
A Comparative Analysis of Adaptive
Middleware Architectures Based on
Computational Reflection and Aspect

Oriented Programming to Support Mobile
Computing Applications

Celso Maciel da Costa', Marcelo da Silva Strzykalski, and Guy Bernard ̂
1 Pontiflcia Universidade Cat61ica do Rio Grande do Sul, Faculdade

de Informatica, Av. Ipiranga, 6681, predio 30,
bloco 4, Porto Alegre, Brazil ceIso@inf,pucrs.br,

WWW home page: http://www.inf.pucrs.br/~celso
2 Institut Nat ional des Telecommunications, Departement Inforraatique

Rue Charles Fourier, 91000,
Evry, France

guy.bemard@int -evry.fr,
WWW home page: http://etna.int-evry,fr/~bemard

Abstract Mobile computing applications are required to operate in
environments in which the availability for resources and services may change
significantly during system operation. As a result, mobile computing
applications need to be capable of adapting to these changes to offer the best
possible level of service to their users. However, traditional middleware is
limited in its capability of adapting to environment changes and different users
requirements. Computational Reflection and Aspect Oriented Programming
paradigms have been used in the design and implementation of adaptive
middleware architectures. In this paper, we propose two adaptive middleware
architectures, one based on reflection and other based on aspects, which can be
used to develop adaptive mobile applications. The reflection based architecture
is compared to an aspect oriented based architecture from a quantitative
perspective. The results suggest that middleware based on Aspect Oriented
Programming can be used to build mobile adaptive applications that require
less processor running time and more memory space than Computational
Reflection while producing code that is easier to comprehend and modify.

1 Introduction

Recent advances in wireless networking technologies and the growing success of
mobile computing devices are enabling new classes of applications that present new
kinds of problems to designers. These applications have to be aware and adapt to
variations in the system's environment such as fluctuating network bandwidth, low
battery power, slow CPU speed and low memory [1].

In the past decade middleware technologies, which reside between the operating
system and the application, have enhanced the design and the implementation of

Please use the following format when citing this chapter:

da Costa, CM., da Silva Strzykalski, M., Bernard, G., 2006, in IFIP International Federation for Infor­
mation Processing, Volume 211, ed. PujoUe, G., Mobile and Wireless Communication Networks, (Boston:
Springer), pp. 133-148.

134 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

distributed systems. Middleware hides from the programmer the complicated details
about networking communication, remote method invocation and naming providing
an easy platform to build complex distributed systems. However, current generation
of mainstream middleware has been designed for stationary distributed systems,
being heavyweight, inflexible and monolithic |2]. It does not provide support for
dealing with the new dynamic aspects in which mobile computing applications need
to operate nowadays [3].

Mobile computing applications require a middleware that can be adapted to
changes in their execution context and customized to fit in many kinds of devices.
However, conventional middleware is limited in its capability of supporting
adaptation. Adaptive middleware has evolved from conventional middleware to
solve this problem. Such next middleware generation should be run time
configurable and allow inspection and adaptation of the underlying software.
Adaptive middleware provides two types of adaptation: static and dynamic. Static
adaptation occurs during compiling or startup time, while dynamic adaptation occurs
during application run time.

In order to support adaptation, adaptive middleware employs the following
software engineering paradigms in addition to object-oriented programming:
Computational Reflection fl] enables middleware to inspect and adapt itself at
runtime. Component-based design p] enables the decomposition of middleware
functionality making easier to modify the middleware structure both statically and
dynamically. Aspect-Oriented Programming [6] enables separation of middleware
crosscutting concerns (such logging, security and transaction control) at development
time and later at compile or run time, where these concerns can be selectively woven
into application code. Software Design Patterns [7] enable reuse of best adaptive
designs in adaptive middleware.

Separation of concerns is recognized as a fundamental mechanism for managing
the complexity of software systems. Software Engineering methodologies capture
functional and nonfunctional requirements of a software system that should be
designed and implemented. Object oriented paradigm captures well functional
requirements and core concerns (application domain). However, this paradigm has
limitations to modularize crosscutting concerns. The aspect oriented paradigm
proposes a new way for identifying, encapsulating and manipulating nonfiinctional
(system-level) concerns.

This paper presents adaptive middleware architectures based on reflection and
aspects to support adaptation. Sections 2 and 3 introduce Computational Reflection
and Aspect-Oriented Programming related concepts. Section 4 analyzes a set of
requirements that future middleware platforms should incorporate in its architecture
to supporting adaptive mobile applications. Section 5 discusses several adaptation
techniques that can be employed in mobile computing applications to reduce energy
consumption and to allow user interaction when disconnected from the remote
system. Sections 6 and 7 present middleware architectures based on reflection and
aspects to support adaptation. Section 8 describes two prototypes based on both
paradigms, which were developed to validate the architectures proposed. Section 9
evaluates the performance of both prototypes. Section 10 briefly presents and
compares our approach with related work and we outline conclusions and directions
for future works in section 11.

