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Abstract 

We present a logical framework for representing activities, states, time, and cost in an enter­
prise integration architecture. We define ontologies for these concepts in first-order logic and 
consider the problems of temporal projection and reasoning about the occurrence of actions. 
We characterize the ontology with the use of competency questions. The ontology must con­
tain a necessary and sufficient set of axioms to represent and solve these questions. These 
questions not only characterize existing ontologies for enterprise engineering, but also drive 
the development of new ontologies that are required to solve the competency questions. 

1.0 Introduction 

Market competition is forcing firms to reconsider how they are organized to compete. As a ba­
sis for change, they are exploring a variety of concepts, including Benchmarking, Time-based 
Competition, Quality Function Deployment, Activity-Based Costing, Quality Circles, Contin­
uous Improvement, Process Innovation, and Business Process Re-Engineering. Regrettably, 
most of the concepts are descriptive, if not ad hoc, and lack a formal model which would enable 
their consistent application across firms. Consider business process re-engineering [Davenport 
93), [Hammer & Champy 93). It is very much in the "guild" mold of application; management 
consultants are the "masters" and they impart their knowledge through "apprenticeship" to oth­
er consultants. The knowledge of business process re-engineering has yet to be formalized and 
reduced to engineering practice. 

The goal of the Enterprise Engineering Project at the University of Toronto is to: 

• Formalize the knowledge found in Enterprise Engineering perspectives such as Bench­
marking, Time-based Competition, Quality Function Deployment, Activity-Based Costing, 
Quality Circles, Continuous Improvement, Process Innovation, and Business Process Re­
Engineering. By formalize, we mean the identification, formal representation and computer 
implementation of the concepts, methods and heuristics which comprise a particular perspec-
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tive. This not only enables a precise formulation of the intuitions implicit in practice, but it is 
also a step towards automating the execution of certain tasks involved in enterprise engineer­
ing. 

• Integrate the knowledge into a software tool that will support the enterprise engineering 
function by exploring alternative organization models spanning organization structure and 
behaviour. The Enterprise Engineering system allows for the exploration of a variety of enter­
prise designs. The process of exploration is one of design, analysis and re-design, where the 
system not only provides a comparative analysis of enterprise design alternatives, but can also 
provide guidance to the designer.These ideas are formalized in the notion of advisors (cf. 
[GrOninger & Fox 94]) that are able to analyze, guide, and make decisions about the current 
enterprise and possible alternatives. 

• Provide a means for visualizing the enterprise from many of the perspectives mentioned 
above. The process of design is performed through the creation, analysis and modification of 
the enterprise from within each of the perspective visualizations. 

Enterprise modelling is an essential step in defining the tasks and functionality of the various 
components of an enterprise.The goal is to create generic, reusable representations of Enter­
prise Knowledge that can be applied across a variety of enterprises. Towards this end, the 
TOVE (Toronto Virtual Enterprise) ontology [Fox et a193] has been developed and applied to 
enterprise engineering [Fox et al94], enterprise integration, and integrated supply chain man­
agement. An ontology is a formal description of entities and their properties; it forms a shared 
terminology for the objects of interest in the domain, along with definitions for the meaning of 
each of the terms. The roVE ontology currently spans knowledge of activity, time, and cau­
sality, resources, and more enterprise oriented knowledge such as cost, quality and organiza­
tion structure. The TOVE Testbed provides an environment for analyzing enterprise 
ontologies; it provides a model of an enterprise and tools for browsing, visualization, simula­
tion, and deductive queries. 

In this paper we present a logical framework for the TOVE ontology. We also present a set of 
tasks that arise in enterprise engineering and the requirements on any ontology that is used to 
represent the tasks and their solution. These requirements, which we call competency ques­
tions, are the basis for a rigorous characterization of the problems that the enterprise model is 
able to solve. The enterprise model must be able to represent the tasks specified by the compe­
tency questions and their solution. The questions are also those tasks for which the enterprise 
model finds all and only the correct solutions. Tasks such as these can serve to drive the devel­
opment of new theories and representations and also to justify and characterize the capabili­
ties of existing theories for enterprise modelling. 

