
47 

A Model-based Approach for Software Test Process Improvement 

Lin Lian", Fusayuki Fujitah, Shinji Kusumoto", Ken-ichi MatsumotoC, Tohru Kikuno" and 
Koji Toriic 

"Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka 
University, 1-3 Machikaneyama, Toyonaka, Osaka 560, JAPAN 

bSoftware Laboratory, Sharp Corporation, Nara, JAPAN 

CNara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-01, JAPAN 

Abstract 

Reducing the effort or cost of testing is a key issue to high productivity in software 
development. This paper proposes a test process model which aims to grasp the current 
status of test processes and to provide several metrics to evaluate efficiency of test processes 
in order to construct the process improvement plan. The model defines test process as an 
iterated process of four kinds of hypotheses development and verification which deal with: 
correctness of the program to be tested, location of failure, location of faults, and correction 
of the faults, respectively. The analysis results of experimental data collected from the test 
process show the validity of the proposed model and usefulness of the metrics. 

Keyword Codes: D.2.5; D.2.8 
Keywords: Software Engineering, Testing and Debugging; Software Engineering, Metrics. 

1. INTRODUCTION 

There are numerous research studies towards the improvement of software development 
process[1][2]. Basili and Rombach have proposed Goal/Question/Metric paradigm (simply 
called G/Q/M paradigm) in the TAMEproject[l]. The G/Q/M paradigm has amechanislT 
to describe explicitly the relation between the goal, to be achieved in the process, and 
the metric to be applied to the process. Humphrey has proposed SEI Software Process 
Maturity Self-Assessment[2]. Based on a process maturity model, SEI Self-Assessment 
builds a consensus view of an organization's maturity and the key issues facing it. Then 
ultimately it presents an improvement plan for software development process endorsed by 
general management. 

The importance of the following key attributes (a)-(c) is commonly stressed in these 
proposals for the improvement of software development process: (a) software development 
process is strictly defined, (b) for each activity, quality data are collected and analyzed 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



A model-based approach for software test process improvement 301 

statistically, and (c) based on the analysis result, improvement of each activity is executed. 
This paper proposes a test process model which aims to grasp the current status of test 

processes and to provide several metrics to evaluate efficiency of test processes in order to 
construct the test process improvement plan. The key idea of the proposed model is t~ define 
test process as an iterated process of four kinds of hypotheses development and verification 
that deal with (1 )correctness of the program to be tested, (2)location of failure, (3)location 
offaults (that is cause of the fa.ilure), and (4)correction of the faults, respectively. Then, we 
apply the proposed model and metrics to test process in an academic environment. 

2. HYPOTHESIS-BASED DEBUGGING 

Test process consists of two sub-processes[3]: testing and debugging. Testing is the 
process of analyzing a software item to detect the differences between existing and required 
conditions 1 and to evaluate the features of the software items. Debugging is the process to 
detect, locate, and correct faults [3]. 

There are two general approaches to debugging: induction and deduction [4]. The in
ductive approach first formulates a single working hypothesis and then proves or disproves 
it based on data and the analysis of the data; while the deductive approach begins by enu
merating all possible causes or hypotheses and then rules out particular causes one by one 
until a single one remains for validation. 

Araki et al. proposed debugging process model based on deductive debugging approach 
[5]. They consider debugging process as the process of locating and correcting errors in 
a program in which errors2 have been detected. In locating the errors and grasping their 
causes, programmers develop hypotheses about the errors and their causes, and verify or 
refute these hypotheses by examining the program. In correcting the errors, programmers 
again develop hypotheses about how to modify the program and verify or refute them. 

3. TEST PROCESS MODEL 

3.1. Hypothesis-based approach 
We propose a hypothesis-based test process model as shown in Figure 1. In this model, 

we assume that test data set to be used is given, and test process is completed when we 
obtain the program finally, which executes what the specification of the program requires 
for the test data set, in inductive approach. 

The model consists of two subprocesses; testing and debugging, and both of them are 
further divided into two primitive activities: Hypothesis Development and Hypothesis Veri
fication. 

