
3
The Role of Competency Questions in Enterprise Engineering

Michael Groninger and Mark S. Fox •

Department of Industrial Engineering, University of Toronto,
4 Taddle Creek Road, Toronto, Ontario M5S IA4
(groninger, msf) @ie.utoronto.ca

Abstract

We present a logical framework for representing activities, states, time, and cost in an enter­
prise integration architecture. We define ontologies for these concepts in first-order logic and
consider the problems of temporal projection and reasoning about the occurrence of actions.
We characterize the ontology with the use of competency questions. The ontology must con­
tain a necessary and sufficient set of axioms to represent and solve these questions. These
questions not only characterize existing ontologies for enterprise engineering, but also drive
the development of new ontologies that are required to solve the competency questions.

1.0 Introduction

Market competition is forcing firms to reconsider how they are organized to compete. As a ba­
sis for change, they are exploring a variety of concepts, including Benchmarking, Time-based
Competition, Quality Function Deployment, Activity-Based Costing, Quality Circles, Contin­
uous Improvement, Process Innovation, and Business Process Re-Engineering. Regrettably,
most of the concepts are descriptive, if not ad hoc, and lack a formal model which would enable
their consistent application across firms. Consider business process re-engineering [Davenport
93), [Hammer & Champy 93). It is very much in the "guild" mold of application; management
consultants are the "masters" and they impart their knowledge through "apprenticeship" to oth­
er consultants. The knowledge of business process re-engineering has yet to be formalized and
reduced to engineering practice.

The goal of the Enterprise Engineering Project at the University of Toronto is to:

• Formalize the knowledge found in Enterprise Engineering perspectives such as Bench­
marking, Time-based Competition, Quality Function Deployment, Activity-Based Costing,
Quality Circles, Continuous Improvement, Process Innovation, and Business Process Re­
Engineering. By formalize, we mean the identification, formal representation and computer
implementation of the concepts, methods and heuristics which comprise a particular perspec-

•. This research is supported, in part, by the Natural Science and Engineering Research Council, Digital Equip­
ment Corp., Micro Electronics and Computer Research Corp., and Spar Aerospace.

A. Rolstadås (ed.), Benchmarking — Theory and Practice
© Springer Science+Business Media New York 1995

Competency questions in enterprise engineering 23

tive. This not only enables a precise formulation of the intuitions implicit in practice, but it is
also a step towards automating the execution of certain tasks involved in enterprise engineer­
ing.

• Integrate the knowledge into a software tool that will support the enterprise engineering
function by exploring alternative organization models spanning organization structure and
behaviour. The Enterprise Engineering system allows for the exploration of a variety of enter­
prise designs. The process of exploration is one of design, analysis and re-design, where the
system not only provides a comparative analysis of enterprise design alternatives, but can also
provide guidance to the designer.These ideas are formalized in the notion of advisors (cf.
[GrOninger & Fox 94]) that are able to analyze, guide, and make decisions about the current
enterprise and possible alternatives.

• Provide a means for visualizing the enterprise from many of the perspectives mentioned
above. The process of design is performed through the creation, analysis and modification of
the enterprise from within each of the perspective visualizations.

Enterprise modelling is an essential step in defining the tasks and functionality of the various
components of an enterprise.The goal is to create generic, reusable representations of Enter­
prise Knowledge that can be applied across a variety of enterprises. Towards this end, the
TOVE (Toronto Virtual Enterprise) ontology [Fox et a193] has been developed and applied to
enterprise engineering [Fox et al94], enterprise integration, and integrated supply chain man­
agement. An ontology is a formal description of entities and their properties; it forms a shared
terminology for the objects of interest in the domain, along with definitions for the meaning of
each of the terms. The roVE ontology currently spans knowledge of activity, time, and cau­
sality, resources, and more enterprise oriented knowledge such as cost, quality and organiza­
tion structure. The TOVE Testbed provides an environment for analyzing enterprise
ontologies; it provides a model of an enterprise and tools for browsing, visualization, simula­
tion, and deductive queries.

In this paper we present a logical framework for the TOVE ontology. We also present a set of
tasks that arise in enterprise engineering and the requirements on any ontology that is used to
represent the tasks and their solution. These requirements, which we call competency ques­
tions, are the basis for a rigorous characterization of the problems that the enterprise model is
able to solve. The enterprise model must be able to represent the tasks specified by the compe­
tency questions and their solution. The questions are also those tasks for which the enterprise
model finds all and only the correct solutions. Tasks such as these can serve to drive the devel­
opment of new theories and representations and also to justify and characterize the capabili­
ties of existing theories for enterprise modelling.