A Comparative Analysis of Adaptive Middleware Architectures Based on 135
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

2 Computational Reflection

Smith [8] and Maes introduced reflective computing systems in the context of
programming language community to support the design of more open and
extensible languages. Such computing systems can be made to manipulate
representations of itself in the same way as it manipulates representations of its
application domain. This self-representation is constituted of both its state and
behavior, and can be used to inspect and adapt the software system's internals.

More specifically, reflection refers to the capability of a system to reason about,
and possibly, alter its own behavior |9]. It is the ability of a system to watch its
computation and possibly change the way it is performed. A reflective system
provides a representation of its own behavior, which can be used to inspection (i.e.,
the internal behavior of the system is exposed) and adaptation (i.e., the internal
behavior of a system can be dynamically changed) and is causally connected to the
underlying behavior it describes. Causally connected means that changes made to the
self-representation are immediately mirrored in the underlying system's actual state
and behavior and vice-versa, i.e., the manipulation of the internal representation
structures directly affects the system observable external behavior.

A reflective system is logically structured in two or more levels, constituting a
reflective tower. The first level is the base-level and describes the computations that
the system is supposed to do. The second one is the meta-level and describes how to
perform the previous computations. The entities working in the base-level are called
base-entities, while the entities working in the other levels (meta-levels) are called
meta-entities. Each level is causally connected to adjacent levels, i.e., entities
working into a level have data structures reifying the activities and the structures of
the entities working into the underlying level and their actions are reflected into such
data structures.

3 Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a new paradigm that focuses on the issue of
handling crosscutting concerns. Crosscutting concerns are elements of software that
can not be expressed in any functional unit of an object oriented programming
language abstractions, such as a method or a class. The AOP approach proposes a
solution to the crosscutting concerns problem by encapsulating these into a single
unit called aspect. An aspect is a modular unit of crosscutting implementation and is
designed to encapsulate state and behavior that affect multiple classes into reusable
modules. An aspect oriented software system is composed by a set of classes that
handle the localized concerns (functional requirements, or application functionality)
and a set of aspects that handle the global concerns (nonfunctional requirements).

In general, aspect-oriented approaches are static - aspect code and functional
modules (classes) are traditionally woven together at compile time. Static weaving
produces well-formed and highly optimized woven code whose execution speed is
comparable to the code without AOP. However, there are certain environments
(mobile computing, for example) where we have to be able to change the global
policies implemented through aspects dynamically, during runtime [10]. Dynamic
weaving means that aspects can be added or removed at any time during runtime.
Thus, this approach allows the integration between classes and aspects at runtime,
resulting in a system that is more adaptable and extensible.

136 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

4 Adaptive Architecture Requirements

Efstratiou et al. [11] suggests that there are limitations of current approaches for
supporting adaptive applications. Specifically, these approaches lack of support for
enabling applications to adapt to numerous different attributes in an efficient and
coordinated way. Thus, a new approach is required, which must provides a common
space for the coordinated, system-wide interaction between adaptive applications and
the complete set of attributes that could be used to trigger adaptation.

This new approach is based on a set of requirements that could be used to
develop an appropriate architecture for supporting adaptive applications. The first
key requirement of the architecture is to provide a common space for handling the
adaptation attributes used by the system in which new attributes can be introduced as
and when they become important. The second requirement is to be able to control
adaptation behavior across all components involved in the interaction on a system-
wide level. A further requirement is to support the notion of system-wide adaptation
policies that should enable a system to operate differently given the current context
and the requirements of the user. A final requirement arises from the fact that most
mobile applications operate in a distributed environment, reason for what the
adaptation mechanism need to coordinate all elements involved in the system
distributed operation.

5 Adaptation Strategies

Future mobile environments will require software to dynamically adapt to rapid and
significant fluctuations in the communication link quality, frequent network
disconnections, device resource restrictions and power limitations. Such scenario
implies in the fact that software will have to include adaptation techniques in its
design and implementation.

Several adaptation techniques can be triggered in all levels of an adaptive
application, from system level to user level. In the middleware level, three
approaches can be identified [12]: middleware services can attempt to reduce
application bandwidth requirements by using data compression techniques before
transmission, data can be prefetched and cached during periods of bandwidth high
availability in preparation to future bandwidth reduction or service disconnection and
clients can be redirected to services available in the local context until network
connectivity can be established. In addition, we can include in the middleware level
some adaptation techniques to reduce energy consumption and allow users to
continue working when in disconnected state.

5.1 Power Management

Since one of the main limitations of mobile computing devices is battery life,
minimizing energy consumption is essential for maximizing the utility of these
computing systems. Adaptive energy conservation algorithms can extend the battery
life of portable computers by powering down devices when they are not needed. The
disk drive, the wireless network interface, the display, and other elements of mobile
computing devices can be turned off or placed in low power modes to conserve
energy.