The Hypothesis Development is an activity to formulate a single working hypothesis by 

1 In this paper, we follow the IEEE standard [3] with respect to the definition of error and fault. In 
the IEEE standard, an error is defined as a human action that results in software which contains a fault. 
Examples include omission or misinterpretation of user requirements in software specification and incorrect 
translation or omission of a requirement in the design specification. A fault is defined as a manifestation 
of an error in software. A fault, if encountered, may cause a failure (synonymous with bug). Thus "the 
difference between existing and required conditions" correspond to failure. 

2 "Errors" in [5] corresponds to "faults" in the IEEE Standard. 



302 Pan Seven Specifications, Metrics, Assessment 

Testing 

D,es/ 

Testing-hypothesis H,es/ 
development (Test data 
set creation or selection 

F 

Debugging 

Debugging-hypothesis 
Hdebug development 
(ro am modification 

Figure 1: Test Process Model 

instantiating Hypothesis Templates, i.e., by substituting the parameters of the Hypothesi, 
Templates by data. The Hypothesis Verification is an activity to prove or disprove the 
working hypothesis. In the following part of this section, we shall describe Hypothesis 
Development and Verification in the test process in detail. Before giving the definition of 
the test process, we introduce the following notations: 

P: A program to be tested. 
Po: An ideal program that executes correctly required specification. 
T: A set of given test data. 
tj E T: It is defined to be a sequence of pairs space (input,output) of Po: 

tP. 
] . 

(iill oj,)(ij"oj,) ... (ijn(j)'ojn(j))' where iir is the rth input of tj, 0ir is the 
rth output corresponding to iir' and n(j) is the number of inputs of t j • 

A sequence of pairs space (input,output) of P. It can be also denoted like ti: 
(iii, of,)(ii21 of,) ... (ijn(j)' ofn(j)) 

3.2. Testing subprocess 
Testing is a process that checks if program P executes correctly required specification or 

not for each element of T. 
Definition 1: Testing subprocess is verification of hypothesis: 

Hle• l : (Vtj E T(l :::; j :::; IT!)) if = tj 
where 

tf = ti iff (VI, 1 :::; I :::; nU)) of. = Ojl (See Figure 2). 
Testing-hypothesis Template: 

HTte.t(p}: (Wj E T(1 :::; j :::; ITI)) tj = tj 
where p is a parameter which is a program to be tested. And a working hypothesis for the 



A model-based approach for software test process improvement 303 

testing is defined as HTte.t(P) where P is a program to be tested. We denote HT;e.t(P) 
development by D te.! and HTte.t(P) verification by Yt"h respectively (See Figure 1). 

Figure 2: Testing-hypothesis HI .. t 

3.3. Debugging subprocess 
Debugging process is executed if the working hypothesis HTte.t(P) is refuted. Debugging 

is a process that creates a program which could execute correctly required specification for 
the given test data set T. The program, denoted by P' in this model, is constructed by 
modifying P. 
Definition 2: Debugging subprocess is verification of hypothesis: 

Hdebug : (3P')t~' = tT' 
In general, in order to construct pi, several activities have to be done. In this model, 

debugging is further divided into the following three subprocesses: (1) Failure location, (2) 
Fault location, and (3) Fault correction. Each of them is defined as an iterated process of 
hypothesis development and verification, and has a hypothesis template, respectively (See 
Figure 3). 
(1) Failure location 

The failure location is a process that clarifies a statement of the program P which provides 
incorrect output (or incorrect state of P, e.g., hang up, infinite loop) in the testing. 
Definition 3: Failure location is verification of hypothesis: 

HJlI : 31'(1 ::; l' ::; IT1)301(1 ::; 01 ::; n(1'))3IT1(1 ::; IT1 ::; 1'N)(outPUt(s~) = 0~,,0~"1 =I-

°T.] ). 
where s~ is IT1-th statement of P executed for tT' output(s~ ) is an output of the statement 

~ ~ 

s~] for tT (See Figure 4). The value of output(s~,) is NULL when s~, is not an output 
statement. 
Failure-location-hypothesis Template: 

HTJIl(1', Oi, lTd: output(s~]) = o~], 0~"1 =I- OTo,' 

where 1',01,0'1 are parameters. Tis a test data number, 01 is an output number, and 0'1 
is a statement execution number of P, respectively. We denote HTjll ( 1',01, IT1) development 
by DJIl and HTju(T,O},O'd verification by ViII (See Figure 3). 