2.0 Common Sense Enterprise Modelling 

The basic entities in the TOVE model are represented as objects with specific properties and 
relations. Objects are structured into taxonomies and the definitions of objects, attributes and 
relations are specified in first-order logic. An ontology is defined in the following way. We first 
identify the objects in our domain of discourse; these will be represented by constants and vari­
ables in our language. We then identify the properties of these objects and the relations that ex­
ist over these objects; these will be represented by predicates in our language. 
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We next define a set of axioms in first-order logic to represent the constraints over the objects 
and predicates in the ontology. This set of axioms constitutes a microtheory ([Lenat & Guha 
90)) and provides a declarative specification for the various tasks we wish to model. Further, 
we need to prove results about the properties of our microtheories in order to provide a charac­
terization and justification for our approach; this enables us to understand the scope and limi­
tations of the approach. We use a set of problems, which we call competency questions, that 
serve to characterize the various ontologies and microtheories in our enterprise model. The mi­
crotheories must contain a necessBry and sufficient set of axioms to represent and solve these 
questions, thus providing a declarative semantics for the system. It is in this sense that we can 
claim to have an adequate microtheory appropriate for a given task, and it is this rigour that is 
lacking in previous approaches to enterprise engineering. 

The competency questions are generated by requiring that the ontologies and microtheories be 
necessBry and sufficient to represent the tasks and their solutions for the various components 
of the system. Within enterprise engineering, these include: 

• Temporal projection -- Given a set of actions that occur at different points in the future, 
what are the properties of resources and activities at arbitrary points in time? This includes the 
management of resources and activity-based costing (where we are assigning costs to 
resources and activities).To solve this problem, we need to define axioms that express how the 
truth of a proposition changes over time. In particular, we need to address the frame problem 
and express the properties and relations that change or do not change as the result of an activ­
ity. We will use this task to characterize the ontologies in this paper. 

• Planning and scheduling - what sequence of activities must be completed to achieve some 
goal? At what times must these activities be initiated and terminated? 

• Benchmarking -- Can activities from one enterprise be used in another while still satisfying 
the constraints that exist within the enterprise's environment and achieving the goals of the 
enterprise? 

• Hypothetical reasoning -- what will happen if we move one task ahead of schedule and 
another task behind schedule? What are the effects on orders if we buy another machine? 

• Execution monitoring and external events -- What are the effects on the enterprise model of 
the occurrence of external and unexpected events (such as machine breakdown or the unavail­
ability of resources)? 

• Time-based competition -- we want to design an enterprise that minimizes the cycle time 
for a product [Blackburn 91]. This is essentially the task of finding a minimum duration plan 
that minimizes action occurrence and maximizes concurrency of activities. 

Claiming that any ontologies are adequate for enterprise modelling requires proving that the 
ontologies can represent and solve these competency questions. 

3.0 Ontologies and Microtheories 

In this section we present the ontologies and microtheories in roVE for time, activity, and 
cost. These ontologies will then be used to specify the tasks addressed by the components of 
the enterprise engineering system; the final section of the paper will present the competency 
questions that serve to characterize the ontologies and microtheories. 
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3.1 Time and Action 

The problem of benchmarking requires that an enterprise understand its processes and the pro­
cesses of another enterprise in order to determine whether there are any comparable processes 
that can be adopted. This requires an adequate representation for processes. In the following 
sections, we present the roVE ontology for activity, state, causality, and time, and define the 
semantics of the constructs in the ontology using the situation calculus. 

