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Abstract. Industrial planning has experienced notable advancements since its 
beginning by the middle of the 20th century. The importance of its application 
within the several industries where it is used has been demonstrated, regardless 
of the difficulty of the design of the exact algorithms that solve the variants. 
Heuristic methods have been applied for planning problems due to their high 
complexity; especially Artificial Intelligence when developing new strategies 
to solve one of the most important variants called task scheduling. It is 
possible to define task scheduling as: .a set of N production line tasks and M 
machines, which can execute those tasks, where the goal is to find an 
execution order that minimizes th» accumulated execution time, known as 
makespan. This paper presents a GRASP meta heuristic strategy for the 
problem of scheduling dependent tasks in different machines 

1 Introduction 

The task-scheduling problem has its background in industrial planning [1] and in 
task-scheduling in the processors of the beginning of microelectronics [2]. That kind 
of problem can be defined, from the point of view of combinatory optimization [3], 
as follows: 

Considering M machines (considered processors) and N tasks with Tij time units 
of duration for each i-esim task executed in the j-esim machine, we wish to program 
the N tasks in the M machines, trying to obtain the most appropriate execution order, 
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fulfilling certain conditions that satisfy the optimality of the required solution for the 
problem. 

The scheduling problem presents a series of variants depending on the nature and 
the behavior of both, tasks and machines. One of the most difficult to present 
variants, due to its high computational complexity is that in which the tasks are 
dependent and the machines are different. 

In this variant each task has a list of predecessors and to be executed it must wait 
until such is completely processed. We must add to this situation the characteristic of 
heterogeneity of the machines: each task lasts different execution times in each 
machine. The objective will be to minimize the accumulated execution time of the 
machines, known as makespan [3] 

Observing the state of the art of the problem we see that both its practical direct 
application on industry and its academic importance, being a NP-difficult problem, 
justifies the design of a heuristic algorithm that search for an optimal solution for the 
problem, since there are no exact methods to solve the problem. In many industries 
such as assembling, bottling, manufacture, etc., we see production lines where wait 
periods by task of the machines involved and saving the resource time are very 
important topics and require convenient planning. 

From the previous definition we can present a mathematical model for the 
problem as in the following illustration and where it is true that: 
• Xo represents makespan 
• Xij will be 0 if the j-esim machine does not execute the i-esim task and 1 on the 

contrary. 

Minimize X^ 

s.a X j 

M 

7=1 

A' 

= 1 Vfe 

*x,. 

I..N 

Vjel M 

Fig. 1. A mathematical model for the task-scheduling problem. 

1.1 Existing methods to solve the task-scheduling problem and its variants 

The existing solutions that pretend to solve the problem, can be divided in two 
groups: exact methods and approximate methods. 

Exact methods [6, 7, 8, 9] try to find a sole hierarchic plan by analyzing all 
possible task orders or processes involved in the production line (exhaustive 
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exploration). Nevertheless, a search and scheduHng strategy that analyzes every 
possible combination is computationally expensive and it only works for some kinds 
(sizes) of instances. 

Approximate methods [3, 4 and 5] on the other hand, do try to solve the most 
complex variants in which task and machine behavior intervenes as we previously 
mentioned. These methods do not analyze exhaustively every possible pattern 
combinations of the problem, but rather choose those that fulfill certain criteria. In 
the end, we obtain sufficiently good solutions for the instances to be solved, what 
justifies its use. 

1.2 Heuristic Methods to Solve the Task-scheduling variant 

According to the nature of the machines and tasks, the following subdivision 
previously presented may be done: 
• Identical machines and independent tasks 
• Identical machines and dependent tasks 
• Different machines and independent tasks 
• Different machines and dependent tasks: the most complex model to be studied 

in this document. 

Some of the algorithms proposed are: 
A Greedy algorithm for identical machines propose by Campello and Maculan 

[3]: the proposal of the authors is to define the problem as a discreet programming 
one (what is possible since it is of the NP-difficult class), as we saw before. 

