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A b s t r a c t . It is a well established fact, that - in the case of classi­
cal random graphs like (variants of) Gn,p or random regular graphs -
spectral methods yield efficient algorithms for clustering (e. g. colouring 
or bisection) problems. The theory of large networks emerging recently 
provides convincing evidence that such networks, albeit looking random 
in some sense, cannot sensibly be described by classical random graphs. 
A variety of new types of random graphs have been introduced. One of 
these types is characterized by the fact that we have a fixed expected 
degree sequence, that is for each vertex its expected degree is given. 
Recent theoretical work confirms that spectral methods can be suc­
cessfully applied to clustering problems for such random graphs, too -
provided that the expected degrees are not too small, in fact > log® n. 
In this case however the degree of each vertex is concentrated about its 
expectation. We show how to remove this restriction and apply spec­
tral methods when the expected degrees are bounded below just by a 
suitable constant. Our results rely on the observation that techniques 
developed for the classical sparse G„,p random graph (that is p = c/n) 
can be transferred to the present situation, when we consider a suitably 
normalized adjacency matrix: We divide each entry of the adjacency 
matrix by the product of the expected degrees of the incident vertices. 
Given the host of spectral techniques developed for Gn,p this observa­
tion should be of independent interest. 

1 Introduction 

For definiteness we specify the model of random graphs to be considered first. 
This model is very similar to tha t considered and convincingly motivated in 
[9]. (In particular, we refer to Subsection 1.3 of tha t paper where the model is 
defined.) 
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1.1 The model 

Our random graphs with planted partition and given expected degree sequence 
are generated as follows. Let V = { 1 , . . . ,n} be the set of nodes. Partition V 
into k disjoint subsets V\,... ,Vk, where k is fixed. We assume that the size of 
each set \Vj\ > 6n for some arbitrarily small but constant 5 > 0. For i GV we 
let V'(i) denote the number of the subset i belongs to, that is i € V^(i). We fix 
some symmetric k x A;-matrix D = [dij) with non-negative constants as entries. 
Moreover, we assign some weight Wi to each node i GV. We let Ŵ  = ^ Wi 
and w = W/n be the arithmetic mean of the WiS. We construct the random 
graph G = {V,E) by inserting each edge {i,j} independently with probability 
Wi • Wj • d^{i),ip{j) /W. Of course the parameters should be chosen such that each 
probability is bounded above by 1. (It has some mild technical advantages to 
allow for loops as we do.) Depending on the matrix D, we can model a variety 
of random instances of clustering problems. For example we can generate 3-
colourable graphs, then the Vj are the colour classes, or graphs having a small 
bisection, in which case the Vj are the two sides of the bisection, or graphs with 
subsets of vertices which are very dense or sparse... The algorithmic problem 
is to efficiently reconstruct the Vj (or large parts thereof) given such a random 
G. Note that the model from [9] allows for directed edges where the minimum 
expected in- and out-degree of each vertex is log n. We restrict our attention 
to undirected graphs. We denote the expected degree of vertex i by w'^, then 

, Wi sr^ 

jev 

In order for our algorithm to work properly we impose the following restric­
tions on the model's parameters: 

1. The matrix D has full rank. 
2. We have Wi > e -w fox all i, where e is some arbitrarily small constant. 
3. w > d, where d = d{£,D,5) is a sufficiently large constant. 

Our asymptotics is such that n gets large, while D,k,e,S,d are fixed. On the 
other hand the weights Wi can be picked arbitrarily subject to our restrictions 
(in particular depending on n) and the subsets Vj with \Vj\ > Sn are arbitrary, 
too. 

Our restrictions 2. and 3. imply that I • Wi < w"^ < u • Wi ior constants 
I = l{e,D,5) and u = u{£,D,5) that is w^ = 0{wi). This shows the extent 
to which we consider graphs with given expected degree sequence. Note that 
depending on the weight Wi 2. and 3. allow w'^ among others to be constant, 
independent of n. 

1.2 Motivation and related literature 

The analysis of large real life networks, like the internet graph, social or bibli­
ographical networks is one of the current topics not only of Computer Science. 
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Clearly it is important to obtain efficient algorithms adapted to the character­
istics of these networks. One particular problem of interest is the problem of 
detecting some kind of clusters, that is subsets of vertices having extraordinarily 
many or few edges. Such clusters are supposed to mirror some kind of relation­
ship among its members (= vertices of the network). Heuristics based on the 
eigenvalues and eigenvectors of the adjacency matrix of the network provide 
one of the most flexible approaches to clustering problems applied in practice. 
See for example [15] or the review [19] or [18]. Note that the eigenvalues and 
eigenvectors of symmetric real valued matrices, first are real valued and second 
can be approximated efficiently to arbitrary precision. 

The relationship between spectral properties of the adjacency matrix of a 
graph on the one hand and clustering properties of the graph itself on the other 
hand is well established. Usually this relationship is based on some separation 
between the (absolute) values of the largest eigenvalues and the remaining eigen­
values. It has a long tradition of being exploited in practice, among others for 
numerical calculations. However, it is in general not easy to obtain convincing 
proofs certifying the quality of spectral methods in these cases, see [23] for a 
notable exception. 