2.0 Common Sense Enterprise Modelling

The basic entities in the TOVE model are represented as objects with specific properties and
relations. Objects are structured into taxonomies and the definitions of objects, attributes and
relations are specified in first-order logic. An ontology is defined in the following way. We first
identify the objects in our domain of discourse; these will be represented by constants and vari­
ables in our language. We then identify the properties of these objects and the relations that ex­
ist over these objects; these will be represented by predicates in our language.

24 Part One Management Issues

We next define a set of axioms in first-order logic to represent the constraints over the objects
and predicates in the ontology. This set of axioms constitutes a microtheory ([Lenat & Guha
90)) and provides a declarative specification for the various tasks we wish to model. Further,
we need to prove results about the properties of our microtheories in order to provide a charac­
terization and justification for our approach; this enables us to understand the scope and limi­
tations of the approach. We use a set of problems, which we call competency questions, that
serve to characterize the various ontologies and microtheories in our enterprise model. The mi­
crotheories must contain a necessBry and sufficient set of axioms to represent and solve these
questions, thus providing a declarative semantics for the system. It is in this sense that we can
claim to have an adequate microtheory appropriate for a given task, and it is this rigour that is
lacking in previous approaches to enterprise engineering.

The competency questions are generated by requiring that the ontologies and microtheories be
necessBry and sufficient to represent the tasks and their solutions for the various components
of the system. Within enterprise engineering, these include:

• Temporal projection -- Given a set of actions that occur at different points in the future,
what are the properties of resources and activities at arbitrary points in time? This includes the
management of resources and activity-based costing (where we are assigning costs to
resources and activities).To solve this problem, we need to define axioms that express how the
truth of a proposition changes over time. In particular, we need to address the frame problem
and express the properties and relations that change or do not change as the result of an activ­
ity. We will use this task to characterize the ontologies in this paper.

• Planning and scheduling - what sequence of activities must be completed to achieve some
goal? At what times must these activities be initiated and terminated?

• Benchmarking -- Can activities from one enterprise be used in another while still satisfying
the constraints that exist within the enterprise's environment and achieving the goals of the
enterprise?

• Hypothetical reasoning -- what will happen if we move one task ahead of schedule and
another task behind schedule? What are the effects on orders if we buy another machine?

• Execution monitoring and external events -- What are the effects on the enterprise model of
the occurrence of external and unexpected events (such as machine breakdown or the unavail­
ability of resources)?

• Time-based competition -- we want to design an enterprise that minimizes the cycle time
for a product [Blackburn 91]. This is essentially the task of finding a minimum duration plan
that minimizes action occurrence and maximizes concurrency of activities.

Claiming that any ontologies are adequate for enterprise modelling requires proving that the
ontologies can represent and solve these competency questions.

3.0 Ontologies and Microtheories

In this section we present the ontologies and microtheories in roVE for time, activity, and
cost. These ontologies will then be used to specify the tasks addressed by the components of
the enterprise engineering system; the final section of the paper will present the competency
questions that serve to characterize the ontologies and microtheories.

Competency questions in enterprise engineering 25

3.1 Time and Action

The problem of benchmarking requires that an enterprise understand its processes and the pro­
cesses of another enterprise in order to determine whether there are any comparable processes
that can be adopted. This requires an adequate representation for processes. In the following
sections, we present the roVE ontology for activity, state, causality, and time, and define the
semantics of the constructs in the ontology using the situation calculus.

The intuition behind the situation calculus is that there is an initial situation, and that the world
changes from one situation to another when actions are performed; the function do(a,C1) is the
name of the situation that results from performing action a in situation C1. There is a predicate
Poss(a,C1) that is true whenever an action a can be performed in situation C1. The structure of
situations is that of a tree; two different sequences of actions lead to different situations. The
tree structure of the situation calculus shows all possible ways in which the events of the future
can unfold. Thus, each branch that starts in the initial situation can be understood as a hypo­
thetical future.The work of [Pinto & Reiter 93] extends the situation calculus by selecting one
branch of the situation tree to describe the evolution of the world as it actually unfolds. This is
done using the predicate actual(C1).

