Some software metrics can help us extract and identify reusable software components.

Including these metrics to the attributes of software component, can not only relies the
characteristics of software components but also can help reuser select the suitable software
components. Qur future work will consider the metrics of software design. Based on the
result of software design components' measurement, we can extract the more suitable
components.

REFERENCES

1.

10.

LANERGAN, R.G. and GRASSO, C.A.: 'SOFTWARE ENGINEERING WITH
REUSABLE DESIGNS AND CODE', [EEE Trans. Software Eng., 1984, Vol .10, (5),
pp-498-501

JOHNSON, R. E. and FOOTE, B.: 'DESIGNING REUSABLE CLASSES', Journal of
Object-Oriented Programming, 1988, Vol. 1, (2), pp.22-35

. TRACZ, W.: 'SOFTWARE REUSE MYTHS', ACM SIGSOFT Sofiware Engineering

Notes, 1988, Vol. 13, (1), pp.17-21

PRIETO-DIAZ, R. and FREEMAN, P.. 'CLASSIFYING SOFTWARE FOR
REUSABILITY', JEEE  Sofiware, 1987, Vol 4, (1), pp. 6-16

PRIETO-DIAZ, R.: 'IMPLEMENTATION FACETED CLASSIFICATION FOR
SOFTWARE REUSE', Proc. of the 12th Internalational Conference on Software
Engineering, March, 1990, pp. 300-304

WOOD, M. and Sommerville, I.: 'AN INFORMATION RETRIEVAL SYSTEM FOR
SOFTWARE COMPONENTS', Software engineering Journal, 1988, Vol 3, (5), pp.
198-207

WIRTH, N.: '"ALGORITHM + DATA STRUCTURES = PROGRAM,, (Prentice-Hall,
1976)

BOOCH, G.: 'OBJECT-ORIENTED ANALYSIS AND DESIGN,
(Benjamin/Cummings, 1994)

PODGURSKI, A. and PIERCE, L.: 'RETRIEVING REUSABLE SOFTWARE BY
SAMPLING BEHAVIOR', ACM Trans. on Sofiware Engineering and Methodology,
1993, Vol.2, (3), pp. 286-303

LAI, ST. and CHOU, LY. 'MODULE DESIGN DOCUMENT ASSISTANT
SYSTEM, TL Technical Journal, 1987, Vol.17, (2), pp. 93-108 (in Chinese)