Theoretically convincing analyses of this phenomenon have been conducted 
in the area of random graphs. This leads to provably efficient algorithms for 
clustering problems in situations where purely combinatorial algorithms do not 
seem to work, just to cite some examples [2], [3], or [4], or the recent [20] and 
subsequent work such as [14]. In particular [3] has lead to further results [10], 
[11]. The reason for this may be that [3] is based on a rather flexible approach 
to obtain spectral information about random graphs [12]: Spectral information 
directly follows from clustering properties known to be typically present in a 
random graph by (inefficient) counting arguments. We apply this technique 
here, too. 

In order to explain the success of spectral algorithms to detect clustering 
properties of large real life networks the preceding results do not seem to be 
readily applicable. As opposed to classical random graphs such networks are 
well known to have many vertices whose degree deviates considerably from the 
average degree, that is the degree distribution has a "heavy tail", or it seems to 
follow a "power law" , see for example [1] . And in fact in [21] it is shown that 
the largest eigenvalues of a random graph with power law degree distribution 
are proportional to the square root of the largest degrees, and thus do not 
reveal any non-local information about the graph. This result looks somehow 
related to the fact that the largest eigenvalue of a sparse random graph Gn,p 
where p = c/n is always the square root of the largest degree of the graph 
and that there is an unbounded number of eigenvalues of this size, see [16]. 
However, in the case of classical random graphs it helps to delete the vertices 
of highest degree as observed by [3] leaving the clustering properties of the 
graph essentially unchanged. However, in the case of a degree distribution with 
a heavy tail this trick is not useful, because significant parts of the graph may 
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just be ignored in this way. Thus, the adjacency matrix itself does not seem 
appropriate to represent graphs with heavy-tailed degree distributions. 

To come to terms with varying degrees the Laplacian matrix is considered, 
see [5] for a nice exposition of the relationship of the Laplacian spectrum to 
clustering properties of general graphs. It is also used in practical applications, 
cf. [22]. However, for randomly generated graphs it is more difficult to handle 
theoretically than the adjacency matrix. As far as classical random graphs are 
concerned it is already a major difficulty to get insight into the Laplacian spec­
trum, at least in the interesting sparse case. The difficulty stems from the fact 
that in this case the graph is not asymptotically regular. See however [6] for very 
recent progress in this direction. Clustering problems in the denser case can be 
treated with the help of the Laplacian even for random graphs modelling real 
networks as our model does (which allows for arbitrary, in particular heavily 
tailed degree distributions): In [9] it is shown that the Laplacian eigenvalues 
allow to find the partition in the model considered here, too (provided that the 
average degree is ;§> In n). Laplacian eigenvalues of random graphs with given 
expected degree sequence are also investigated in [8]. Both papers rely on [13] 
and in part on [17] to obtain information about the spectrum. This makes it 
inevitable that the degree is > log n, in fact > log^ n in the case of [9]. The case 
of small expected degrees as considered here is interesting because the actual 
degree of a vertex is not any more concentrated at the expected degree. It is 
also mentioned in the concluding section of [9]. Independently of its applica­
tions to graph partitioning problems, we have also investigated the Laplacian 
eigenvalues of sparse graphs with given expected degrees in [7]. 

1.3 Techniques and result 

We consider the following algorithm to reconstruct the Vj for random graphs as 
generated by our model. Only for technical simplicity we restrict our attention to 
A; = 2. It poses no substantial difficulties to extend the algorithm to arbitrary, 
yet constant k: Instead of the two eigenvectors 82,83 we use k eigenvectors 
S2, • • • ,Sfc+i. The sufficiently large constants Ci,C2,C3 depend on the actual 
partioning problem. The values can be calculated with the knowledge of D, s 
and 5. 

Algorithm 1. 
Input: The adjacency matrix A of some graph G — {V, E) generated 

in the above model and the expected degree sequence w'l,... ^w'^. 
Output: A partition VI, V^ of V. 

1. Calculate the expected average degree, w' = Yll^=i ^ i / ^ -
2. Construct R = {rij) with rij = w'^ • aij/{w[ -w'^)-
3. Let 81 — R-1 where 1 is the all one's vector. 
4. Let [/ = {i e F : ^ ^ =1 Tij < Ci • w'} for some sufficiently large constant 

Ci. 
5. Construct R* from R by setting all entries rij with i ^ U or j ^ U to 0. 
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6. Calculate the eigenvectors of R*. 
7. Let S2,S3 be two eigenvectors of R* belonging to different occurrences of 

eigenvalues which are > C2 -w' in absolute value. 
8. At least one of the si, 52,^3 turns out to have the property that all but 

C3 • {n/w') entries are close to two sufficiently different values ci, C2. Let V! 
be all the entries close to Cj for i = 1,2. Distribute the remaining entries 
arbitrarily among the V!. 

