
53 
Code Reusability Mechanisms 

Xavier Castellani and Hong Jiang 

CEDRIC-lIE (CNAM) research laboratory, 18 allee Jean Rostand, 91025 Evry Cedex, France 
Tel 33 169367350 - Fax 33169367305, castellani@iie.cnamJr.jiang@iie.cnam.fr 

Abstract 
This paper describes standardized reusability mechanisms of program code using a metric 

and a guideline. These mechanisms find five results of code reusability which allow us to 
merge programs, to store programs in a library and to include them in other programs. and to 
store common sequences code of programs in a library and to include them in programs. 
These mechanisms show how programs can be built in a standardized manner on using a 
metric and a guideline. 

These mechanisms are based on the standardized reusability mechanisms of objects of the 
object-oriented analysis and design methodology MCO. They can be used with any 
programming language. 

Keyword codes: D.2.3; D.2.6; D.2.8; D.2.1O 
Keywords: Program design. Reusability. Metrics. Guideline. 

1. INTRODUCTION 

According to Nauer and Randell [14], software reuse is the process of creating software 
systems from existing software rather than building software systems from scratch. 

According to Meyer [13], reusability is the ability of software products to be reused, in 
whole or in part, for new applications. 

The software reuse in developing new software is a well known field in software 
engineering for about twenty years [11]. There is an increasing need for a corresponding 
maturity in reutilisability, assessment and measurement. The assessment of a component's 
quality and reutilisability are critical to a successful reuse effort. Components must be easily 
comprehensible, easily incorporated into new systems. Unfortunately, no consensus currently 
exists on how to go about measuring component's reutilisability [3]. 

The success of reuse technology depends on the integration of reuse libraries into the 
design and programming environments. To reuse software. it is necessary to have 
specifications of the software. Without these specifications the reuse is impossible. 
Furthermore. it is very inefficient to look through manually the specifications [6]. When the 
number of reusable components is quite big, this is not practical. Therefore, reutilisability 
mechanisms and on-line searching mechanisms are required. With the support of an on-line 
searching tool [2], software can be shared easily. 

The idea of using metrics to normalize program code reusability has been proposed by 
several specialists. We can mention Cox [7] and groups of the Annual Workshop on Software 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



346 Part Eight Reusability 

Reuse [16]. To our knowledge, it does not exist rational utilization of metrics to normalize 
the reusability of programs. 

This paper presents a solution to normalize the reusability of programs with mechanisms 
which use a metric and a guideline. These mechanisms fmd five results of code reusability 
which allow us to merge programs, to store programs in a library and to include them in other 
programs, and to store common sequences code of programs in a library and to include them 
in programs. 

The mechanisms of code reusability allow us to find common programs and common 
sequences in different programs to store them in libraries and to include in programs. The 
common sequences code and the particular sequences code of two programs are presented in 
Section 2. The five results of program code reusability are presented in Section 3. Metrics to 
measure program code are presented in Section 4. The mechanisms of code reusability are 
presented in Section 5. 

2. COMMON SEQUENCES CODE AND PARTICULAR SEQUENCES CODE OF 
TWO PROGRAMS 

A sequence code is a set of lines of code. We distinguish declaration sequences (DS) 
which are data declarations and the other declarations: declarations of macros, of "include", 
of "copy", etc. which can be used, from processing sequences (PS) which can be performed 

The common declaration sequences of two programs are the data declarations of the 
same types and the other declarations which are identical: declarations of macros, 
declarationsof"include" orof"copy", etc. 

Data declarations of the same types may be declarations of data which have not the same 
names. Common declarations sequences may be not contiguous sequences and may be not 
ordered with the same order. Numerous programs have common sequences. It is in particular 
the case for input/output programs. 

The partic141ar declaration sequences of two programs are the declarations which are not 
common declaration sequences. 

The common processing sequences of two programs are processing sequences which 
provide the same processing. 

Two processing sequences provide the same processing if their specifications are 
syntactically identical or if a tool or an analyst must certify that they ensure the same 
processing. It is especially necessary to study processing sequences that use named data 
differently but of the same types, and to study processing sequences not specified with the 
same statements, for example "case" statements specified with "if' statements. 

The common processing sequences may be not contiguous sequences. For example in 
Cobol, a processing sequence may be defined with statements using "Perform" blocks and 
these blocks. 

Common processing sequences may be not ordered with the same order. For example 
H Allocation" statements, blocks of the different cases of "case" statements and parallel blocks 
of statements. 

The particular processing sequences of two programs are the processing sequences which 
are not common processing sequences. 