The intuition behind the situation calculus is that there is an initial situation, and that the world 
changes from one situation to another when actions are performed; the function do(a,C1) is the 
name of the situation that results from performing action a in situation C1. There is a predicate 
Poss(a,C1) that is true whenever an action a can be performed in situation C1. The structure of 
situations is that of a tree; two different sequences of actions lead to different situations. The 
tree structure of the situation calculus shows all possible ways in which the events of the future 
can unfold. Thus, each branch that starts in the initial situation can be understood as a hypo­
thetical future.The work of [Pinto & Reiter 93] extends the situation calculus by selecting one 
branch of the situation tree to describe the evolution of the world as it actually unfolds. This is 
done using the predicate actual(C1). 

Situations are assigned different durations by defining the predicate start(s,t). Each situation 
has a unique start time; these times begin at 0 in C10 and increase monotonically away from the 
initial situation.Time is represented as a continuous line on any branch in the tree of situations; 
on this line we define time points and time periods (intervals) as the domain of discourse. We 
define a relation < over time points with the intended interpretation that t < t' iff t is earlier than 
t'. Using this relation, we can define the temporal relations of [Allen 84] over intervals. 

To define the evaluation of the truth value of a sentence at some point in time, we will use the 
predicate holds(f,C1) to represent the fact that some ground literal/is true in situation C1. Using 
the assignment of time to situations, we define the predicate holdsrif. t) to represent the fact 
that some ground literal/is true at time t. A fluent is a predicate or function whose value may 
change with time. Another important notion to represent is the occurrence of actions at points 
in time. To represent this we introduce two predicates: occurs(a,a) (action a occurs in situation 
(1), and occursr{a,t) (action a occurs at time t) defined as follows: 

OCCUTs(a,o) • actual(do(a,o» 

occursr(a,t) • oCCUTs(a,o) "start(do(a, 0), t) 

3.2 Activities and States 

(EQ 1) 

(EQ2) 

At the heart of the roVE Enterprise Model lies the representation of an activity and its corre­
sponding enabling and caused states ([Sathi et al. 85], [Fox et a193]). In this section we exam­
ine the notion of states and define how properties of activities are defined in terms of these 
states. An activity is the basic transformational action primitive with which processes and 
operations can be represented; it specifies how the world is changed. An enabling state defines 
what has to be true of the world in order for the activity to be performed. A caused state 
defines what is true of the world once the activity has been completed. 
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An activity, along with its enabling and caused states, is called an activity cluster. The state 
tree linked by an enables relation to an activity specifies what has to be true in order for the 
activity to be perfonned. The state tree linked to an activity by a causes relation defines what 
is true ofthe world once the activity has been completed. Intennediate states of an activity can 
be defined by elaborating the aggregate activity into an activity network (see Figure 1). 

There are two types of states: terrnin4l and non-terminal. In Figure 1, esJabricateJ]lu8-on_­
wire is the nontenninal enabling state for the activity jabricateJ]lu8-on_ wire and proJabri­
cateJ]lu8-on_wire is the caused state for the activity. The terminal conjunct substates of 
esJabricateJ]lu8-0FLWire are consume_wire, consumeJ]lug, and use_injecunold since all 
three resources must be present for the activity to occur; the tenninal states of proJabri­
cateJ]lu8-on_wire are produceJ]lu8-on_wire and release_inject_mold. 

In TOVE there are four tenninal states represented by the following predicates:use(s,a), con­
sume(s,a), release(s,a), produce (s,a). These predicates relate the state with the resource 
required by the activity. Intuitively, a resource is used and released by an activity if none of 
the properties of a resource are changed when the activity is successfully tenninated and the 
resource is released. A resource is consumed or produced if some property of the resource is 
changed after tennination of the activity; this includes the existence and quantity of the 
resource, or some arbitrary property such as color. Thus consume(s,a) signifies that a resource 
is to be used up by the activity and will not exist once the activity is completed, and produc­
e(s,a) signifies that a resource, that did not exist prior to the perfonnance of the activity, has 
been created by the activity. We define use and consume states to be enabling states since the 
preconditions for activities refer to the properties of these states, while we define release and 
produce states to be caused states, since their properties are the result of the activity. 

