
A GRASP algorithm to solve the problem of
dependent tasks scheduling in different

machines

Manuel Tupia Anticona
Pontificia Universidad Catolica del Peru

Facultad de Ciencias e Ingenieria, Departamento de Ingenieria, Seccion
Ingenieria Informatica

Av. Universitaria cuadra 18 S/N
Lima, Peni, Lima 32

tupia. mf@pucp.edu.pe

Abstract. Industrial planning has experienced notable advancements since its
beginning by the middle of the 20th century. The importance of its application
within the several industries where it is used has been demonstrated, regardless
of the difficulty of the design of the exact algorithms that solve the variants.
Heuristic methods have been applied for planning problems due to their high
complexity; especially Artificial Intelligence when developing new strategies
to solve one of the most important variants called task scheduling. It is
possible to define task scheduling as: .a set of N production line tasks and M
machines, which can execute those tasks, where the goal is to find an
execution order that minimizes th» accumulated execution time, known as
makespan. This paper presents a GRASP meta heuristic strategy for the
problem of scheduling dependent tasks in different machines

1 Introduction

The task-scheduling problem has its background in industrial planning [1] and in
task-scheduling in the processors of the beginning of microelectronics [2]. That kind
of problem can be defined, from the point of view of combinatory optimization [3],
as follows:

Considering M machines (considered processors) and N tasks with Tij time units
of duration for each i-esim task executed in the j-esim machine, we wish to program
the N tasks in the M machines, trying to obtain the most appropriate execution order,

Please use the foUowing format when citing this chapter:

Anticona, M.T., 2006, in IFIP International Federation for Information Processing, Volume 217, Artificial Intelligence in
Theory and Practice, ed. M. Bramer, (Boston: Springer), pp. 325-334.

326 Artificial Intelligence in Theory and Practice

fulfilling certain conditions that satisfy the optimality of the required solution for the
problem.

The scheduling problem presents a series of variants depending on the nature and
the behavior of both, tasks and machines. One of the most difficult to present
variants, due to its high computational complexity is that in which the tasks are
dependent and the machines are different.

In this variant each task has a list of predecessors and to be executed it must wait
until such is completely processed. We must add to this situation the characteristic of
heterogeneity of the machines: each task lasts different execution times in each
machine. The objective will be to minimize the accumulated execution time of the
machines, known as makespan [3]

Observing the state of the art of the problem we see that both its practical direct
application on industry and its academic importance, being a NP-difficult problem,
justifies the design of a heuristic algorithm that search for an optimal solution for the
problem, since there are no exact methods to solve the problem. In many industries
such as assembling, bottling, manufacture, etc., we see production lines where wait
periods by task of the machines involved and saving the resource time are very
important topics and require convenient planning.

From the previous definition we can present a mathematical model for the
problem as in the following illustration and where it is true that:
• Xo represents makespan
• Xij will be 0 if the j-esim machine does not execute the i-esim task and 1 on the

contrary.

Minimize X^

s.a X j

M

7=1

A'

= 1 Vfe

*x,.

I..N

Vjel M

Fig. 1. A mathematical model for the task-scheduling problem.

1.1 Existing methods to solve the task-scheduling problem and its variants

The existing solutions that pretend to solve the problem, can be divided in two
groups: exact methods and approximate methods.

Exact methods [6, 7, 8, 9] try to find a sole hierarchic plan by analyzing all
possible task orders or processes involved in the production line (exhaustive

Artificial Intelligence in Theory and Practice 327

exploration). Nevertheless, a search and scheduHng strategy that analyzes every
possible combination is computationally expensive and it only works for some kinds
(sizes) of instances.

Approximate methods [3, 4 and 5] on the other hand, do try to solve the most
complex variants in which task and machine behavior intervenes as we previously
mentioned. These methods do not analyze exhaustively every possible pattern
combinations of the problem, but rather choose those that fulfill certain criteria. In
the end, we obtain sufficiently good solutions for the instances to be solved, what
justifies its use.

1.2 Heuristic Methods to Solve the Task-scheduling variant

According to the nature of the machines and tasks, the following subdivision
previously presented may be done:
• Identical machines and independent tasks
• Identical machines and dependent tasks
• Different machines and independent tasks
• Different machines and dependent tasks: the most complex model to be studied

in this document.

Some of the algorithms proposed are:
A Greedy algorithm for identical machines propose by Campello and Maculan

[3]: the proposal of the authors is to define the problem as a discreet programming
one (what is possible since it is of the NP-difficult class), as we saw before.