Using also. Greedy algorithms for different machines and independent tasks, like 
in the case of Tupia [10] The author presents the case of the different machines and 
independent tasks. Campello and Maculan's model was adapted, taking into 
consideration that there were different execution times for each machine: this is, the 
matrix concept that it is the time that the i-esim task takes to be executed by the j -
esim machine appears. 

A GRASP algorithm, as Tupia [11]. The author presents here, the case of the 
different machines and independent tasks. In this job the author extended the Greedy 
criteria of the previous algorithm applying the conventional phases of GRASP 
technique and improving in about 10% the results of the Greedy algorithm for 
instances of up to 12500 variables (250 tasks for 50 machines). 

1.3 GRASP Algorithms 

• GRASP algorithms (for Greedy Randomized Adaptive Search Procedure) are 
meta heuristic techniques. T. Fee and M. Resende developed such technique by 
the end of the 80's [5] While the Greedy criteria let us select only the best value 
of the objective function, GRASP algorithms relax or increase this criteria in 
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such a way that, instead of selecting a sole element, it forms a group of 
elements, that candidate to be part of the solution group and fulfill certain 
conditions, it is about this group that a random selection of some of its elements. 

This is the general scheme for GRASP technique: 

GRASP Procedure (Instance of the problem) 

1. While <stop-condltlon is not taie> do 

1.1 Constnjction Phase (Sk) 

1.2 Improvement Phase (Sk) 

2. Return (Best Sk) 

End GRASP 

Fig. 2. General structure of GRASP algorithm 

About this algorithm we can affirm: 

Line 1: the GRASP procedure will continue while the stop condition is not 
flilfilled. The stop condition can be of several kinds: optimality (the result obtained 
presents a certain degree of approximation to the exact solution or it is optimal 
enough); number of executions carried out (number of interactions); processing time 
(the algorithm will be executed during a determined period of time). 

Lines 1.1 and 1.2: the two main phases of a GRASP algorithm are executed, 
later: construction stage of the adapted random Greedy solution; and the stage of 
improvement of the previously constructed solution (combinatorial analyses of most 
cases). 

2 Proposed GRASP Algorithm 

We must start from the presumption that there is a complete job instance that 
includes what follows: a quantity of task and machines (N and M respectively); an 
execution time matrix T and the lists of predecessors for each task in case there were 
any. 

2.1 Data structures used by the algorithm 

Let us think that there is at least one task with predecessors that will become the 
initial one within the batch, as well as there are no circular references among 
predecessor tasks that impede their correct execution: 

Processing Time Matrix T: (Tij) MxN, where each entry represents the time it takes 

the i-esim machine to execute the i-esim task. 
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Accumulated Processing Times Vector A: (A), where each entry Ai is the 

accumulated working time of Mi machine. 

Pk. Set of predecessor tasl<s of Jk task. 

Vector U: (Uk) with the finalization time of each Jk task. 

Vector V: (Vk) with the finalization time of each predecessor task of Jk, where it is true 

that Vk = = max{U^},J^ e P^ 

Si! Set of tasks assigned to Mi machine. 

E: Set of scheduled tasks 

C: Set of candidate tasks to be scheduled 

Fig. 3. Data structures used by the algorithm 

We are going to propose to selection criteria during the development of the 
GRASP algorithm, what is going to lead us to generate two relaxation constants 
instead of only one: 

• Random GRASP selection criteria for the best task to be programmed, using 
relaxation constant a. 

• Random selection criteria for the best machine that will execute the task selected 
before, using an additional 0 parameter. 

2.2 Selection criteria for the best task 

These criteria bases on the same principles as the Greedy algorithm presented before: 

Identifying the tasks able to be programmed: this is, thdse that have not been 
programmed yet and its predecessors that have already been executed (or do not 
present predecessors). 

For each one of the tasks able, we have to generate the same list as in the Greedy 
algorithm: accumulated execution times shall be established starting from the end of 
the last predecessor task executed. 

The smallest element from each list must be found and stored in another list of 
local minimums. We shall select the maximum and minimum values of the variables 
out of this new list of local minimums: worst and best respectively. 