Situations are assigned different durations by defining the predicate start(s,t). Each situation
has a unique start time; these times begin at 0 in C10 and increase monotonically away from the
initial situation.Time is represented as a continuous line on any branch in the tree of situations;
on this line we define time points and time periods (intervals) as the domain of discourse. We
define a relation < over time points with the intended interpretation that t < t' iff t is earlier than
t'. Using this relation, we can define the temporal relations of [Allen 84] over intervals.

To define the evaluation of the truth value of a sentence at some point in time, we will use the
predicate holds(f,C1) to represent the fact that some ground literal/is true in situation C1. Using
the assignment of time to situations, we define the predicate holdsrif. t) to represent the fact
that some ground literal/is true at time t. A fluent is a predicate or function whose value may
change with time. Another important notion to represent is the occurrence of actions at points
in time. To represent this we introduce two predicates: occurs(a,a) (action a occurs in situation
(1), and occursr{a,t) (action a occurs at time t) defined as follows:

OCCUTs(a,o) • actual(do(a,o»

occursr(a,t) • oCCUTs(a,o) "start(do(a, 0), t)

3.2 Activities and States

(EQ 1)

(EQ2)

At the heart of the roVE Enterprise Model lies the representation of an activity and its corre­
sponding enabling and caused states ([Sathi et al. 85], [Fox et a193]). In this section we exam­
ine the notion of states and define how properties of activities are defined in terms of these
states. An activity is the basic transformational action primitive with which processes and
operations can be represented; it specifies how the world is changed. An enabling state defines
what has to be true of the world in order for the activity to be performed. A caused state
defines what is true of the world once the activity has been completed.

26 Part One Management Issues

An activity, along with its enabling and caused states, is called an activity cluster. The state
tree linked by an enables relation to an activity specifies what has to be true in order for the
activity to be perfonned. The state tree linked to an activity by a causes relation defines what
is true ofthe world once the activity has been completed. Intennediate states of an activity can
be defined by elaborating the aggregate activity into an activity network (see Figure 1).

There are two types of states: terrnin4l and non-terminal. In Figure 1, esJabricateJ]lu8-on_­
wire is the nontenninal enabling state for the activity jabricateJ]lu8-on_ wire and proJabri­
cateJ]lu8-on_wire is the caused state for the activity. The terminal conjunct substates of
esJabricateJ]lu8-0FLWire are consume_wire, consumeJ]lug, and use_injecunold since all
three resources must be present for the activity to occur; the tenninal states of proJabri­
cateJ]lu8-on_wire are produceJ]lu8-on_wire and release_inject_mold.

In TOVE there are four tenninal states represented by the following predicates:use(s,a), con­
sume(s,a), release(s,a), produce (s,a). These predicates relate the state with the resource
required by the activity. Intuitively, a resource is used and released by an activity if none of
the properties of a resource are changed when the activity is successfully tenninated and the
resource is released. A resource is consumed or produced if some property of the resource is
changed after tennination of the activity; this includes the existence and quantity of the
resource, or some arbitrary property such as color. Thus consume(s,a) signifies that a resource
is to be used up by the activity and will not exist once the activity is completed, and produc­
e(s,a) signifies that a resource, that did not exist prior to the perfonnance of the activity, has
been created by the activity. We define use and consume states to be enabling states since the
preconditions for activities refer to the properties of these states, while we define release and
produce states to be caused states, since their properties are the result of the activity.

FIGURE 1 Activity-State Cluster

Tenninal states are also used to represent the amount of a resource that is required for a state
to be enabled. For this purpose, the predicate quantity(s,r.q) is introduced, where s is a state, r
is the associated resource, and q is the amount of resource r that is required. Thus if s is a con­
sume state, then q is the amount of resource consumed by the activity, if s is a use state, then q
is the amount of resource used by the activity, and if s is a produce state, then q is the amount
of resource produced.

Competency questions in enterprise engineering 27

In this section, we fonnalize the relationship between states and activities. First we examine
the notion that an activity specifies a transfonnation on the world; this requires that we intro­
duce tluents for states and activities, and the actions that change these tluents. The axioms pre­
sented adequate for solving the temporal projection problem for these properties of stales and
activities.

To fonnalize the notions of nontenninal states and aggregate activities, we introduce occur­
rence axioms for a set of actions.