Using also. Greedy algorithms for different machines and independent tasks, like
in the case of Tupia [10] The author presents the case of the different machines and
independent tasks. Campello and Maculan's model was adapted, taking into
consideration that there were different execution times for each machine: this is, the
matrix concept that it is the time that the i-esim task takes to be executed by the j -
esim machine appears.

A GRASP algorithm, as Tupia [11]. The author presents here, the case of the
different machines and independent tasks. In this job the author extended the Greedy
criteria of the previous algorithm applying the conventional phases of GRASP
technique and improving in about 10% the results of the Greedy algorithm for
instances of up to 12500 variables (250 tasks for 50 machines).

1.3 GRASP Algorithms

• GRASP algorithms (for Greedy Randomized Adaptive Search Procedure) are
meta heuristic techniques. T. Fee and M. Resende developed such technique by
the end of the 80's [5] While the Greedy criteria let us select only the best value
of the objective function, GRASP algorithms relax or increase this criteria in

328 Artificial Intelligence in Theory and Practice

such a way that, instead of selecting a sole element, it forms a group of
elements, that candidate to be part of the solution group and fulfill certain
conditions, it is about this group that a random selection of some of its elements.

This is the general scheme for GRASP technique:

GRASP Procedure (Instance of the problem)

1. While <stop-condltlon is not taie> do

1.1 Constnjction Phase (Sk)

1.2 Improvement Phase (Sk)

2. Return (Best Sk)

End GRASP

Fig. 2. General structure of GRASP algorithm

About this algorithm we can affirm:

Line 1: the GRASP procedure will continue while the stop condition is not
flilfilled. The stop condition can be of several kinds: optimality (the result obtained
presents a certain degree of approximation to the exact solution or it is optimal
enough); number of executions carried out (number of interactions); processing time
(the algorithm will be executed during a determined period of time).

Lines 1.1 and 1.2: the two main phases of a GRASP algorithm are executed,
later: construction stage of the adapted random Greedy solution; and the stage of
improvement of the previously constructed solution (combinatorial analyses of most
cases).

2 Proposed GRASP Algorithm

We must start from the presumption that there is a complete job instance that
includes what follows: a quantity of task and machines (N and M respectively); an
execution time matrix T and the lists of predecessors for each task in case there were
any.

2.1 Data structures used by the algorithm

Let us think that there is at least one task with predecessors that will become the
initial one within the batch, as well as there are no circular references among
predecessor tasks that impede their correct execution:

Processing Time Matrix T: (Tij) MxN, where each entry represents the time it takes

the i-esim machine to execute the i-esim task.

Artificial Intelligence in Theory and Practice 329

Accumulated Processing Times Vector A: (A), where each entry Ai is the

accumulated working time of Mi machine.

Pk. Set of predecessor tasl<s of Jk task.

Vector U: (Uk) with the finalization time of each Jk task.

Vector V: (Vk) with the finalization time of each predecessor task of Jk, where it is true

that Vk = = max{U^},J^ e P^

Si! Set of tasks assigned to Mi machine.

E: Set of scheduled tasks

C: Set of candidate tasks to be scheduled

Fig. 3. Data structures used by the algorithm

We are going to propose to selection criteria during the development of the
GRASP algorithm, what is going to lead us to generate two relaxation constants
instead of only one:

• Random GRASP selection criteria for the best task to be programmed, using
relaxation constant a.

• Random selection criteria for the best machine that will execute the task selected
before, using an additional 0 parameter.

2.2 Selection criteria for the best task

These criteria bases on the same principles as the Greedy algorithm presented before:

Identifying the tasks able to be programmed: this is, thdse that have not been
programmed yet and its predecessors that have already been executed (or do not
present predecessors).

For each one of the tasks able, we have to generate the same list as in the Greedy
algorithm: accumulated execution times shall be established starting from the end of
the last predecessor task executed.

The smallest element from each list must be found and stored in another list of
local minimums. We shall select the maximum and minimum values of the variables
out of this new list of local minimums: worst and best respectively.

We will form a list of candidate tasks RCL analyzing each entry of the list of
local minimums: if the corresponding entry is within the interval [best, best+
a*(worst-best)] then it becomes part of the RCL. A task is chosen by chance out of
those that form the RCL.