FIGURE 1 Activity-State Cluster 

Tenninal states are also used to represent the amount of a resource that is required for a state 
to be enabled. For this purpose, the predicate quantity(s,r.q) is introduced, where s is a state, r 
is the associated resource, and q is the amount of resource r that is required. Thus if s is a con­
sume state, then q is the amount of resource consumed by the activity, if s is a use state, then q 
is the amount of resource used by the activity, and if s is a produce state, then q is the amount 
of resource produced. 
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In this section, we fonnalize the relationship between states and activities. First we examine 
the notion that an activity specifies a transfonnation on the world; this requires that we intro­
duce tluents for states and activities, and the actions that change these tluents. The axioms pre­
sented adequate for solving the temporal projection problem for these properties of stales and 
activities. 

To fonnalize the notions of nontenninal states and aggregate activities, we introduce occur­
rence axioms for a set of actions. 

3.3 Successor Axioms for Status of Terminal States 

The primary tluents we will consider are the values assigned to states to capture the notion of 
the status of a state. We define a new sort for the domain of the status with the following set of 
constants: { possible. committed. enabled. completed, disenabled, reenabled}. The status of a 
state is changed by one of the following actions:commit(s,a), enable(s,a), complete(s,a), dis­
enable(s,a), reenable(s,a). Note that these actions are parametrized by the state and the associ­
ated activity. 

The next step is to define the successor axioms that specify how the above actions change the 
status of a state. These axioms provide a complete characterization of the value of a fluent 
after perfonning any action, so that we can use the solution to the frame problem in [Reiter 
91]. Thus if we are given a set of action occurrences, we can solve the temporal projection 
problem (detennining the value of a fluent at any point in time) by first finding the situation 
containing that time point, and then using the successor axioms to evaluate the status of the 
state in that situation. For example, we present two of the successor axioms in the microthe­
ory: 

The status of a state is committed in a situation iff either a commit action occurred in the pre­
ceding situation, or the state was already committed and an enable action did not occur: 

('it s,a.~, 0) holds(status(s,a, committ~d), do(~, 0». (e- commit(s,a) " holds(status(s,a,possible), 0» v , (e-en­
able(s,a)) " holds(status(s,a, commin~d), 0) (EQ 3) 

The status of a state is enabled in a situation iff either an enable action occurred in the preced­
ing situation, or the state was already committed and a complete action or disenable action did 
not occur: 

('it s,a,e, 0) holds(status(s,a, ~nabled), dole, 0» • (~- enabl~(s,a) " holds(status(s,a,committed), 0» v 
,[(~-compl~te(s,a) v ~-disenabl~(s,a)) " holds(status(s,a, ~nabled), 0)] (EQ 4) 

Using the successor state axioms, we can derive occurrence axioms that make the relationship 
between the occurrence of the actions that change the status of a state and the preconditions for 
these actions: 

('it s,a, 0) occurs(commit(s,a), 0) :J holds(status(s,a,possible), 0) 

('it s,a, 0) occurs(~nable(s,a), 0) :J holds(status(s,a,commined), 0) 

(EQ 5) 

(EQ6) 

How are these incorporated into the activity-state clusters, which only represent the causal 
relationships among states and activities? The occurrence of a commit action is not explicitly 
given in the specification of an activity. However, since the status fluents can only be changed 
by the above set of actions, the following sentence can be derived from the axioms: 
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(II s.a. a) occurs(enable(s.a}, a} :::> (3a') occurs(commit(s,a}, a'} (EQ7) 

Similarly, the precondition for the commit action is that the state be possible. In [Fadel et al. 
94] it is shown how the possible status is defined in terms of the availability of a resource for 
the activity. This includes the configuration or setup of a resource as well as capacity con­
straints for the concurrent execution of activities with a shared resource. Axioms similar to 
those above would be used to express the occurrence of the appropriate setup activities for 
some activity. This is necessary for formalizing time-based competition, where the occurrence 
of setup activities is minimized. 