Code reusability mechanisms 347 

3. THE FIVE RESULTS OF PROGRAM CODE REUSABILITY 

In this Section we apply the principle of the object reusability mechanisms [5] to program 
reusability. These object reusability mechanisms allow the creation of object merges, simple 
inheritances and abstract objects. The five possible results of program code reusability 
between two programs P-a and P-b presented in Figure 1 are deduced from the results of 
object reusability. 

1 - P-b is identical to P-a. 
2 - P-b is merged with P-a. 
3 - P-a is stored in a library and is "included" in P-b. 
4 - P-b is stored in a library and is "included" in P-a. 

5 - One or several common sequences existing in both programs P-a and P-b are 
stored in a library and are "included" in P-a and in P-b. 

Figure 1: The five results of reusability between two programs 
For the results 2, 3, 4, the particular sequences of P-b and of P-a (result 2), or of P-a or P-b 

(results 3 or 4) are defined in case sequences and the program is parameterized to perform 
these particular sequences. 

For the result 5, one or several common sequences existing in both programs P-a and P-b 
are stored in a library and are "included" in P-a and in P-b. This result allows us to create 
separately declaration sequences from processing sequences. 

The result 5 allows us to define common sequences in two programs. We do not present 
the study of identical sequences of a same program. 

To simplify, we say here that a program is stored in a library and is "included" in another 
program. According to the used language, this mechanism is obtained with the statements 
"Include" in C or Pascal, "Copy" in Cobol, or by defining sub-program, or with other 
mechanisms. 

The five results of reusability are defined between two programs which have the most 
important common sequences. The reusability between several programs is studied 
successively between these programs considered two by two. For example between two 
programs P-a and P-b, P-b is stored in a library and is "included" in P-a. After, the reusability 
is studied between two programs P-a and P-c, P-c is stored in a library and is "included" in 
P-a. 

4. METRICS TO MEASURE PROGRAM CODE 

Numerous software experts have proposed metrics to measure software components. 
Some of them are mentioned by Fenton [8]. The simplest unit to measure source program 
code length is Lines of Code (LOC). Others prefer the Used Instructions (UI): the COCOMO 
method (COst COnstructive Madel) [4] of Boehm for example. Others use the Function 
Points (FPs) [1]. However, most companies use LOC in spite of their deficiencies [9]. 



348 Part Eight Reusability 

Software engineering specialists have defmed other metrics than the sizes of the programs 
to measure the quality of the software. Among the most used the metrics to measure numbers 
of operators and numbers of operands, mention the metrics of Halstead [10], the metrics to 
measure program control graphs, mention the metrics of McCabe [12] and the metrics to 
measure program call graphs, the hierarchical complexity which is the average number of 
modules by level. 

In this article we use the sizes to measure programs code and we measure these sizes with 
lines. 

5. MECHANISMS OF CODE REUSABILITY 

5.1. Guideline of Code Reusability 
A code reusability guideline [lXes for two programs: 
. the minimum size of their common sequences (MineL), 

· and the maximum size of the particular sequences of a program with regard to the other 
(MaxPL), 
in order that these two programs may be merged, or one may be stored in a library and 
"included" in the other. 

For two identical sequences of code, MinCLfixes their minimum size in order that one of 
them may be stored in a library and "included" in their programs. 
- Which code reusability ~uide\jne should we choose? 
It is not difficult to define a code reusability guideline in an information department because 
analysts and developers have precise ideas of their values. 

Generally. the average size of a written in C. Pascal. Cobol •... , is comprised between 800 
and 3000 lines; some programs even pass beyond 5000 lines. With these languages. the 
sequences which are stored in libraries to be reused in several programs with the statements 
"Include" in C or Pascal. "Copy" in Cobol •...• have generally minimal sizes comprise 
between 30 and 100 lines according to the programming recommendations: Hit is forbidden to 
store too little sequences in a library". These minimal sizes (30 and 100 lines), are possible 
values of MinCL. MinCL must bc superior to one line. With non object-oriented 
programming languages the masking is not usable, hence MaxPL must be count in tens lines 
(and the particular sequences are defined in case sequences). 

5.2. Presentation of Mechanisms of Code Reusability 
The code reusability mechanisms optimize the reusability of program code with the 

following criteria: 
· a similar program code reused in several programs and satisfying the reusability guideline 
constraints must be defined once in a library, 
· a sequence code reused several times in programs and satisfying the reusability guideline 
constraints must be defined once in a library, 
· the reusability must be made in priority with programs otherwise with sequences, 
· and the number of programs and of sequences reused must be minimized. 