330 Artificial Intelligence in Theory and Practice

2. 3 Selection criteria for the best machine

Once a task has been selected out of RCL, we look for the best machine that can
execute it. This is the main novelty of the algorithm proposed. The steps to be
followed are the next ones:

The accumulated time vector is formed once again from the operation of the
predecessors of the j-esim task, which is being object of analyses. Maximum and
minimum values of the variables are established: worst and best respectively.

Then we form the list of candidate machines MCL: each machine that executes
the j-esim task in a time that is in the interval (best, best+ 0*(worst-best)) is part of
the MCL. Likewise, we will select one of them by chance, which will be the
executioner of the j-esim task.

2. 4 Presentation of the algorithm

GRASP Algorithm_Construction (M, N, T, A, S, U, V, a, 9)

1.

2.

3.

Read and initialize N, M, a, 6, Ji, J2,...,JN, T , A, S, U, V

E = 0

While |£| #Wdo

3.1 C a 0

3.2 best = + 00

3.3 worst = 0

3.4 For 1:1 to N do

l f {P ,cE) '^{J , e E) = > C = C u{J,}

3.5 Bmin = 0

3.6 For each J, e C do

3.6.1 VL = max ^^,;,Jt/,}

End for 3.6

3.7 best = Min {Smm} {Selection of the best task. Formation of RCL}

3.8 worst = Max {Smm}

3.9 RCL = 0

3.10 For each J, e C do

" ^inp.lx,M]{Tpi +max{^^,r ,}} e [best, best + a* (worst-best)] =>
RCL = RCL u {J,}

3.11 k = ArgRandomjLeRcURCL}

3.12 MCL = 0 {Selection of the best machine}

3.13 best = Mm^,(,3„ {r, , + max{^^ , F,} }
3.14 worst = Max^^f ,^3 {T^, + max {A^, K,}}
3.15 For i:1 to M do

Artificial Intelligence in Theory and Practice 331

If 7̂ ^ + m a x (4 , V J e [best, best + 0* (worst-best)] => MCL = MCL u

{Mi}

3.16 i = ArgAleatorio ^ ^^^i {MCL}
3.17 5,= 5 , U { J J

3.18 E = E ^{J^}

3 . 1 9 A = 7 ; . , + m a x { 4 , F , }

3.20 Uk = A
End While 3
4. makespan = maXj_^, j j^ 4
5. Return 5,., V i e [1 ,M]
End GRASP Algorlthm_construction

Comments on the GRASP Algorithm proposed:

Line 1: entry of the variables e initialization of the data structures needed for
the working instance as N, M, T, A, U, V, E, Si for each machine, a, 9 etc.
Line 2: the process ends when all the programmed tasks of the batch are in
group E.
Line 3.1: the list of apt tasks C is initialized empty.
Line 3.2: best and worst variables that will be used to work the intervals of
the relaxation criteria are initialized.
Line 3.4: the list of apt tasks C is formed
Line 3.5: the list of local minimums Bmin is initialized.
Line 3.6 - 3.6.2: entries corresponding to list V are actualized; list Bmin is
formed adding each minor element of the accumulated time list of each task.
Lines 3.7 - 3.8: maximum and minimum values of Bmin are assigned to
worst and best variables respectively.
Line 3.9: RCL list is initialized empty
Lines 3.10 - 3.11: RCL list is formed when the condition
^'"ps[iM]{Tp, +max{^p,K,}} e [best, best + a* (worst-best)] is true, then
an element from this list (k) is chosen by chance.
Lines 3.12 - 3.16: minimum and maximum execution times for the task
selected in 3.11 are chosen. MCL will form from the machines that execute
such task fulfilling the condition: T.^ + max{ ^,.,Kj} e [best, best + 6*
(worst-best)]. In the end a machine is also chosen in an aleatoric way
(variable i).
Lines 3.17 - 3.20: structures E, A, U and Si are actualized where it
corresponds.
Line 3: makespan is determined as the major entry of A.
Line 4: assigned results found are given back.

332 Artificial Intelligence in Theory and Practice

3. Numeric Experiences

The instances with which the algorithm was tested are formed by an M quantity of
machines, N of task and a T matrix of execution times. The values used for M and N,
respectively, were:

• Number of tasks N: within the interval of 100 to 250, taking 100, 150, 200 and
250 values as points of reference.

• Number of machines M: a maximum of 50 machines taking 12, 25, 37 and 50
values as point of reference.