Many physical components are responsible for ongoing power consumption in a
mobile device. The top three items are, in this order [13]: CPU, screen and disk. Due
the fact that hardware technology in this area is still rapidly evolving, power

A Comparative Analysis of Adaptive Middleware Architectures Based on 137
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

management techniques to reduce display constimption are not explored in this
section.

5.1.1 Processor
Power consumed by the CPU is related to the clock rate, the supply voltage and the
capacitance of the devices being switched. The reduction in CPU power
consumption as the clock rate decreases is a result of the switching characteristics of
the logic gates in CMOS VLSI circuits. The power wasted by logic gates during
switching is equal to the supply voltage squared divided by circuit's resistance.
Because the switching resistance is commonly fixed, the wasted power is
proportional to the square of the operating voltage. Besides, the total power required
by CPU is proportional to C v F, where C is the total capacitance of the wires and
transistor gates, V is the supply voltage and F is the clock frequency. While C can
only be changed during the VLSI circuit design, newer devices are beginning to
make possible to vary F and V during runtime, which allows achieving linear and
quadratic savings in power.

Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the
characteristics above mentioned to reduce processors energy dissipation by lowering
the supply voltage and operating frequency if it is expected a large amount of CPU
idle time [14]. DVS tries to address the tradeoff between performance and battery
life taking into account two important features of most current computing systems.
First, the peak computing rate needed is much higher than the average throughput,
so, high performance is only needed for a small fraction of the time, which allows
lowering the operating frequency of the processor when full speed is not a
requirement. Second, processors are based on CMOS logic. Such technology allows
scaling the operating voltage of the processor along with its frequency. In this
manner, by dynamically scaling both voltage and frequency of the processor based
on computation load, DVS can provide the performance to meet peak computational
demands, while on average, providing the reduced power consumption.

Weiser et al. [15] propose an approach that balances CPU usage between
periodic bursts of high utilization and the remaining idle periods under the control of
the operating system scheduling algorithms by predicting the upcoming workload
requirements and adjusting the processor voltage and frequency accordingly. Three
algorithms derivate from this approach: OPT, FUTURE and PAST. Each of these
algorithms adjusts the CPU clock speed at the same time scheduling decisions are
made by the operating system scheduler with the goal of decreasing time wasted in
idle loops while retaining interactive response for the user. OPT is completely
optimistic (and impractical) because it requires perfect fiiture knowledge of the work
to be done in an interval. FUTURE is similar to OPT, except by the fact it looks to
the fiiture only in a small window. Unlike OPT, it is practical because it only
optimizes over short windows (it is assumed that all idle time in the next interval can
be eliminated). PAST is a practical version of FUTURE that uses the recent past as a
predictor of the future. Instead of looking a fixed window into the future, it looks a
fixed window into the past, and assumes the next window will be like the previous
one. Obviously, such approach depends on an effective way of predicting workload
to save power by the adjustment of processor speed fast enough to accommodate the
workload.

5.1.2 Disk
Spinning down the disk when it is not being used can save power. Such technique is
possible by the fact that most mobile computers disk drives have a new mode of
operation called SLEEP mode (in such mode, a drive can reduce its energy
consumption to near zero by allowing the disk platter to spin down to a resting state).
Most, if not all current mobile computers use a fixed threshold specified by the

138 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

manufacturer to determine when to spin down the disk: if the disk has been idle for
some predetermined amount of time, the disk is spun down. The disk is spun up
again upon the next access. The fixed threshold is typically about many seconds or
minutes to minimize the delay from on demand disk spin-ups.

Spinning a disk for just a few seconds without accessing it can consume more
power than spinning it up again upon the next access since spinning the disk back up
consumes a significant amount of energy. Therefore, spinning down the disk more
aggressively reduce the power consumption of the disk in exchange for higher
latency upon the first access after the disk has been spun down.

Douglis et al. [16] investigated two types of algorithms for spinning a disk up
and down minimizing power consumption and response time: off-line, which can use
future knowledge and on-line, which can use only past behavior. Off-line algorithms
are useful only as a baseline for comparing different on-line algorithms. On the other
hand, on-line algorithms are implementable. A perfect off-line algorithm can reduce
disk power consumption by 35-50% when compared to the fixed threshold suggest
by manufacturers. On the other hand, an on-line algorithm with a threshold of 10
seconds reduces energy consumption by about 40% compared to the Sminute
threshold recommended by manufacturers.

5.2 Disconnected Operation

Wireless networks are very susceptible to suffering disconnections, so it is a very
important aspect to keep in mind when designing architectures to support mobile
computing. We can classify the disconnections in two main categories: forced
disconnections (usually accidental and unavoidable, that takes place when the user
enters in an out-of-coverage area) and voluntary disconnections (when the user
decides to disconnect from the network to saving energy).