The mechanisms of reusability of a new program P-b with an existing program P-a which 
has the most lines in common with P-b, are defined by the algorithm presented in Figure 2. 
The five results of this algorithm are presented in Section 3. 



Code reusability mechanisms 

If the code of P-a and the code of P-b are identical 
then P-b is jdentjcalto P-a 
else If number of lines of common sequences of P-a and P-b: Number(CL-ab) 

is superior to MinCL 

Endif 

then If number of lines of the particular sequences of P-a: Number(PL-a) 
is inferior to MaxPL 
then If number of lines of the particular sequences of P-b: 

I Number(PL-b) is inferior to MaxPL 
then P-b is mer~ed with P-a 
else P-a is stored in a library and is "included" in P-b 

Endif 
else If number of lines of the particular sequences of P-b: 

Endif 

Number(PL-b) is inferior to MaxPL 
then P-b is stored in a library and is "included" in P-a 
else For each common sequence of data declarations 

Endif 

or of processing statements of 
P-a and P-b: Number(CL-ij) 

If Number(CL-ij) is superior to MinCL 

I then The common sequence will be stored in a 
library and are "included" in P-a and in P-b 

else No reusability between P-a and P-b 
Endif 

Endfor 

else No reusability between P-a and P-b 
Endif 

Figure 2: Algorithm to study the reusability between two programs P-a and P-b 

5.3. Example of Application of Code Standardized Reusability 
Two C functions presented in [15] are in Figure 3: 

349 

- a function to be created: Write_vert_str which writes a string of characters to the screen 
vertically, beginning at a specified pixel position (x, y) and having specified foreground and 
background colors, 
- and an existing function: Write_horz_str which writes a string of characters to the screen 
horizontally, beginning at a specified pixel position (x, y) and having specified foreground 
and background colors. 

Write_horz_str is the existing function which has the most lines in common with 
Write_vert_str. It is similar to the previous function. It is a particular case but these functions 
are short and can be wholly presented in this paper. The common declaration sequences of 
these functions and their common processing sequences are contiguous except DSl, and are 
ordered with the same orders. We study the reusability of these two functions on considering 
the lines of code. 



350 Part Eight Reusability 

Program to be created P-b: 
Function to write a string of characters to the 
screen vertically using the custom characters 

Existing program P-a: 
Function to write a string of characters to the 

screen horizontally using the custom characters 
(function which has the most lines 

in common with P-b) 

void write_velColr (in! x, in! y, cbar 'string, int color) 
{ 

void writc_bOlZ_str (illl x, in! y, char 'string, int color) 
{ 

couvert (x, y); 
while (otringJp)); 

#ifdefCGA 
char_offset = (stringfp]- 32) • 8; 
#endif 
#ifndefCGA 
cbar_offset = (stringfp]- 32)' 14; 
#endif 

PS2 6lines 

plot_cbar(x, y, cbar_offset, color, I); 
y-=8; 
if (y<8) 
{ 

#ifdefVGA 
y=472; 
x+= 14; 
#endif 
#ifdefEGA 
y=342; 
X+= 14; 
#eDdif 
#ifdefVGA 
y:192; 
x+=8; 

#endif 
} 
p++; 

Legend 1'1] DSi : Declaration Sequence. 

#ifdefCGA 
char_offset = (string[p]- 32)' 8; 
#endif 
#ifndefCGA 
char_offset = (string[p]- 32)' 14; 
#endif 

PS26lines 

plot_char (x, y, char_offsel, color, 0); 
x+=8; 
#ifdefCGA 
if(x>312) 
{ 

x=O; 
y-=8; 

#eDdif 
#ifdefCGA 
if (X>632) 
{ 

x=O; 
y-= 14; 

#endif 
p++; 

D PSi: Processing Sequence. 

Number of lines of the common sequences of P-a and P-b: Number(CL-ab) = 15 lines 

Number of lines of the particular sequences 
of P-b: Number(PL·b) = 24 lines 

Number of lines of the particular sequences 
of P·a: Number(pL-a) = 23 lines 

Figure 3: Example of C program reusability study 



Code reusability mechanisms 351 

The results of the program reusability mechanisms are presented in Figure 4 according to 
several values of the code reusability guideline. The links "is included in" are represented 
with arrows. 