• Processing time matrix: it will be generated in a random way with values from 1
to 100 time units'.

We have a total of 16 combinations for the machine-tasks combinations.
Likewise, for each combination 10 different instances will be generated, which gives
a total of 160 test problems solved.

3.1 Quality of the GRASP solution compared to a simply Greedy solution

As there is no literature on pre-determined test instances for such problem, we
decided to confront the results with those of a Greedy algorithm^. In the first
summary table average results of Greedy and GRASP algorithms execution (in that
order) over the respective instances are shown; CPU times consumed by both
algorithms, the quantity of executed iterations in the GRASP Construction phase and
the values assigned to constants a and 0; finally the efficiency of the GRASP result
over the Greedy result calculated as follows is also shown: 1-(GRASP Result/Greedy
Result)

Machine \
Task

100\ 12
100\25
100\37
100\50
150\12
150\25
150\37
150\50
200 U 2
200 \ 25
200 \ 37
200 \ 50
250 \ 12
250\25
250\37
250\50

Mal^espan
Greedy

213.3
113.7

75.5
59.1

283.1
125.2

86.1
68.6

325.9
127

109.8
76.4

411.8
183.5
125.3
96.5

CPU Used
Time

0.56
0.59
0.56
0.52
0.58
0.52
0,55
0.53
0.54
0.57
0.57
0.47
0.46
0.58
0.57
0.55

GRASP

Mat<espan
193.7
108.6

74.3
57.8

258.2
114

84.1
67.4
307
117

105.2
74.6

377.1
168.2
119.6

91.1

w

0.26
0.24

0.155
0.145

0.25
0.21

0.155
0.115

0.07
0.247
0.112
0.155

0.15
0.28
0.26

0,123

KJ

0,04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0,01
0.01
0.01
0.01
0,01
0,01
0,01

iterations
(Average)

3750
3750
3750
3750
3000
3000
3000
3000
2500
2500
2500
2500
2500
2500
2500
2500

CPU Used
Time

102,53
115,8
127,6

140,91
151,18
170,49

201,7
224,35
216,83

229,2
248.75
274.58

249.2
282.34
309.03
343.32

Efficient

Efficient

9.189%
4.485%
2.876%
2.200%
8.795%
8,946%
2,323%
1,749%
5,799%
7,874%
4,189%
2,356%
8,426%
8.338%
4.549%
5.596%
5.481%

Table 1. Summary table of GRASP vs. Greedy numeric experiments

We shall notice that a very high execution time (+ oo) may be interpreted as if the machine
does not execute a determined task. In this case an execution time equal to 0 may be
confuse as the machine executes the task so fast that it does it instantaneously, without
taking time

: In order to have a Greedy behavior it is enough to make constant a equal to 0 without
regardless of selection of the best machine; that is why the algorithm is not added.

Artificial Intelligence in Theory and Practice 333

3.2 Real quality of the GRASP solution confronted with mathematical model's

solutions

In order to determine the real quality of the solutions we decided to apply the
mathematical model of the problem to linear programming problem solver packages
as LINDO tool in its student version, in order to obtain exact solutions and confront
them with those of the proposed GRASP algorithm.

The two tables that follow summarize the exact results obtained confronted with
the heuristic (voracious solution) and meta heuristic (GRASP solution) results. In
addition to this we will present the values of the relaxation constants used for the
GRASP construction phase where nearly 7000 iterations for all the cases were
carried out.

Table 2. Experimental results for M = 3

M u t i i x

••j,L.- 0

'::• 1

t^:•-• 2

•JrJ 0

L;J 1
L-..J 2
: > 5 0
1 > 5 1
:"-:5 2
1 « J 0
i:--i I
l;ix3 2

N
6
6
6
8
S
8
12
12
12
15
15
15

M
3
3
3
3
3
3
3
3
,3
•3
3

3

Undo Model

2S
67
15
-10
8S
64
130
121
80

: 162 .'
•125- '
164

Efficient in

Greedy
Algorithm

35
67
87
45
102
82
162

•134
tog
2D1 •

' 137
190

ean

GRASP
Algorithm

35
67
85
44
102
64
162
121
89
16S
125
176

%
Lutdo.'Greedy

25.00%
0.00%
16.00%
12.50%
15.91%
28.13%
24 62%
10 74%
35.00%
24 07%
9.60%
15 85%.
18.12%