Forced disconnections as well as voluntary disconnections are frequent in a
mobile computing environment. But, as can been seen in Coda File System project
[17], the use of caching and server replication techniques can mitigate the
undesirable effects of disconnections, which allows users to be able to continue
working even in disconnected state. In this mode of operation, a client continues to
have read and write access to data in its cache during temporary network outages,
being the system responsible to propagating modifications and detecting conflicts
when connectivity is restored. In addition, dis connected operation can extend battery
life for avoiding wireless transmission and reception.

6 Reflective Middleware Architecture

Welling [18] asserts that adaptive techniques must be decoupled from basic
application functionality due to the complexity of building adaptive applications for
mobile computing. Such principle allows both applications and adaptive techniques
be designed and implemented independent of each other.

In this direction, Zhang and Jacobsen f9] observe that middleware platforms
architectures have been evolving exactly by the necessity of a software layer that
decouples applications from the concern of handling the complexity related to
distributed computing environments.

The architecture proposed in this section employs this principle of decoupling
adaptation techniques (meta-level) from application basic functionality (base-level),
as can be seen in figures 1 and 2.

A Comparative Analysis of Adaptive Middleware Architectures Based on
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

139

Base Level

Web Services

Fig. 1. Separation of concerns in the proposed reflective middleware architecture

The Adaptation Manager (AM) decides which adaptation strategies should be
executed from data supplied by the inspection task of each resource managed by the
same. Attention might be given to this module in the architecture. Because conflicts
may arise during the execution of a specific adaptation strategy, this module must
guarantee that such conflicts can be solved in a coordinate manner. The set of
attributes (computational resources) to be managed by the AM must be extensible;
by the way, new attributes can be added in the proposed architecture. The AM
depends on two modules which responsibilities are complementary, described below.

' " • Information

— • Control

Ada platfonM anager

f—

AdaptationMechanismManager

Z3
AdaptaiionTask IrtspectionTask AdaptatlonTask InspectionTask AdaptaUonTask InspectionTask AdaplstionTask InspectionJask AdaptatlonTask

z -ItT"

TT"
RAM CacheUanager Enc^ptianManager

RAM ReplicatlortManager

SIgnatureManager

Fig. 2. The proposed reflective middleware architecture

The Adaptation Policy Manager loads the adaptation policies described in the
application profile, which is defined by the application's user. The application profile
(which describes the application nonfunctional behavior) is encoded using the

140 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

Extensible Markup Language (XML) due the fact such language supports a
representation of information that is both easily handled by machines and readily
understandable by humans. The application profile presented in figure 3, for
example, inspect the battery resource each 10 seconds and spindown the hard disk
and scale CPU frequency when the amount of energy available in the battery is
below 10%. In addition, the Adaptation Policy Manager updates dynamically the
adaptation policies using statistical learning methods.

<?xml version="1.0"?>

<ApplicationProfile>

<InspectionTasks>

<Task name="BatteryInspector">

<Frequency value="10"></Frequency>

</Task>

</ Inspec t ionTasks>

<Adaptat ionTasks>

<Task name="DiskManager">

<Resource name="Battery">10</Resource>

<Threshold value="10"></Frequency>

</Task>

<Task name="CpuManager">

<Resource name="Battery">10</Resource>

<Threshold value="10"></Frequency>

</Task>

</AdaptationTasks>

</ApplicationProfile>

Fig. 3. An example of the applicafion profile

The Adaptation Mechanism Manager inspects and adapts the following
attributes: connectivity, network bandwidth, energy and memory. The following
modules manage such attributes: Connection Manager, Network Manager, Power
Manager and Memory Manager. Besides, this module should guarantee the security
of data exchanged between the application and the Remote Server. Such behavior is
encapsulated in the Security Manager module. It should be noted that the attributes
managed by this module can be extended dynamically by changes in the application
profile. At the run time, the Adaptation Mechanism Manager checks the conditions
of each adaptation rule described in the application profile to determine if an
adaptation task should be performed. To execute this operation, the class
AdaptationMechanismManager provides two methods that systematically iterates
through each rule coded in the application profile to check conditions and load or
unload adaptation tasks in accordance to these rules.

The Connection Manager monitors the connectivity between the application and
the Remote Server. In case of disconnection, the data handled by the application are
gotten from the Local Server module. The methods invoked toward the Remote
Server are stored in the local cache and will be deferred to execute by the Replication
Manager adaptation task when the Remote Server was in connected mode again.

The Network Manager monitors the network bandwidth. This module
compresses the body message that will be sent to the Remote Server. Besides, this
module pre -fetches messages ftiat were posted in the Remote Server and were not
replicated to the Local Server yet.