We will form a list of candidate tasks RCL analyzing each entry of the list of 
local minimums: if the corresponding entry is within the interval [best, best+ 
a*(worst-best)] then it becomes part of the RCL. A task is chosen by chance out of 
those that form the RCL. 
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2. 3 Selection criteria for the best machine 

Once a task has been selected out of RCL, we look for the best machine that can 
execute it. This is the main novelty of the algorithm proposed. The steps to be 
followed are the next ones: 

The accumulated time vector is formed once again from the operation of the 
predecessors of the j-esim task, which is being object of analyses. Maximum and 
minimum values of the variables are established: worst and best respectively. 

Then we form the list of candidate machines MCL: each machine that executes 
the j-esim task in a time that is in the interval (best, best+ 0*(worst-best)) is part of 
the MCL. Likewise, we will select one of them by chance, which will be the 
executioner of the j-esim task. 

2. 4 Presentation of the algorithm 

GRASP Algorithm_Construction (M, N, T, A, S, U, V, a, 9) 

1. 

2. 

3. 

Read and initialize N, M, a, 6, Ji, J2,...,JN, T , A, S, U, V 

E = 0 

While |£| #Wdo 

3.1 C a 0 

3.2 best = + 00 

3.3 worst = 0 

3.4 For 1:1 to N do 

l f {P ,cE) '^{J , e E ) = > C = C u{J,} 

3.5 Bmin = 0 

3.6 For each J, e C do 

3.6.1 VL = max ^^,;,Jt/,} 

End for 3.6 

3.7 best = Min {Smm} {Selection of the best task. Formation of RCL} 

3.8 worst = Max {Smm} 

3.9 RCL = 0 

3.10 For each J, e C do 

" ^inp.lx,M]{Tpi +max{^^,r ,}} e [best, best + a* (worst-best)] => 
RCL = RCL u {J,} 

3.11 k = ArgRandomjLeRcURCL} 

3.12 MCL = 0 {Selection of the best machine} 

3.13 best = Mm^,(,3„ {r, , + max{^^ , F,} } 
3.14 worst = Max^^f ,^3 {T^, + max {A^, K,}} 
3.15 For i:1 to M do 
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If 7̂ ^ + m a x ( 4 , V J e [best, best + 0* (worst-best)] => MCL = MCL u 

{Mi} 

3.16 i = ArgAleatorio ^ ^^^i {MCL} 
3.17 5,= 5 , U { J J 

3.18 E = E ^{J^} 

3 . 1 9 A = 7 ; . , + m a x { 4 , F , } 

3.20 Uk = A 
End While 3 
4. makespan = maXj_^, j j^ 4 
5. Return 5,., V i e [1 ,M] 
End GRASP Algorlthm_construction 

Comments on the GRASP Algorithm proposed: 

Line 1: entry of the variables e initialization of the data structures needed for 
the working instance as N, M, T, A, U, V, E, Si for each machine, a, 9 etc. 
Line 2: the process ends when all the programmed tasks of the batch are in 
group E. 
Line 3.1: the list of apt tasks C is initialized empty. 
Line 3.2: best and worst variables that will be used to work the intervals of 
the relaxation criteria are initialized. 
Line 3.4: the list of apt tasks C is formed 
Line 3.5: the list of local minimums Bmin is initialized. 
Line 3.6 - 3.6.2: entries corresponding to list V are actualized; list Bmin is 
formed adding each minor element of the accumulated time list of each task. 
Lines 3.7 - 3.8: maximum and minimum values of Bmin are assigned to 
worst and best variables respectively. 
Line 3.9: RCL list is initialized empty 
Lines 3.10 - 3.11: RCL list is formed when the condition 
^'"ps[iM]{Tp, +max{^p,K,}} e [best, best + a* (worst-best)] is true, then 
an element from this list (k) is chosen by chance. 
Lines 3.12 - 3.16: minimum and maximum execution times for the task 
selected in 3.11 are chosen. MCL will form from the machines that execute 
such task fulfilling the condition: T.^ + max{ ^,.,Kj} e [best, best + 6* 
(worst-best)]. In the end a machine is also chosen in an aleatoric way 
(variable i). 
Lines 3.17 - 3.20: structures E, A, U and Si are actualized where it 
corresponds. 
Line 3: makespan is determined as the major entry of A. 
Line 4: assigned results found are given back. 
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3. Numeric Experiences 

The instances with which the algorithm was tested are formed by an M quantity of 
machines, N of task and a T matrix of execution times. The values used for M and N, 
respectively, were: 

• Number of tasks N: within the interval of 100 to 250, taking 100, 150, 200 and 
250 values as points of reference. 