%
Lindo/GRASP

0.00%
• 0.00%

2.30%
2.22%.
0.00%

21.95%
•000%
9.70%
17.59%.
16.42%
8.76%
7,37%,
7 19%

Table 3. Experimental results for M = 5

Matr ix

10x5 0

10x5 1

10x5 2

15x5 0

15x5 1

15x5,2

20x5 0

20x5 1

20x5 2

25x5 0

25x5 1

25x5 2

N

10

10

10

15

15

15

20

20

20

25

25

25

M

5

5

5

5

5

5

Jj

5

5

5

5

5

Lindo M o d e l

45 ••

40 •

61

59 •

6 4

41

SS

66

82

96

109

86

EHicient m

Greedy
AlgDrithm

• 61

52;

7 4

60'

•77-

65

121

74

115

121

147

96

G R A S P
Algorithm

• 46

40

- 61

59

6 4

41

106

66

S7

113

129

96

eaji

Lindo/Greedy

35 .56%

30.00%

2 1 . 3 1 %

• 1.69% ,

• 2 0 . 3 1 %

58.54%

37 .50%

12.12%

43 .24%

26 .04%

34.36%

11.63%

2 7 . 4 3 %

%
LindD/GRASP

24 .59%

23 .08%

17.57%

1.67%

16 SS%

36 .92% .

12,40%

10 8 1 %

24 ,35%

6 . 6 1 %

12.24%

0.00%

15.59%

334 Artificial Intelligence in Theory and Practice

4. Conclusions

Both criteria adapted to the kind of algorithm presented: the criteria were voracious
in the case of the voracious algorithm (un-modifiable selection); or adaptable and
random as in the case of the GRASP algorithm. In the literature there are not any
GRASP algorithm that considers a double relaxation criteria at the moment of
making the correspondent selections: conventional GRASP ones, were just part of a
RCL list of candidates for the tasks to be executed. In 100% of the cases the result of
the GRASP algorithm is better than that of voracious algorithm for high enough test
instances (proportion 4 to 1, 5 to 1). In small instances it is at least equal to the
voracious solution or it does not reach the same level by a very little percentage. The
percentage of advantage of the GRASP algorithm confronted to the voracious
algorithm is in average 5%.

GRASP algorithm get much closer to the exact solution for analyzed instances,
within an average range of 5% to 9% of those solutions. In multiple cases it equals
the solution, behavior that has been seen as we reduce the task-machine proportions,
this is, when the number of available machine increases.

REFERENCES

[I] G. Miller, E. Galanter. Plans and the Structure of Behavior. Holt Editorial, 1960.
[2] M. Drozdowski. Scheduling multiprocessor tasks: An overview. European
Journal Operation Research, 1996, pp. 215 - 230.
[3] R. Campello, N. Maculan. Algorithms e Heun'sticas: desenvolvimiento e
avaliayao de performance. Apolo Nacional Editores. Brasil, 1992.
[4] M. Pinedo. Scheduling: Theory, Algorithms and Systems, Prentice Hall, 2002.
[5] T. Feo, M. Resende, Greedy Randomized Adaptive Search Procedure. In Journal
of Global Optimization, No. 6, 1995, pp. 109-133.
[6] W. Ranch, Aplicaciones de la inteligencia Artificial en la actividad empresarial,
la ciencia y la industria - tomo II. Editorial Diaz de Santos. Espaiia, 1989.
[7] P. Kumara Artificial Intelligence: Manufacturing theory and practice. NorthCross
- Institute of Industrial Engineers, 1988.
[8] A. Blum, M. Furst. Fast Planning through Plan-graph Analysis. In 14th
International Joint Conference on Artificial Intelligence. Morgan- Kaufmann
Editions, 1995, pp. 1636 -1642.
[9] R. Conway. Theory of Scheduling, Addison-Wesley Publishing Company, 1967
[10] M. Tupia. Algoritmo voraz para resolver el problema de la programacion de
tareas dependientes en maquinas diferentes. In International Conference of
Industrial Logistics (7, 2005, Uruguay) ICIIL. Editors. H. Cancela, Montevideo -
Uruguay, 2005, p. 345.
[II] M. Tupia., D. Mauricio. Un algoritmo GRASP para resolver el problema de la
programacion de tareas dependientes en maquinas diferentes. In CLEI (30, 2004,
Peru) Editors. M. Solar, D. Femandez-Baca, E. Cuadros-Vargas, Arequipa - Peru,
2004, pp. 129—139.