A Comparative Analysis of Adaptive Middleware Architectures Based on
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

141

The Power Manager monitors energy. If the amount of energy in a moment were
below a boundary expressed in the application profile, the interface between the
application and the user is text based. Besides, the hard disk can be put in spindown
mode and the CPU frequency can be scaled to save battery power.

The Memory Manager monitors memory and disk space. If the amount of disk
space in a moment were below a boundary exp ressed in the application profile, the
messages posted in the Local Server as well as data from local cache will be stored
in the RAM memory, not more in the hard disk. The deferred methods will be stored
in RAM memory either.

The Security Manager module should guarantee the confidentiality (XML
Encryption) and the integrity (XML Signature) of the XML messages exchanged by
the application and the Remote Server.

7 Aspect Oriented Middleware Arcliitecture

Following the separating of concerns principle of software engineering, the
architecture proposed in this section employs the principle of separating global
concerns (nonfunctional concerns) from local concerns (functional concerns or
application domain concerns), as can be seen in figures 4 and 5.

Local Concerns (Funtional Level)

I TaskN r*"'^

Global Concerns (Nonfunct ional Level)

Local Concerns (Funtlonal Level)

Web Services

Fig. 4. Separation of concerns in the proposed aspect oriented middleware
architecture

Aspects and classes in a modular structure compose the architecture. The
Adaptation Manager is a class whose methods are intercepted by aspects
(ConnectionManager, NetworkManager, PowerManager, MemoryManager and
SecurityManager). Each aspect allows the addition and the removal of code used to
manage computational resources in a dynamic way in accordance to the application
profile defined by the application's user. It should be emphasized that each aspect in
this architecture has the same responsibility owned by each class with the same name
in the reflective middleware architecture presented in section 6.

142 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

Intormalion

Conirol

Interceptatlon

1=1

AdaptatjonPollcyManager

Fig. 5. The pro posed aspect oriented middleware architecture

8 Implementation

A simplified mail server prototype based on Web Services technology was
implemented in the Java language to evaluate the proposed reflective architecture.
The same prototype was implemented in Java and Aspectj [20] to evaluate the
proposed aspect oriented architecture. Aspectj is an aspect-oriented extension to the
Java language that enables the clean modularization of crosscutting concerns.

Both prototypes only implement the Connection Manager and the Power
Manager modules. Therefore, the platform's evaluation performance reflects only
these attribute's measures. We have employed a collaborative relationship between
the operating system and the application by the middleware level in such prototypes,
each of one modifies its behavior to conserve energy to meet user-specified goals for
battery duration. In addition, our approach predicts future energy demand from
measurements of past usage.

The Power Manager measures energy consumption by using the ACPI subsystem
in Linux to get an accurate evaluation of the remaining capacity of the battery. The
Screen Manager changes the user interface from text to graphic mode and vice-versa
in accordance to the current energy level available. The CPU Manager implements
the PAST algorithm using the CPUFreq loadable kernel module framework p i] ,
which is a project for adding support for CPU frequency and voltage scaling to the
Linux kernel. The PAST algorithm calculates that the upcoming interval will be as
equally busy as the previous interval. The speed policy is as follow: if the prediction
is for a mostly-idle interval, PAST decreases speed; and if the prediction is for a
busy interval, PAST increases speed. To avoid excessive fluctuations in processor
speed (variable performance for the user), PAST will limit the amount in change of

A Comparative Analysis of Adaptive Middleware Architectures Based on 143
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

speed in a decision to a maximum of 20% of the maximum speed. The Disk Manager
implements the on-line disk spindown algorithm by the use of noflushd [22], which
is a Linux daemon hat monitors disk activity and spins down idle disks. It then
blocks further writes to the disk to prevent it from spinning up again. Writes are
cached and flushed to disk when the next read request triggers a spin-up.

The application environment is composed by a Local Server and by a Remote
Server, The Remote Server was implemented with the use of the Axis server API
[23]. It is a Java class that exposes public methods for invocation and is responsible
by the following operations: create mailboxes, delete mailboxes, delete messages, list
messages, read a message and send a message. The Remote Server encapsulates in
its public interface the semantics of the main SMTP commands as exposed in the
Simple Mail Transfer Protocol (RFC2821) as well as the semantic of the main IMAP
client commands as exposed in the Internet Message Access Protocol (RFC3501).
The Local Server is responsible by delete messages, list messages, read a message
and send a message. It implements partly both specifications in the local system
context and employs a queued remote procedure call based technique ^4] that
permits applications to continue to make non-blocking remote procedure calls even
when the Remote Server is off-line enabling the system to operating in disconnected
mode. In this case, requests and responses are exchanged upon network
reconnection. The consistency between data replicated from Remote Server to Local
Server is based in some clustering principles employed in mobile databases context
[25]. Clustering maintains two copies of every object: a strict version, which is
globally consistent, and a weak version, which can be globally inconsistent, but must
be locally consistent. Weak versions are transformed in strict by the Replication
Manager, which compares the version nurrber of both weak and strict objects to
decide which is the mo re recent.