3.3 Successor Axioms for Status of Terminal States

The primary tluents we will consider are the values assigned to states to capture the notion of
the status of a state. We define a new sort for the domain of the status with the following set of
constants: { possible. committed. enabled. completed, disenabled, reenabled}. The status of a
state is changed by one of the following actions:commit(s,a), enable(s,a), complete(s,a), dis­
enable(s,a), reenable(s,a). Note that these actions are parametrized by the state and the associ­
ated activity.

The next step is to define the successor axioms that specify how the above actions change the
status of a state. These axioms provide a complete characterization of the value of a fluent
after perfonning any action, so that we can use the solution to the frame problem in [Reiter
91]. Thus if we are given a set of action occurrences, we can solve the temporal projection
problem (detennining the value of a fluent at any point in time) by first finding the situation
containing that time point, and then using the successor axioms to evaluate the status of the
state in that situation. For example, we present two of the successor axioms in the microthe­
ory:

The status of a state is committed in a situation iff either a commit action occurred in the pre­
ceding situation, or the state was already committed and an enable action did not occur:

('it s,a.~, 0) holds(status(s,a, committ~d), do(~, 0». (e- commit(s,a) " holds(status(s,a,possible), 0» v , (e-en­
able(s,a)) " holds(status(s,a, commin~d), 0) (EQ 3)

The status of a state is enabled in a situation iff either an enable action occurred in the preced­
ing situation, or the state was already committed and a complete action or disenable action did
not occur:

('it s,a,e, 0) holds(status(s,a, ~nabled), dole, 0» • (~- enabl~(s,a) " holds(status(s,a,committed), 0» v
,[(~-compl~te(s,a) v ~-disenabl~(s,a)) " holds(status(s,a, ~nabled), 0)] (EQ 4)

Using the successor state axioms, we can derive occurrence axioms that make the relationship
between the occurrence of the actions that change the status of a state and the preconditions for
these actions:

('it s,a, 0) occurs(commit(s,a), 0) :J holds(status(s,a,possible), 0)

('it s,a, 0) occurs(~nable(s,a), 0) :J holds(status(s,a,commined), 0)

(EQ 5)

(EQ6)

How are these incorporated into the activity-state clusters, which only represent the causal
relationships among states and activities? The occurrence of a commit action is not explicitly
given in the specification of an activity. However, since the status fluents can only be changed
by the above set of actions, the following sentence can be derived from the axioms:

28 Part One Management Issues

(II s.a. a) occurs(enable(s.a}, a} :::> (3a') occurs(commit(s,a}, a'} (EQ7)

Similarly, the precondition for the commit action is that the state be possible. In [Fadel et al.
94] it is shown how the possible status is defined in terms of the availability of a resource for
the activity. This includes the configuration or setup of a resource as well as capacity con­
straints for the concurrent execution of activities with a shared resource. Axioms similar to
those above would be used to express the occurrence of the appropriate setup activities for
some activity. This is necessary for formalizing time-based competition, where the occurrence
of setup activities is minimized.

3.4 Status of Non-Terminal States

In TOVE, non-terminal states enable the boolean combination of states. We will consider four
non-terminal states:conjlUlCtive, disjunctive, exclusive, not. What precisely does it mean for a
non-terminal state to be a boolean combination of states? For example, how do we define the
status of a non-terminal state given the status of each substate? 1b define this notion, we must
refer to the occurrence of the actions that change the status of the states.In this way we can de­
fine arbitrary nonterminal states as occurrence axioms.

Disjunctive states are used to formalize the intuition of a resource pool. We may have a set of
resources, such as machines or operators, that can possibly be used by an activity. The activity
only requires one of these resources, so the activity only needs to nondeterministically choose
one ofthe alternative resources in the pool. Thus, the status ofthe disjunctive state changes if
one of the resources has been selected and its status has been changed. For example, we have

(II s.sl.· ... s"'a. a) disjunctive(s,a} /I substate(sl,s} /I ... /I substate(s .. s} :::> occurs(enable(s.a}, a) • occurs(en­
able(sl,a}. a) v ... v occurs(enablt(s",a}. a) (EQ 8)

The successor axioms for the other values of status are defined in the same way. In other words,
the occurrence of an action for a disjunctive state is equivalent to a disjunctive sentence of oc­
currence literals for each disjunct substate.