3.4 Status of Non-Terminal States 

In TOVE, non-terminal states enable the boolean combination of states. We will consider four 
non-terminal states:conjlUlCtive, disjunctive, exclusive, not. What precisely does it mean for a 
non-terminal state to be a boolean combination of states? For example, how do we define the 
status of a non-terminal state given the status of each substate? 1b define this notion, we must 
refer to the occurrence of the actions that change the status of the states.In this way we can de­
fine arbitrary nonterminal states as occurrence axioms. 

Disjunctive states are used to formalize the intuition of a resource pool. We may have a set of 
resources, such as machines or operators, that can possibly be used by an activity. The activity 
only requires one of these resources, so the activity only needs to nondeterministically choose 
one ofthe alternative resources in the pool. Thus, the status ofthe disjunctive state changes if 
one of the resources has been selected and its status has been changed. For example, we have 

(II s.sl.· ... s"'a. a) disjunctive(s,a} /I substate(sl,s} /I ... /I substate(s .. s} :::> occurs(enable(s.a}, a) • occurs(en­
able(sl,a}. a) v ... v occurs(enablt(s",a}. a) (EQ 8) 

The successor axioms for the other values of status are defined in the same way. In other words, 
the occurrence of an action for a disjunctive state is equivalent to a disjunctive sentence of oc­
currence literals for each disjunct substate. 

Similarly, we have the following constraints on conjunctive states: 

(II s.Sl ..... s .. a. a) conjunctive(s.a} /I substate(sl,s) /I ... /I substale(s",s} :::> occurs(enable(s.a}. a) • occurs(en­
able(sjoa}. a)/\ ... /\ occurs(enable(s",a}. a) (EQ 9) 

The occurrence of an action for a conjunctive state is equivalent to a conjunctive sentence of 
occurrence literals for each conjunct substate. Note that we make the assumption that all con­
junct substates change their status at the same time. 

3.S Ontology of Cost 

The ontology for activity-based costing is a formal specification of the assignment of costs to 
activities based on costs for the resources utilized by these activities [Tham et al. 94]. Each 
resource is assigned a unique cost depending on the status of its terminal state; these are repre­
sented by the predicates comminei.Lres30scunit(a,r;q.v), enabled_res_coscunit(a,r;q,v), dis­
enabled_res30scunit(a,r;q,v), reenabled_coscunit(a,r;q,v), for some activity a and resource 
r. The parameter v represents the cost metric for a unit q of the resource. It is assumed that the 
values for these costs are completely known and that they are unique. Based on the duration of 
a particular status value, the axioms in the ontology of cost assign a unique cost for the state at 



Competency questions in enterprise engineering 29 

a point in time. The cost assigned to an activity at a point in time is the aggregation of the 
costs for the states of the activity at that point. In this sense, the task addressed by the ontology 
of activity-based costing is a special case of temporal projection. We thus use successor state 
axioms similar to those in earlier sections. For example, we have the following successor 
axiom for computing the cost associated with the enabled status of a terminal state, where 1,1' 

are the endpoints of the interval over which the state is enabled: 

('II a,r,s,I,I',c,c') holds (enabledJes_cost(s,r.a, c'), do(e,s» • (e- disenable(s,a) v e-complele(s,a)) " 
enabledJes_coscunil(r,a,q,v) 1\ holds(enabled_TeS_COSI(S,r,a,c) , a) " c' - c+vq(I'-I) V -,[(e-complele(s,a) v 
e-disenable(s,a)) 1\ holds(enabledJts30SI(s,r,a,c'), a)] (EQ 10) 

Given the costs computed for each status of a state, the resource cost point (represented by the 
predicate cpr) is computed by summing the costs for each status value of the state: 