The proposed system operates as follows. At the mail's client first request the
mailbox data is copied from the Remote Server to the Local Server. The read
operations are always local and in this case the disconnections from the Remote
Server are not important. The write operations are executed simultaneously in the
Remote Server and Local Server. The mail client is a Java class that implements the
user interface and employs Axis client API to call the services exposed by the
Remote Server. The class that implements the AM, which allows the adaptation
techniques to take place, intercepts all the calls sent by the client.

9 Evaluation

In this section, it is made a comparative analysis between computational refiection
and aspect oriented programming in the context of adaptive middleware to support
mobile computing applications.

We try to prove that aspect-oriented paradigm can be used to develop adaptive
mobile applications that require only a small overhead in terms of running time as
well as memory footprint, using less computational resources than reflection. It
should be emphasized that the following measures are the mean value gotten after
5000 executions for each operation below in an AMD K6-2 500 MHz machine with
184 Mb of memory running aFedora Core Linux 20 kernel 2.6.19.

144 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

Table 1. Running time to response a service request

Implementation

Reflection-based

Aspect-based

Create a mailbox

3027.33 ms

2817.66 ms

Delete a mailbox

2268.50 ms

2205.50 ms

Delete a message

2658.50 ms

2118.37 ms

Table 2. Running time to response a service request (continuation)

Implementation

Reflection-based

Aspeet-based

List messages

370.33 ms

323.25 ms

Read a message

76.66 ms

93.12 ms

Send a message

3279.50 ms

2732.27 ms

The collected results presented in fables 1 and 2 suggest that aspects can be used
to develop mobile adaptive applications that require only a small overhead in terms
of running time when compared to reflection. The write operations (create a mailbox,
delete a mailbox, delete a message and send a message) require less time than
reflection. Almost read operations require less time, with exception of the read a
message operation.

Tabie3. Code size

Implementation

Reflection -based

Aspect-based

Code size (disk)

149507 bytes

150359 bytes

Code size (memory)

2066232 bytes

2329536 bytes

Number of classes

64

62 +2 aspects

From table 3, it can be verified that aspect-based code size in disk is 0,5 % bigger
than reflective-based code. Besides, aspect- based code size in memory is 11,30 %
bigger than reflection- based. Thus, the reflection-based implementation requires less
memory resources than the aspect-based. The number of decomposition's units
(classes and aspects) in both implementations is practically the same, 64 units.

10 Related Work

The middleware community has already investigated the principle of reflection
during the past years, mainly to achieve flexibility and dynamic reconfigurability of
the Object Request Broker (ORB) of CORBA. Examples include OpenCorba |26],
DynamicTAO [27] and OpenORB [28]. OpenCorba is a CORBA compliant ORB
that uses reflection to expose and modify some internal characteristics of CORBA.
OpenCorba is implemented in NeoClasstalk, a reflective language based on
Smalltalk. OpenCorba allows the dynamic modification of a remote invocation
mechanism though a proxy class, which is its major reflective aspect. DynamicTAO
is a reflective CORBA ORB written in C++ which extends TAO P9] to support
runtime configuration already at the startup time of the ORB engine and non-
CORBA applications OpenORB is a reflective middleware that has been
implemented using Python and was designed to target configurable and dynamically
reconfigurable platforms for applications that require dynamic requirements support.

A Comparative Analysis of Adaptive Middleware Architectures Based on 145
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

However, such platforms were based on standard middleware implementations and
are therefore targeted to a wired distributed environment.

FlexiNet [30] is another CORBA compliant ORB implemented in Java that uses
reflection to provide dynamic adaptation. Nevertheless, FlexiNet only supports static
configuration of communication protocols stack layers at compile time.

OpenCOM p i] is a reflective middleware based on a component framework
built atop a subset of Microsoft's COM, which can be specialized to application
domains such as multimedia, real-time systems and mobile computing. However,
OpenCOM only runs at Microsoft platforms. On the other hand, mobile devices such
smart phones and personal digital assistants (PDA) is already coming with the Java
Virtual Machine installed by default, which justifies our approach. Moreover, the
Java language allows the development of applications that run in heterogeneous
operating systems and machine architectures,

RECOM [32], like FlexiNet, has a reflective structure based on the Java platform
that supports different transformations on a remote method invocation. RECOM
supports dynamic configuration of the binding between the client and the server,
such as inserting into the communication protocol stack some reflective layers of
high level features which meet the needs of some nonfunctional properties required
by adaptive middleware platforms. However, such platform only supports dynamic
adaptation of the remote invocation mechanism (cache the results on client side and
redirect the invocation to an alternative server when the initial server is down).
Differently, our reflective architecture is extensible; thus, new attributes
(computational resources) can be added and removed from the same and be managed
in a coordinate manner.