• Number of machines M: a maximum of 50 machines taking 12, 25, 37 and 50 
values as point of reference. 

• Processing time matrix: it will be generated in a random way with values from 1 
to 100 time units'. 

We have a total of 16 combinations for the machine-tasks combinations. 
Likewise, for each combination 10 different instances will be generated, which gives 
a total of 160 test problems solved. 

3.1 Quality of the GRASP solution compared to a simply Greedy solution 

As there is no literature on pre-determined test instances for such problem, we 
decided to confront the results with those of a Greedy algorithm^. In the first 
summary table average results of Greedy and GRASP algorithms execution (in that 
order) over the respective instances are shown; CPU times consumed by both 
algorithms, the quantity of executed iterations in the GRASP Construction phase and 
the values assigned to constants a and 0; finally the efficiency of the GRASP result 
over the Greedy result calculated as follows is also shown: 1-(GRASP Result/Greedy 
Result) 

Machine \ 
Task 

100\ 12 
100\25 
100\37 
100\50 
150\12 
150\25 
150\37 
150\50 
200 U 2 
200 \ 25 
200 \ 37 
200 \ 50 
250 \ 12 
250\25 
250\37 
250\50 

Mal^espan 
Greedy 

213.3 
113.7 

75.5 
59.1 

283.1 
125.2 

86.1 
68.6 

325.9 
127 

109.8 
76.4 

411.8 
183.5 
125.3 
96.5 

CPU Used 
Time 

0.56 
0.59 
0.56 
0.52 
0.58 
0.52 
0,55 
0.53 
0.54 
0.57 
0.57 
0.47 
0.46 
0.58 
0.57 
0.55 

GRASP 

Mat<espan 
193.7 
108.6 

74.3 
57.8 

258.2 
114 

84.1 
67.4 
307 
117 

105.2 
74.6 

377.1 
168.2 
119.6 

91.1 

w 

0.26 
0.24 

0.155 
0.145 

0.25 
0.21 

0.155 
0.115 

0.07 
0.247 
0.112 
0.155 

0.15 
0.28 
0.26 

0,123 

KJ 

0,04 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0,01 
0.01 
0.01 
0.01 
0,01 
0,01 
0,01 

iterations 
(Average) 

3750 
3750 
3750 
3750 
3000 
3000 
3000 
3000 
2500 
2500 
2500 
2500 
2500 
2500 
2500 
2500 

CPU Used 
Time 

102,53 
115,8 
127,6 

140,91 
151,18 
170,49 

201,7 
224,35 
216,83 

229,2 
248.75 
274.58 

249.2 
282.34 
309.03 
343.32 

Efficient 

Efficient 

9.189% 
4.485% 
2.876% 
2.200% 
8.795% 
8,946% 
2,323% 
1,749% 
5,799% 
7,874% 
4,189% 
2,356% 
8,426% 
8.338% 
4.549% 
5.596% 
5.481% 

Table 1. Summary table of GRASP vs. Greedy numeric experiments 

We shall notice that a very high execution time (+ oo) may be interpreted as if the machine 
does not execute a determined task. In this case an execution time equal to 0 may be 
confuse as the machine executes the task so fast that it does it instantaneously, without 
taking time 

: In order to have a Greedy behavior it is enough to make constant a equal to 0 without 
regardless of selection of the best machine; that is why the algorithm is not added. 
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3.2 Real quality of the GRASP solution confronted with mathematical model's 

solutions 

In order to determine the real quality of the solutions we decided to apply the 
mathematical model of the problem to linear programming problem solver packages 
as LINDO tool in its student version, in order to obtain exact solutions and confront 
them with those of the proposed GRASP algorithm. 