Similarly, we have the following constraints on conjunctive states:

(II s.Sl s .. a. a) conjunctive(s.a} /I substate(sl,s) /I ... /I substale(s",s} :::> occurs(enable(s.a}. a) • occurs(en­
able(sjoa}. a)/\ ... /\ occurs(enable(s",a}. a) (EQ 9)

The occurrence of an action for a conjunctive state is equivalent to a conjunctive sentence of
occurrence literals for each conjunct substate. Note that we make the assumption that all con­
junct substates change their status at the same time.

3.S Ontology of Cost

The ontology for activity-based costing is a formal specification of the assignment of costs to
activities based on costs for the resources utilized by these activities [Tham et al. 94]. Each
resource is assigned a unique cost depending on the status of its terminal state; these are repre­
sented by the predicates comminei.Lres30scunit(a,r;q.v), enabled_res_coscunit(a,r;q,v), dis­
enabled_res30scunit(a,r;q,v), reenabled_coscunit(a,r;q,v), for some activity a and resource
r. The parameter v represents the cost metric for a unit q of the resource. It is assumed that the
values for these costs are completely known and that they are unique. Based on the duration of
a particular status value, the axioms in the ontology of cost assign a unique cost for the state at

Competency questions in enterprise engineering 29

a point in time. The cost assigned to an activity at a point in time is the aggregation of the
costs for the states of the activity at that point. In this sense, the task addressed by the ontology
of activity-based costing is a special case of temporal projection. We thus use successor state
axioms similar to those in earlier sections. For example, we have the following successor
axiom for computing the cost associated with the enabled status of a terminal state, where 1,1'

are the endpoints of the interval over which the state is enabled:

('II a,r,s,I,I',c,c') holds (enabledJes_cost(s,r.a, c'), do(e,s» • (e- disenable(s,a) v e-complele(s,a)) "
enabledJes_coscunil(r,a,q,v) 1\ holds(enabled_TeS_COSI(S,r,a,c) , a) " c' - c+vq(I'-I) V -,[(e-complele(s,a) v
e-disenable(s,a)) 1\ holds(enabledJts30SI(s,r,a,c'), a)] (EQ 10)

Given the costs computed for each status of a state, the resource cost point (represented by the
predicate cpr) is computed by summing the costs for each status value of the state:

('II a,r,s,I,c,cJoc2,cjoc4i holdsr!cpr(s,a,r,c), I) • holdsrf,commilled_Tes_cosl(s,a,r,cl) " holdsr(enabledJes_cosl(-
s,a,r,cl) " holdsrf,disenabledJes_cost(s,a,T,cl) " holdsrf,TunabledJes_cost(s,a,r,cl) " C
c1+c2+c3+c4 (EQ 11)

The cost for an activity at a point in time is the sum of the costs for each of its resources; this
is represented by the predicate cpa(a,c).

The ontology for activity-based costing therefore consists of resource cost units, successor state
axioms, and axioms defining the aggregation of costs for resources, activities, and orders.

3.6 Competency Questions for Ontologies

In this section we rigorously specify several of the tasks that the various advisors must solve,
and claim that the ontologies and microtheories presented earlier in this paper are necessary and
sufficient to represent these tasks and their solutions. We can express these as the following
theorems; let 1"succ be the set ofsuccessor axioms and let ToccuTTence be a complete specification
of action occurrences and the times at which the actions occurred.

Theorem 1: At any time point t, state s, and activity a there exists a status value X such that

1"succ U Toccurnnce 1- holdsrfstatus(s,a,X), t)

In other words, the status of a state is completely determined at any point in time.

Let Tcort be the set of successor axioms for cost and the complete set of resource cost units for
every resource, activity, and status value.

Theorem 2: At any time point t, state s, resource r and activity a there exists a cost c and a cost
c' such that

Tsucc U Toccurrence U Tcort ,- holdsrfcpr(s,a,r.c) , t) " holdsrfcpa(a,c') , t)

Thus the costs assigned to a resource and activity are completely determined at any point in
time.

30 Part One Management Issues

We can further show that the axioms are necessary and sufficient to prove these theorems in
the sense that if any of the axioms are removed then we can no longer prove the theorem. Thus
these temporal projection problems serve as benchmarks for any theories of processes and ac­
tivity-based costing.