CARISMA p3] is an adaptive middleware platform implemented in Java that
employs reflection and metadata to enable context-aware interactions between
mobile applications. In such platform, the middleware can be seen by applications as
a dynamically customizable service provider, where the customization takes place by
means of application profiles. Each application profile defines associations between
the services that the middleware delivers, the policies that can be applied to deliver
the services and context configurations that must hold in order for a policy to be
applied. Our abstraction of application profiles is based on this work.

The middleware community to achieve the same objectives targeted by the
reflection paradigm has recently investigated the aspect-oriented approach. Yang et
al. [34] proposes a systematic approach implemented in AspectJ (a compile-time
Java based aspect-oriented programming language) for preparing an existing
program for adaptation and defining dynamic adaptations. Such work is based on
two insights: make programs adapt-ready implies on recognizing that the concerns
that tend to warrant dynamic adaptation are crosscutting in nature, and encapsulate
the logic for adapting the run time behavior of a program into an adaptation kernel,
that is an engine for firing adaptation rules each of which comprises a condition
under which an adaptation should occur and an action that indicates the appropriate
adaptive response. Aspects are used to weave calls (traps) to the adaptation kernel
into the application program. During run time, the adaptation kernel checks the
condition of each adaptation rule to determine if an adaptation should be performed
and executes the corresponding actions if the condition is satisfied. Two modules
compose the adaptation kernel: the adaptation manager, which monitors the
conditions for the rules and loads code to add new behavior to the application
program and the mie base component, which adds new adaptation rules (condition-
actions pairs) to the adaptation kernel. Our aspect oriented middleware architecture
is semantically equivalent to this architecture. However, our architecture employs
aspects only to define pointcuts for adaptation, using reflective techniques to achieve
dynamic adaptation.

146 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

11 Conclusion

Because conventional middleware technologies do not provide appropriate support
for handling the dynamic aspects of mobile applications, the next generation of
applications will require a middleware platform that can be adapted to changes in the
environment and customized to several computational devices.

Computational Reflection allows the creation of a middleware architecture that is
flexible, adaptable and customizable. Aspect Oriented Programming allows the
creation of a middleware architecture that is adaptable, modular and easier to
modify. Such assertions were validated by the experimental evaluation of both
paradigms. From the experimental evaluation results we can suggest that aspect
oriented middleware platforms require more memory resources while reflection
based platforms require more processor time to run.

About future work, we have to solve the problems below mentioned. The
Adaptation Policy Manager does not have yet a module to resolve conflicts that can
occur between the application policies. In addition, the statistical learning methods
employed by this component to updating policies dynamically have to be designed
and implemented, the remaining architecture s components (Network, Memory and
Security Managers) have to be implemented and we have to investigate methods and
techniques to employ dynamic weaving in our prototype.

12 References

1. Capra, L., Emmerich, W., Mascolo, C. Exploiting Reflection and Metadata to build Mobile
Computing Middleware. In: Proceedings of Workshop on Middleware for Mobile Computing.
Heidelberg, Germany, November 2001.

2. Capra, L., Blair, G. S., Mascolo, C, Emmerich, W., Grace, P. Exploiting Reflection in
Mobile Computing Middleware. ACM SIGMOBILE Mobile Computing and
Communications Review, Vol. 6, No. 6, pp 34-44, 2002.

3. Kon, P., Gordon, B., Costa, F., Campbell, R. H. The Case for Reflective Middleware,
CACM, Vol. 45, No. 6, pp 33-38, 2002.

4. Maes, P. Concepts and Experiments in Computational Reflection. In: Proceedings of the
ACM Conference on Object-Oriented Languages, December 1987.

5. Szyperski, C. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 1999.

6. Kiczales, G., Lamping J., Mendhekar, A., Maeda C, Lopes, C. V., Loingtier, J. M., Irwin,
J. Aspect-Oriented Programming. In: Proceedings of European Conference on Object-
Oriented Programming, Springer-Verlag LNCS 1241, June 1997.

7. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F. Pattem-Oriented Software Architecture,
Volume 2, John Willey, 2001.

8. Smith, B. C. Reflection and Semantics in a Procedural Language. PhD thesis, MIT
Laboratory of Computer Science, 1982, MIT Technical Report 272.

9. Sizhong, Y., Jinde, L. RECOM: A Reflective Architecture of Middleware. In: Proceedings
of the 3rd Intemational Conference on Metalevel Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September 200 L

10. Gilani, W., Spinczyk, O. A Family of Aspect Dynamic Weavers. In: Proceedings of the
2004 Dynamic Asp ects Workshop, Lancaster, England, March 2004.