304 Part Seven Specifications, Metrics, Assessment 

Figure 3: Debugging Process Model 



A model·based approach for software test process improvement 305 

Template 
-------- ................................ _-----------------_ ................. -------------_ ....... _, 

c'r = (itj'°t) (itl Ot2) ... (itol~OtO) i .. · (itn(t) ,Otn('t)) i 
······································· .. ·-:-········f··· ..................• '.H . 

:~·p·:.. .. ·(·~······p) .. ~: ...... p·) .... ·~· ... ·T·p .. )··:···~:·········i···)·: 
: t - It ,Ot !It ,Ot ... !It ;Ot : .. ·!It ,Ot : 
~ ........... J.. ... l ...... f .... J. ......... o/.+ ... ?!. .. ~ ....... ~(~2 ..... ~C:~.j 

Sequence of 
statement 
execution 

(2) Fault location 

Figure 4: Failure-Iocation·hypothesis Hjll 

A fault is the cause of the failure. And fault location is a process that clarifies statement 
of the program P which causes incorrect state (an ordered set of internal and/or external 
variable values) of P during the testing. 
Definition 4: Fault location is verification of hypothesis: 

HJt/: (302(1 $ 02 $ od,30"2(1 $ 0"2 $ M» E:',_, = E1'''2_ I (l $ O"~ $ O"d,E:', =1= E1'''2' 
~ ~l 

output(s~,) = 0~_(1 $ 02 $ Ol),output(S1'''2) = 01'''2' HTIII(r, 0ll 0"1)' 
"I .• 

where S1'" is 0"2·th statement of pO executed for t1" And E:', and E1'" indicate the state 
2 ~ 2 

(an ordered set of internal and/or external variable values) of P and pO after executing sf, 
"I 

and s ..... for t .. , respectively (See Figure 5). 

Po 

P 

Figure 5: Fault·location·hypothesis Hltl 



306 Part Seven Specifications, Metrics, Assessment 

Fault-location-hypothesis Template: 
HTJtI (T,OhO'l,02,0'2): E~,_, = E.,.",_,(l < O'~ S O'I),E~, i E.,.""output(s~,) = 

, " 
~", (1 < 02 SOl), output(s.,.",) = 0.,."" HTJlI(T, 0h 0'1)' 

where T,ObO'b~,0"2 are parameters. T,OI,O'I are the same as HTjll(T,OI,O'I), ·Tespec. 
tively. 02 is an output number, and 0'2 is a statement execution number of po, respectively. 
We denote HTftl ( T, 01, 0"1, 02, 0'2) development by D jtl and HTjtl ( T, OI, 0'1, 02, 0'2) verification 
by VJtt. respectively (See Figure 3). 
(3) Fault correction 

Fault correction is. a process that constructs program pi by replacing the faurty part of 
program P with a complete one. 
Definition 5: Fault correction is verification of hypothesis: 

HJtc : (3pl) t~' = t.,.,output(s~;J = 0"'0,(1 S 0'3 S L),E;':,_, 
3 

0'3), output(s~', ) = 0.,.,,>, E;", = E.,."" HTftl(r, 0b O'J, 02, 0'2). 
0'3 "'3 

where 8~' is 0'3·th statement of pi executed for t.,.. 
Fault-c~~rection-hypothesis Template: 

HTftc(r, OI,O' I, 02 ,0'2,P' ) : t~' = t.,.,output(s~:J = 0.,.0, (1 S 0'3 S L),E;':'_l = E.,.",_,(l S 
3 

~S0'3),Output(8~')=OT ,E;" = E.,. ,HTjtl(T,01l0"J,02,0'2)' a; 00J (I"~ IT:;! 

where T, 01, 171, 02,172, pi are parameters. T, 0b 171, 02, 0'2 are the same parameters of 
HTftl ( T, 0b Uh~' 0'2), respectively. pi is a program. We denote HTftc( T, 01, UJ, 02, 0'2, P') 
development by D ftc and HTfte( T, 0t, UI,~, 172, Pi) verification by Vjte (See Figure 3). 

