
54 

Rule-based Reasoning Approach for Reusable Design Component Retrieval 

Sen-Tamg Lai"b and Chien-Chiao Yangt 

aDept. of Electronic Engineering, National Taiwan Institute of Technology, 43 Keelung 
Road, Section 4 Taipei, TAIWAN 

bTelecommunication Laboratories, Ministry of Transportation and Communications, 9 Lane 
74, Hsin-Yi Road, Sec. 4 Taipei, TAIWAN 

Abstract 
Each phase of software development life cycle has the potential for reuse. However, 

according to the viewpoint of cost and reusability, the design phase is the most suitable phase 
for packaging the reusable software components. In this paper, we describe the design 
component knowledge extraction and representation method for component retrieval. The 
design knowledge is based on the principle of structured design and object-oriented design. 
According to the valuable and clearly design component knowledge, we generate a rule­
based system which contains the component matching rules and retrieval supporting rules. 
Using these rules not only can assist the potential reusers retrieve the more suitable design 
component but also can improve component retrieval performance. 

Keyword Codes: D.2.m; H.3.3; I.2.4; 1.2.m 
Keywords: Software Reuse; Component Retrieval; Knowledge Representation; 

Rule-based System. 

1. INTRODUCTION 

The heart oflarge software project is design. Software design is conducted in two steps. 
Preliminary design is concerned with the transformation of requirements into data and 
software architecture. Detail design focuses on refinements to the architectura1 representation 
that lead to detailed data structure and algorithmiC representations for software. 

Code reuse is better understand and more prevalent by far than other software 
development phase of reuse[l]. Since code components have a high degree of specificity, the 
most highly reusable components tend to be small. A code component in a reuse library is 
likely to be of little value and the detailed design documents should be very valuable in 
understanding code component. Thus it is extremely important that detailed design 
documents associated with code modules to be a reusable design component [2-3]. This 
reusable design component is the most suitable software component for reuse. 

In this paper, we detailed describe the important design knowledge for component 
classification and retrieval, and specify how to extract the knowledge from detailed design 
documents. We also propose the methods for represent the design component knowledge and 
transfer the design component knowledge into the rule-based system for assisting 
component's retrieval. In Section 2, we describe the existing software component's 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



354 Part Eight Reusability 

representation approaches for classification and retrieval. In Section 3, we specify the 
important attributes of design component and package them into a frame-based 
representation. In Section 4, we explain the features of rule-based component retrieval 
system. At last, we make a summary and discuss our future works in Section 5. 

2. LIMITATIONS OF EXISTING COMPONENT REPRESENTATION METHODS 

In the Priteto-Diaz's faceted classification method which describe the unit functional 
component classification in coding phase [4-5], each component is characterized by a six­
item structure consisting of 

<function, object, medium, system type, functional area, setting> 

and each tuple can only be specified by one term (keyword). 
In [6], the authors applied the idea of conceptual dependency to represent software 

component descriptions and software component requests. 
These methods have been published many years and applied to the many software library 

systems. There are also several drawbacks and limitations need to modify or enhance: (1) An 
action verb or a functional keyword just can represent the smaller components which process 
the primitive function. Larger numbers of smaller components forces the reuser to spend 
more time comparing components to determine the one best suited for the current 
application. (2) Internal data structure is a very important item for software component's 
retrieval, modification, and adaptation. They did not pay much attention to it. (3) Thesaurus 
is not a good approach for resolving the conceptual similar verbs in different applications. (4) 
They are not suitable for object-oriented design. For example, to represent the object of 
stack, it is necessary to separate three primitive functions in the faceted classification scheme 
ofPriteto-Diaz and Freeman: <empty, character, table>, <push, character, table>, and <pop, 
character, table>. For resolving these limitations and drawbacks, we propose a flexibility 
knowledge representation method which describes in next Section. 

3. COMPONENTS KNOWLEDGE REPRESENTATION 

There are many attributes to represent the software design phase components. Only thret; 
important attributes are suitable for the criteria of software component retrieval. The three 
basic component's attributes are: processing action, internal data structure and component's 
interface. In this section, we will discuss how to represent, extract and package the 
component's attributes for component retrieval. 

3.1. Action statements 
In software detailed design phase, one of the task is describe the program logic. In 

component retrieval, it is meaningless for the reuser to describe the detailed logic of software 
components. They just concern whether the functional specifications of software components 
match their requirement or not. There are many approaches to represent the component 
function (such as keywords, natural language). It is difficulty to build the common 
recognition for using natural language to represent component function. Using an action verb 
or a functional keyword to represent the component function is too rough. An action 
statement can represent five or more program instruction statements. An action statement 



Rule-based reasoning approach for reusable design component retrieval 355 

contains a single strong action verb and a singular object (such as, open a file, delete a 
record). A series of action statements not only can represent the processing action of 
component but also can build the common recognition for component designers and 
component reusers. 