The two tables that follow summarize the exact results obtained confronted with 
the heuristic (voracious solution) and meta heuristic (GRASP solution) results. In 
addition to this we will present the values of the relaxation constants used for the 
GRASP construction phase where nearly 7000 iterations for all the cases were 
carried out. 

Table 2. Experimental results for M = 3 

M u t i i x 

••j,L.- 0 

'::• 1 

t^:•-• 2 

•JrJ 0 

L;J 1 
L-..J 2 
: > 5 0 
1 > 5 1 
:"-:5 2 
1 « J 0 
i:--i I 
l;ix3 2 

N 
6 
6 
6 
8 
S 
8 
12 
12 
12 
15 
15 
15 

M 
3 
3 
3 
3 
3 
3 
3 
3 
,3 
•3 
3 

3 

Undo Model 

2S 
67 
15 
-10 
8S 
64 
130 
121 
80 

: 162 .' 
•125- ' 
164 

Efficient in 

Greedy 
Algorithm 

35 
67 
87 
45 
102 
82 
162 

•134 
tog 
2D1 • 

' 137 
190 

ean 

GRASP 
Algorithm 

35 
67 
85 
44 
102 
64 
162 
121 
89 
16S 
125 
176 

% 
Lutdo.'Greedy 

25.00% 
0.00% 
16.00% 
12.50% 
15.91% 
28.13% 
24 62% 
10 74% 
35.00% 
24 07% 
9.60% 
15 85%. 
18.12% 

% 
Lindo/GRASP 

0.00% 
• 0.00% 

2.30% 
2.22%. 
0.00% 

21.95% 
•000% 
9.70% 
17.59%. 
16.42% 
8.76% 
7,37%, 
7 19% 

Table 3. Experimental results for M = 5 

Matr ix 

10x5 0 

10x5 1 

10x5 2 

15x5 0 

15x5 1 

15x5,2 

20x5 0 

20x5 1 

20x5 2 

25x5 0 

25x5 1 

25x5 2 

N 

10 

10 

10 

15 

15 

15 

20 

20 

20 

25 

25 

25 

M 

5 

5 

5 

5 

5 

5 

Jj 

5 

5 

5 

5 

5 

Lindo M o d e l 

45 •• 

40 • 

61 

59 • 

6 4 

41 

SS 

66 

82 

96 

109 

86 

EHicient m 

Greedy 
AlgDrithm 

• 61 

52; 

7 4 

60' 

•77-

65 

121 

74 

115 

121 

147 

96 

G R A S P 
Algorithm 

• 46 

40 

- 61 

59 

6 4 

41 

106 

66 

S7 

113 

129 

96 

eaji 

Lindo/Greedy 

35 .56% 

30.00% 

2 1 . 3 1 % 

• 1.69% , 

• 2 0 . 3 1 % 

58.54% 

37 .50% 

12.12% 

43 .24% 

26 .04% 

34.36% 

11.63% 

2 7 . 4 3 % 

% 
LindD/GRASP 

24 .59% 

23 .08% 

17.57% 

1.67% 

16 SS% 

36 .92% . 

12,40% 

10 8 1 % 

24 ,35% 

6 . 6 1 % 

12.24% 

0.00% 

15.59% 
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4. Conclusions 

Both criteria adapted to the kind of algorithm presented: the criteria were voracious 
in the case of the voracious algorithm (un-modifiable selection); or adaptable and 
random as in the case of the GRASP algorithm. In the literature there are not any 
GRASP algorithm that considers a double relaxation criteria at the moment of 
making the correspondent selections: conventional GRASP ones, were just part of a 
RCL list of candidates for the tasks to be executed. In 100% of the cases the result of 
the GRASP algorithm is better than that of voracious algorithm for high enough test 
instances (proportion 4 to 1, 5 to 1). In small instances it is at least equal to the 
voracious solution or it does not reach the same level by a very little percentage. The 
percentage of advantage of the GRASP algorithm confronted to the voracious 
algorithm is in average 5%. 

GRASP algorithm get much closer to the exact solution for analyzed instances, 
within an average range of 5% to 9% of those solutions. In multiple cases it equals 
the solution, behavior that has been seen as we reduce the task-machine proportions, 
this is, when the number of available machine increases. 
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