A Comparative Analysis of Adaptive Middleware Architectures Based on 147
Computational Reflection and Aspect Oriented Programming to Support Mobile

Computing Applications

11. Efstratiou, C, Cheverst, K., Davies, N., Friday, A. Architectural Requirements for the
Effective Support of Adaptive Mobile Applications. In: Proceedings of 2nd International
Conference in Mobile Data Management. Hong Kong, Springer, Vol. Lecture Notes in
Computer Science Volume 1987, pp. 15-26, January 2001.

12. Friday, A., Davies, N., Blair, G. S., Cheverst, K. W. J. Developing Adaptive Applications:
The MOST Experience. Journal of Integrated Computer-Aided Engineering, Volume 6,
Number 2, 1999, ppl43-157.

13. Welch, G.F. A Survey of Power Management Techniques in Mobile Computing Operating
Systems. Operating Systems Review, Volume 29, Number 4, October 1995.

14. Pillai, P., Shin, K. G. Real-Time Dynamic Voltage Scaling for Low-Power Embedded
Operating Systems. In: Proceedings of the Eighteenth ACM ̂ mposium on Operating systems
principles. Alberta, Canada, October 2001.

15. Weiser, M., Welch, B., Demers, A., Shenker, S. Scheduling for Reduced CPU Energy. In:
Proceedings of Symposium on Operating Systems Design and Implementation, November
1994.

16. Doughs, F., Krishnan, P., Marsh, B. Thwarting the Power-Hungry Disk. In: Proceedings
of Winter USENIX Conference, CaHfomia, 1994, pp. 292-306.

17. Satyanarayanan, M., Kistler, J. J., Mummert, L. B., Ebling, M. R., Kumar, P., Lu, Qi.
Experience with Disconnected Operation in Mobile Computing Environment. In: Proceedings
of the 1993 USENIX Symposium on Mobile and Location-Independent Computing,
Cambridge, MA, August 1993.

18. Welling, G.S. Designing Adaptive Environmental-Aware Applications for Mobile
Computing. PhD thesis, Rutgers University, New Brunswick, July 1999.

19. Zhang, C, Jacobsen, H. Aspectizing Middleware Platforms. Technical Report, Computer
Systems Research Group, CSRG-466, University of Toronto, Canada, January 2003.

20. Aspectj. (December20, 2005); httt)://ecliDse.org/aspecti/.

21. CPUFreq. (December 15,2005); http://www.linux.org.uk/listinfo/cpufreq.

22. Noflushd. (November 13.2005): http://sourceforge.net/proiects/noflushd

23. Apache Software Foundation. (January 12, 2005); Axis: A framework for constructing
SOAP processors, http://ws.apache.org/axis.

24. Joseph, A., deLespinasse, A., Tauber, J., Gifford, D., and Kaashoek, M. Rover: A Toolkit
for Mobile Information Access. In: Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, December 1995.

25. Pitoura, E., Bhargava, B. Maintaining Consistency of Data in Distributed Environments.
In: Proceedings of Fifteenth International Conference on Distributed Computing Systems,
Vancouver, Canada, May 1995.

26. T. Ledoux. OpenCorba: A Reflective Open Broker. Lecture Notes in Computer Science,
vol. 1616, 1999.

27. Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L. C, R., Campbell, H.
Monitoring, Security and Dynamic Configuration with the DynamicTAO Reflective ORB. In:
Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms,
New York, April 2000.

28. Blair, G. S., Coulson, G., Robin, P., Papathomas M. Architecture for Next Generation
Middleware. In: Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, the Lake District, England, September 1998.

29. Douglas, C. S., Cleeland, C. Applying Patterns to Develop Extensible ORB Middleware.
IEEE Communications Magazine Special Issue on Design Patterns, 37(4), 54-63, May 1999.

30. R. Hayton, ANSA Team. FlexiNet Architecture. Architecture Report, Citrix Systems
(Cambridge) Limited, February 1999.

148 Celso Maciel da Costa 1, Marcelo da Silva Strzykalski, and Guy Bernard 2

31. Clarke, M., Blair, G., Coulson, G., Parlavantzas, N. An Efficient Component Model for
the Construction of Adaptive Middleware. In: Proceedings of Middleware 2001, Heidelberg,
Germany, November 2001.

32. Sizhong, Y., Jinde, L. RECOM: A Reflective Architecture of Middleware. In: Proceedings
of the 3rd International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September 2001.

33. Capra, L., Emmerich, W., Mascolo, C. CARISMA; Context-Aware Reflective Middleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10):929-
945, 2003.

34. Yang, Z., Cheng, B. H, C, Stirewalt, R. E. K., Sowell, J., Sadjadi, S. M., McKinley, P. K.
An Aspect Oriented Approach to Dynamic Adaptation. In: Proceedings of ACM SIGSOFT
Workshop on Self-healing Systems, Charleston, South Caroline, November 2002.