('II a,r,s,I,c,cJoc2,cjoc4i holdsr!cpr(s,a,r,c), I) • holdsrf,commilled_Tes_cosl(s,a,r,cl) " holdsr(enabledJes_cosl(-
s,a,r,cl) " holdsrf,disenabledJes_cost(s,a,T,cl) " holdsrf,TunabledJes_cost(s,a,r,cl) " C 
c1+c2+c3+c4 (EQ 11) 

The cost for an activity at a point in time is the sum of the costs for each of its resources; this 
is represented by the predicate cpa(a,c). 

The ontology for activity-based costing therefore consists of resource cost units, successor state 
axioms, and axioms defining the aggregation of costs for resources, activities, and orders. 

3.6 Competency Questions for Ontologies 

In this section we rigorously specify several of the tasks that the various advisors must solve, 
and claim that the ontologies and microtheories presented earlier in this paper are necessary and 
sufficient to represent these tasks and their solutions. We can express these as the following 
theorems; let 1"succ be the set ofsuccessor axioms and let ToccuTTence be a complete specification 
of action occurrences and the times at which the actions occurred. 

Theorem 1: At any time point t, state s, and activity a there exists a status value X such that 

1"succ U Toccurnnce 1- holdsrfstatus(s,a,X), t) 

In other words, the status of a state is completely determined at any point in time. 

Let Tcort be the set of successor axioms for cost and the complete set of resource cost units for 
every resource, activity, and status value. 

Theorem 2: At any time point t, state s, resource r and activity a there exists a cost c and a cost 
c' such that 

Tsucc U Toccurrence U Tcort ,- holdsrfcpr(s,a,r.c) , t) " holdsrfcpa(a,c') , t) 

Thus the costs assigned to a resource and activity are completely determined at any point in 
time. 
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We can further show that the axioms are necessary and sufficient to prove these theorems in 
the sense that if any of the axioms are removed then we can no longer prove the theorem. Thus 
these temporal projection problems serve as benchmarks for any theories of processes and ac­
tivity-based costing. 

Competency questions can also serve to drive the development of appropriate microtheories. 
For example, the goal of time-based competition is to find the enterprise model with the mini­
mum cycle time. Within the ontology of activity, this is equivalent to finding the ordering of 
activities with the minimum duration. The first step in solving this task is to define the condi­
tions under which a set of activities may be completely assigned a unique minimum duration; 
this competency question serves a characterization for any theory of time-based competition. 
In order to do this, we must also define the conditions for the existence of bottlenecks and other 
limitations of concurrency within an enterprise model, such as computing the maximum num­
ber of activities that may be supported by a resource. This in turn provides a competency ques­
tion for the ontology of resources in [Fadel et a!. 94]. 

4.0 Summary 

In this paper, we presented a logical formalization of the TOVE ontology of activity and time 
that has been designed to specify the tasks that arise in enterprise engineering. To this end, we 
have defined the TOVE ontologies for activities, states, time, and cost within first-order logic. 
This formalization allows deduction of properties of activities and states at different points in 
time by formalizing how these properties do or do not change as the result of an activity (tem­
poral projection). The representation of aggregate activities, and the role of temporal structure 
in this aggregation, is accomplished through axioms that allow us to reason about the occur­
rence of actions. 

Competency questions are used to characterize each of the ontologies and microtheories; these 
questions present tasks such that the microtheories are a necessary and sufficient set of axioms 
for representing and solving these tasks. Furthermore, the use of competency questions serves 
two roles -- they characterize the ontologies and microtheories that have been designed for each 
task and they also provide direction for the development of new ontologies and microtheories. 

The ontologies for activities, states, and time defined in this paper have been implemented on 
top of C++ using the ROCK knowledge representation tool from Carnegie Group. The succes­
sor state axioms and occurrence axioms have been implemented using Quintus Prolog. 
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