4. METRICS FOR EFFICIENCY OF TEST PROCESS 

In this section, we provide several metrics to evaluate efficiency of test processes and then 
to construct the improvement plan for the processes based on them. The computations of 
those metrics are based on the following test process parameters. 

r = Dte•t Vte.tDfll ... Vlesl: Sequence of operations till termination of the test process. 
ncr: Number of operation a in r, num(8,r): Number of 8 in r. 
The numbers of repetitions of Hjll' Hjt/, Hftc for correcting a single fault, denoted by 

HEJII> HEfti and HEfte respectively, are computed as follows: 

Failure location error rate: 

Fault location error rate: 

Fault correction error rate: 

We consider that the nearer the values of H Ejll' H Eltl and/or H Efte approximate 0, the 
higher the testing efficiency is. 

Let V Ejll be the number of repetitions of Vjll and VEftl the number of repetitions of 
Vjtl respectively for correcting a single fault, they are calculated as follows: 

Verification error rate for failure location 

Verification error rate for fault location 



A model-based approach for software test process improvement 307 

5. DISCUSSIONS 

In order to show the validity of the proposed model and usefulness of the metrics, we 
apply the model and the metrics to test processes in academic environment[9J. 

The main characteristics of the test processes in this experiment are: (1) Two graduate 
students (A and '8) designed, implemented and tested a kind of data processing program 
based on a specification, written by natural language, by using C language. (2) One UNIX 
workstation was assigned to each of them. While student tested his program, we recorded 
image on the workstation's display by video camera and VCR, key stroke on the keyboard 
by PAM system [6]. 

By analyzing image on the display and key stroke on the keyboard, we could obtain a 
lot of data about the students' activities on testing. From such data, we could know which 
operation of the model was being performed by the students, and construct the sequence of 
operations during testing. Almost all parts of the sequence complied with the model. We 
may, therefore, reasonably conclude that the proposed model can describe the actual test 
process in student project. We could analyze their test process based on the values of the 
metrics. Based on results, we advised Student B to use tools for fault location, e.g., program 
slicing tool SPY DER [7], and error-cause-chasing tool CHASE [8]. Then, we advised Stu
dent A to use tools for fault location mentioned above, and to use some tools supporting 
fault correction. 

REFERENCES 

1. BASIL! V. R. and ROMBACH H. D.: 'The TAME project: Towards improvement
oriented software environment', IEEE Trans. Software Eng., 1988, Vo1.14, (6), pp.758-
773. 

2. HUMPHREY W.S.: 'Characterizing the software process: A maturity framework', IEEE 
Software, 1988, Vo1.5, (2), pp.73-79. 

3. 'IEEE Standard Glossary of Software Engineering Terminology', IEEE, ANSI/IEEE Std 
610.12-1990, 1990. 

4. SHOOMAN M. L.: 'Software Engineering', (McGraw-Hill, 1983). 
5. ARAKI K., FUKUZAWA Z. and CHENG J.: 'A general framework for debugging', IEEE 

Software, 1991, Vo1.8, (3), pp.14-20. 
6. TAKADA Y., MATSUMOTO K. and TORII K.: 'A programmer performance measure 

based on programmer state transitions in testing and debugging process', Proc. of 16th 
International Conference on Software Engineering, May 1994, pp.123-132. 

7. AGRAWAL H., DEMILLO R.A. and SPAFFORD E.H.: 'Debugging with dynamic slicing 
and backtracking', Software: Practice and Experience, 1993, Vo1.23, (6), pp.589-616. 

8. SHIMOMURA T.: 'Bug localization based on error-cause-chasing methods', Trans. of 
IPS, 1993, Vo1.34, (3), pp.489-500. 

9. FUJITA F.: 'A software testing process model for evaluating capability of testing in 
software engineers education', Master Thesis of Osaka University, March 1994 (in 
Japanese). 