The objective of thesaurus is to resolve the trouble of synonym. But the thesaurus did 
not consider the relationship of semantic and limitation of application domain. Based on the 
thesaurus, the component designers and the component users can not get common 
recognition. In this paper, we propose the uniform action verbs to represent the action 
statement of component processing action. Table 1 is the action verbs' table for action 
statements. 

Table 1. 
Action verll'l' table for action statements 

accept delete handle put 
add dequeue identify queue 
allocate detach increment read 
analyze determine initialize record 
build display insert release 
calculate edit ISSue resolve 
check encode locate restore 
clear enqueue link scan 
close enter load schedule 
complete establish look_up search 
construct execute merge select 
control extract modify set 
convert find move store 
copy fix obtain transfer 
create fotTOat open translate 
decrement get place updat 

write 

3.2. Internal data structure 
Program consists of data structure and algorithms [7]. Thus it is not surprising that data 

and program structure are important and need to be properly related to achieve the goal of 
successful programming. Data structures not only affect the operation style of program 
algorithm but also contain infotTOation and are operated on during the execution of a 
program. Two software components doing exactly the same function may look entirely 
different, because they use different internal data structures. Clearly define data structure of 
software component can assist us to classify software component. In like manner, software 
component retrieval, modification and adaptation also need to use the attribute of internal 
data structure. It is important to specify the data structure of software components. The C++ 
Booch Components [8] provide classes for the domain independent data structure: Bag. 
Deque, Graph, List, Map, Queue, Ring. Set, Stack, Variable _string and Tree. 



356 Part Eight Reusability 

For enhancing forenamed data structure, we also consider the file structure (such as 
Sequential]ile, Indexed_File, and Relative]ile) and primitive data type (such as integer, 
character, real, array, record). 

3.3. Component's interfaces 
Each component can not stand alone. One of the software design process is establishing 

relationships and interconnections among components. In [9], the authors used 110 
parameters to deduce the software component behavior and retrieve the retrieve software. 
Interfaces of software components are one of important attributes for retrieval. 

3.4. Design component knowledge extraction 
In [10], we use module definition, module description, and module data representation 

to specify the detailed design documents. These documents are very useful for module 
understanding, modification, adaptation. It is not necessary to utilize all of items of these 
documents as the attributes of component retrieval. We need extract the useful attributes 
which include internal data structure, action statements and component interface from these 
detailed design documents. The internal data structure can be gotten from module definition 
and module data representation. The action statements can be extracted from module logic 
description. The component interface can be abstracted from module definition and module 
data representation (see Figure 1). 

Based on these valuable attributes, we can package the design component knowledge 
into design knowledge frame. In this frame-based knowledge representation, each slot can 
contain more than one item. According to the importance, each slot and item can be set 
different weight values for component retrieval (see Figure 2). 



Rule-based reasoning approach/or reusable design component retrieval 357 

Data Name: index. 
Data typ!l: integer 
Data raT@c: 1.. 30 
DescriJiion' index o[tjOo string 

Data representation 

Set initial values; 
REPEAT_UNTIL 

Module Name; Char Converter. 
Function Description: Ccnvert the lov.rer_case 

letter Olto the capatialletter. 
Local Variable: 

- index 
-buffer 

InpUlFlle: 
Input Parllt1eter: 

- title _ stnng 
Output File: 
Output Parameter: 

- title_string 
Global Data: 
Called Modules. 
Calling Modules 
Modification: 

-Date: 
- Author 

Module Definition 

Data Name: mffer 
Data type. array of char 
Data ra'll,o: ASCIl code char<K:ter 
Description: cortents oftnle string 

Data representation 

Convert current char into capital letter, 
ELSE 

Point to next char; 
END_IF; 

END_REPend_oCstring; 

Module logic description 

Data Name: title_string 
Data type: str~ of char 
Data range: ASCn code character 
Dcscnption: comcnts oftitLc string 

Data Representation 

Figure 1, Extract the important attributes from detailed design documents 



358 Part Eight Reusability 

Component_ID: COODl 

Processing Actions: fOAl 
- Convert (char) fO.5 (O.l)J 
- Check (char) [0.3 (O.l)J 

Internal data structures: fO.4} 
-Array 

Interface: fO.l} 
Input]art [0.5 J 

- Char_string 
Output_Part [0.5J 

- Char_string 

Figure 2. Frame-based representation for design component 

4. COMPONENT RETRIEVAL RULES GENERATION 

In the Section 3, we extract and package the design knowledge into a frame-based 
representation. In this Section, we will discuss the rule-based system generation which based 
on the frame-based representation. We give an example to describe the rule generation. This 
is a typical component which converts the lower-case letter into the capital letter (see Figure 
2). 