Program to be created P-b 0 
Ex! tlng program whicb has the most 
lines in common with the program P-b P-aD 

RESULTS OF THE REUSABILITY according to several values of the reusability guideline 

Values 01 the reusability guideline Result. 01 the reusability 

If 
MinCL> t5lines ~ no reusability between P-a and P-b. 
MaxPL any given value 

If 

bP~ MinCL ~ 15 lines c:> P-a la atored In a library 
MaxPL = 23 lines and I. "Included" In P-b. 

P-b 

If 
7 lines < MinCL ~ 15 lines 
MaxPL < 23 lines 

~ no reusability between P-a and P-b. 

If the sequence DSl I. 
MinCL = 7 lines ~ stored In a library and 
MaxPL <23 lines I. "Included" In 

P-a and P-b. 

If 
2lincs < MinCL ~ 6 Unes c:> the sequences DSl and 

MaxPL <23 lines PS2 are stored In 
a library and are 
"Included" In P-a 
and P-b. 

Figure 4: Examples of results of program standardized reusability 
(obtained with several values of the reusability guideline) 

6. CONCLUSION 

The reusability guidelines allow comparison of programs to study if they are similar by 
measuring respectively their common sequences and their particular sequences. 



352 Part Eight Reusability 

We have adopted the solution which consists in measuring the likeness between programs 
with guidelines and not with percentages of common and of particular sequences because this 
last approach does not allow comparison of programs with a reference (a guideline). The use 
of guidelines supposes that a good metric may be chosen. For program studies we have used 
the sizes of the declaration and the processing sequences measured with the same metric: the 
number of lines. It is possible to measure these sizes with numbers of statements or other 
metrics. Furthermore it is possible to use two different metrics and two guidelines to measure 
the declaration and the processing sequences. 

The reusability mechanisms are mechanisms of pattern recognition because they allow us to 
compare programs and to study their resemblance. Furthermore they can also create 
sequences which are stored in libraries of which the reusability must be studied. So the 
algorithm of the reusability mechanisms is recursive and these mechanisms do not only make 
pattern recognition. 

The reusability mechanisms allow us to find reusable components which can be stored in 
libraries and reused. So the reusability mechanisms allow us to begin a reverse engineering. 
They should be implemented in CASE tools, in DBMS and in programming environments of 
languages. 

An outstanding research is on the possibility to take into account programs and sequences 
code which are syntactically different but which have nearly the same control graph and/or the 
same call graph. 

References 
1. Albrecht A. J.: 'Measuring Application Development Effort Productivity', Proceedings Joint 

IBM/SHARE/GUIDE App. Symp., October 1979. 
2. Blaise G.: 'Implantation de I'algorithme de reutilisabilite uniforme d'objets MCO en Smalltalk-80', 

Graduate thesis engineer cycle C CNAM, 1992. 
3. Boetticher G., Srinivas K., Eichmann D.: 'A neural net-based approach to software metrics', The fifth 

intemational conference on software engineering and knowledge engineering, 1993. 
4. Boehm B. W.: 'Software Engineering Economics', Prentice-Hall, New York, 198 L 
5. Castellani X.: 'Mechanisms of Standardized Reusability of Objects', IFIP WG 8.1 Working ConfCrcncc 

on Information System Development Process Como, September 1-3, 1993, proceedings published by 
North-Holland. 

6. Cheng J.: 'Improving the software reusability in object-oriented programming', ACM Press, Oct. 1993. 
7. Cox B.: 'Planning the software industrial revolution', IEEE Software, 7(6), November 1990. 
8. Fenton N. E.: 'Software metrics, A Rigorous Approach', Chapman & Hall, 1991. 
9. Firesmith D. G.: 'Managing Ada projects; the people issues', Proceedings TRi Ada '88, Charleston, WV, 

24-27 October 1988. 
10. Halstead M. H.: 'Element of Software Science', Elsevier, North Holland, 1975. 
11. Krueger C.: 'Software reuse', ACM Computing Surveys, 24(2), 1992. 
12. McCabe T. 1.: 'A complexity measure', IEEE Transactions on Software Engineering, SE-2(4), December 

1976. 
13. Meyer 8.: 'Object-oriented Software Construction', Prentice Hall international, Series in computer 

science, 1988. 
14. Nauer P.and Randell B.: 'Software Engineering', Report on a Conference by the NATO Science 

Committee. NATO Scientific Affairs Division, Brussels, Belgium, 1968. 
15. Stevens R. T.: 'Graphics Programming in C, 1990, M&T Publishing, Inc. 
16. WISR'92: 5th Annual Workshop on Software Reuse Working Group Reports, M. Griss and Will Tracz 

editors, Software Engineering Notes, ACM Press, Volume 18, Number 2, April 1993. 