Competency questions can also serve to drive the development of appropriate microtheories.
For example, the goal of time-based competition is to find the enterprise model with the mini­
mum cycle time. Within the ontology of activity, this is equivalent to finding the ordering of
activities with the minimum duration. The first step in solving this task is to define the condi­
tions under which a set of activities may be completely assigned a unique minimum duration;
this competency question serves a characterization for any theory of time-based competition.
In order to do this, we must also define the conditions for the existence of bottlenecks and other
limitations of concurrency within an enterprise model, such as computing the maximum num­
ber of activities that may be supported by a resource. This in turn provides a competency ques­
tion for the ontology of resources in [Fadel et a!. 94].

4.0 Summary

In this paper, we presented a logical formalization of the TOVE ontology of activity and time
that has been designed to specify the tasks that arise in enterprise engineering. To this end, we
have defined the TOVE ontologies for activities, states, time, and cost within first-order logic.
This formalization allows deduction of properties of activities and states at different points in
time by formalizing how these properties do or do not change as the result of an activity (tem­
poral projection). The representation of aggregate activities, and the role of temporal structure
in this aggregation, is accomplished through axioms that allow us to reason about the occur­
rence of actions.

Competency questions are used to characterize each of the ontologies and microtheories; these
questions present tasks such that the microtheories are a necessary and sufficient set of axioms
for representing and solving these tasks. Furthermore, the use of competency questions serves
two roles -- they characterize the ontologies and microtheories that have been designed for each
task and they also provide direction for the development of new ontologies and microtheories.

The ontologies for activities, states, and time defined in this paper have been implemented on
top of C++ using the ROCK knowledge representation tool from Carnegie Group. The succes­
sor state axioms and occurrence axioms have been implemented using Quintus Prolog.

5.0 References

[Allen 83] Allen, I.E Maintaining Knowledge about Temporal Intervals. Communications of
the ACM. 26:832-843, 1983.

[Blackburn 91] Blackburn J. TIme-based Competition. Business One Irwin, 1991.

[Davenport 93] Davenport, T.H. Process Innovation: Reengineering Work through Informa­
tion Technology. Harvard Business School Press, 1993.

Competency questions in enterprise engineering 31

[Fadel et al. 94] Fadel, F. , Fox, M.S., GrUninger, M. A generic enterprise resource ontolo­
gy.Third Workshop on ElUlbling Technologies: lrifrastructure for Collaborative Enterprises,
Morgantown, West Virginia, 1994.

[Fox et a1. 93] Fox, M.S., Chionglo, J., Fadel, F. A Common-Sense Model of the Enterprise,
Proceedings of the Industrial Engineering Research Conference 1993.

[Fox et al 94]Fox, M. S., Grtlninger, M., Zhan, Y .. Enterprise engineering: An information
systems perspective. Proceedings of the Industrial Engineering Research Conference 1994).

[Grtlninger & Fox 94] GrOninger, M. and Fox, M.S. An advisor-based architecture for enter­
prise engineering. Workshop on Artificial Intelligence in Business Process Reengineering,
AAAI 94, Seattle.

[Hammer & Champy 93] Hammer, M. and Champy J. Reengineering the Corporation. Harper
Business, 1993.

[Lenat & Guha 90] Lenat, D. and Guha, R.V. Building Large Knowledge-based Systems: Rep­
resentation and Inference in the CYC Project. Addison Wesley, 1990.

[Pinto & Reiter 93] Pinto, J. and Reiter, R. Temporal reasoning in logic programming: A case
for the situation calculus. In Proceedings of the Tenth International Conference on Logic Pro­
gramming (Budapest, June 1993).

[Reiter 91] Reiter. R. The frame problem in the situation calculus: A simple solution (some­
times) and a completeness result for goal regression. Artijiciallntelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy. Academic Press, San Diego,
1991.

[Sathi et al 85] Sathi. A., Fox. M.S., and Greenberg, M. Representation of activity knowledge
for project management. IEEE 7ransactions on Panern Analysis and Machi;,e Intelligence.
PAMI-7:S31-SS2, September, 1985.

[Tham et al. 94] Tham, D., Fox, M.S., Grtlninger, M. A cost ontology for enterprise modelling.
Third Workshop on ElUlbling Technologies: Infrastructurefor Collaborative Enterprises, Mor­
gantown, West Virginia, 1994.