According to frame-based knowledge and weight values, system can generate the 
difference match ratio rules for component retrieval: 
(a) The first set is fully match rules. If reusers provide the query information all meet the 
component attributes then these rules will be filed. For example, 

Input (char)" Output (char) .> Interface (COOO I) {0.5+O.5 = 1.0 } 

Convert(char)" Check(char)·> Process(COOOl) {(0.5+0.1) + (0.3+0.1) = 1.01 

Data_Structure(array)" Interface(COOOI) A Process(COOOl)·> Component (COOOI) 
{a4+a2*LO+a4*LO=LO} 

(b) The second set is partial match rules. According to the query information ofreusers, these 
rules can be filed and computed the match ratio for reference. For example, 

Convert() A Check().:;. Process(COOOl) {(O.5 + a3) = 0.8} 

Data_Structure(array) A Process(COOOI)·> Component (COOOI) {0.4 + 0.4 • 0.8 = 0.72} 

Data_Structure(array) A Process(Convcrt) .::> Component (COOOl) {0.4 + 0.4 * 0.5 = 0.6 } 



Rule-based reasoning approachJor reusable design component retrieval 359 

We also provide the more useful rules for assisting component retrieval before reasoning 
these basic rules. We call them as retrieval supporting rules. These rules are generated by 
analyzing and computing the appearance frequency of action statements in specific internal 
data structure of existing software components (see Table 2). Based on the retrieval 
supporting rules, reuser can be guided to modify the unreasonable query information and get 
the suitable software components. Reducing the unreasonable query information can great 
improve the performance of component retrieval. 

Table 2. 
The table of appearance frequency of action statements in specific 
internal data structure 

Internal 
Data Structure 

Array 

Bag 

5. CONCLUSIONS 

Action Statements 

Search 
Get 
Check 
Convert 

Frequence 

97 
53 
41 
1 

To improve software quality and productivity are major benefits of software reuse. 
However, for increase efficiency, reuse should be considered at design time, not after the 
implementation has been completed. Design reuse is more valuable than code reuse. Design 
documents combine the knowledge and the experience from software design engineers. It is 
very important how to reuse the existing knowledge and experience. In this paper, we 
detailed describe the important design component knowledge for component retrieval, and 
specify how to extract the knowledge from detailed design documents. Finally, we propose 
the methods for represent the design component knowledge and transfer the design 
component knowledge into the rule-based system for assisting component's retrieval. 

Four major advantages of rule-based component retrieval system are: 
(1) high hit-ratio -- the uniform keywords can build the common recognition between 
component designers and reusers. According to the common recognition and extension 
of component knowledge items for retrieval, reusers have the high hit-ratio for 
component retrieval. 
(2) high adaptability -- the design knowledge representation not only suit for structured 
design methodology but also can apply to the object-oriented design approach. 



360 Part Eight Reusability 

(3) high maintainability -- it is very easy to insert or delete a reusable software design 
component. 
(4) high performance -- based on the history data and experience, this system can avoid 
the unreasonable query information and great improve the retrieval performance. 
Some software metrics can help us extract and identifY reusable software components. 

Including these metrics to the attributes of software component, can not only relies the 
characteristics of software components but also can help reuser select the suitable software 
components. Our future work will consider the metrics of software design. Based on the 
result of software design components' measurement, we can extract the more suitable 
components. 

REFERENCES 
1. LANERGAN, R.G. and GRASSO, c.A.: 'SOFTWARE ENGINEERING WITH 

REUSABLE DESIGNS AND CODE', IEEE Trans. Software Eng., 1984, VoLlO, (5), 
pp.498-501 

2. JOHNSON, R. E. and FOOTE, B.: 'DESIGNING REUSABLE CLASSES', Journal of 
Object-Oriented Programming, 1988, Vol. 1, (2), pp.22-35 

3. TRACZ, W.: 'SOFTWARE REUSE MYTHS', ACM SIGSOFT Software Engineering 
Notes, 1988, Vol. 13, (1), pp.17-21 

4. PRIETO-DlAZ, R. and FREEMAN, P.: 'CLASSIFYING SOFTWARE FOR 
REUSABILITY', IEEE Software, 1987, Vol.4, (1), pp. 6-16 

5. PRIETO-DlAZ, R.: 'IMPLEMENTATION FACETED CLASSIFICATION FOR 
SOFTWARE REUSE', Proc. of the 12th Interna/ational Conference on Software 
Engineering, March, 1990, pp. 300-304 

6. WOOD, M. and Sommerville, I.: 'AN INFORMATION RETRIEVAL SYSTEM FOR 
SOFTWARE COMPONENTS', Software engineering Journal, 1988, Vol.3, (5), pp. 
198-207 

7. WIRTH, N.: 'ALGORITHM + DATA STRUCTURES = PROGRAM, (prentice-Hall, 
1976) 

8. BOOCH, G.: 'OBJECT-ORIENTED ANALYSIS AND DESIGN', 
(Benjamin/Cummings, 1994) 

9. PODGURSKI, A. and PIERCE, L.: 'RETRIEVING REUSABLE SOFTWARE BY 
SAMPLING BERA VIOR', ACM Trans. on Software Engineering and Methodology, 
1993, Vo1.2, (3), pp. 286-303 

10. LAI, S.T. and CHOU, L.Y.: 'MODULE DESIGN DOCUMENT ASSISTANT 
SYSTEM', TL Technical Journal, 1987, VoU7, (2), pp. 93-108 (in Chinese) 