Some remarks are in order. First observe that the algorithm besides the 
graph needs the expected degree sequence as additional information. Note that 
the algorithm of [9] even gets the Wi themselves. The main idea is to use the 
normalized adjacency matrix R, where we divide each entry of the adjacency 
matrix by the expected degrees of the incident vertices (the additional factor 
of wJ'̂  is only for technical convenience.) It is this choice of the matrix which 
makes our analysis possible. 

Of course, a natural idea is to divide the entries by the actual degrees rather 
than the expected degrees, in order to remove the requirement that w^,. . . w^ 
are given at the input. In fact, it turns out that this approach can be carried out 
successfully, i.e., the resulting matrix is suitable to recover the planted partition 
as well. Nonetheless, since the analysis is technically significantly more involved, 
we omit the details from the present extended abstract (the complete analysis 
will be given in the full paper version of this work). 

In fact using R we get a situation formally rather similar to the case: clas­
sical sparse random graph with a planted partition and adjacency matrix, the 
situation as considered in [3] or [20]. Note that all entries rtj with the same 
(•0(i), V'(i)) have the same expected value which makes the analogy possible. In 
particular we can apply [12]. The vector si is necessary in order to recognize 
partitions which can be readily recognized just from the row sums of R. Step 5. 
has the analogous effect on the spectrum of R as has the deletion of high degree 
vertices in the case of sparse random graphs on the spectrum of the adjacency 
matrix. Being eigenvectors of different occurrences of eigenvalues, S2 and S3 are 
orthogonal to each other. Notions "vague" up to now, like "close" or the d, Ci 
in the algorithm are made precise through the subsequent proof of 

Theorem 2. Let D, e, 5 as defined above. There exists constants Ci,C2,C3 
with Ci = Ci{D,s,6) such that the following property holds: 

Let G be some graph generated in the above model. With probability 1 — o(l) 
with respect to G Algorithm 1 produces a partition which differs from the original 
partition V\.,V2 only in 0(n/w') vertices. 

Note that the number of vertices not classified correctly is 0{n/w') = 
0{n/W) and thus decreases linearly in w. 

We present the proof of Theorem 2 in the following two sections. The proof 
in section 3 is based on some notions and lemmas used throughout. These are 
presented in section 2. 
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2 Notat ion and basic facts 

We use the following notation. 

1. II • II denotes the Z2-norm of a vector or matrix. 
2. The transpose of a matrix or vector M is written as M*. 
3. For U C.'N and a vector v we construct the vector v\u by setting the ith 

component oi V\ij to Vi if i G U and to 0 if i 0 [/. If {7 is clear from 
the context, we write simply v*. For a matrix M we obtain M* by setting 
all entries rriij := 0 ii i ^ U or j ^ U. For a set of vectors S we define 
S* = {v* :ve S}. 

4. We abbreviate ( 1 , . . . , 1)* by 1. 
5. For a matrix M = {rriij) we define 

SM{X,Y) = ^ rrixy. 
xex 
yeY 

The Courant-Fischer characterization of eigenvalues reads 

Fact 3. Let A € K"^" be some symmetric matrix with eigenvalues Ai > . . . > 
A„. Then 

Xi+i = min max x^Ax 

A\mU=j \\x\\ = l 

\n-i = max min x^Ax 

dimU=i \\x\\ = \ 

where U^ denotes the orthogonal complement to U. 

The next two lemmas are slight generalizations of two lemmas from [3]. 
Lemma 1 is proved as Lemma 3.4 in that paper for 0 — 1 random variables. Our 
generalization can be derived analogously. 

Lemma 1. Let xi,...,Xn independent random variables each having exactly 
two possible values from the interval [0, b] and the same expectation /x, such 
that for all i 

Pr[xi = 0] = l-pi and P r [xj 7̂  0] = P r [xj =/i /pi] = pj. 

Let a i , . . . , a„ real numbers from [—a, a] and Z = Y17=i ^i' ^i- V foi^ S, D and 
some constant c > 0 

n 

Y^af <D and S < c-e" • D •/j/a 
i=l 

hold, then 

Pr[\Z -E[Z]\ > S] <2e^>^~-^-D>'. 
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Let R be some n x n-matrix with random entries r^ and let V = { 1 , . . . , n} 
be the set of indices. We assume either that all r^ are independent or that 
the only dependence is due to symmetry. We assume that the collection of the 
Tij's otherwise has the same properties as the Xi's in Lemma 1, in particular 
E [rjj] = iJ,. The subsequent Lemma 2 is as Lemma 3.6 in [3]. Its proof is 
analogous. A similar lemma occurs as Lemma 2.5 in [12]. 

Lemma 2. With probability 1 — o(l) for any pair {A,B) of sets A,BCV the 
following holds: 

Ifm^ max{|A|, \B\} < n/2 then 

1.SR{A,B) = 0{E{SR{A,B)]) or 

^ • « i ^ ( A S ) - l n g g g I j = 0 ( m . l n ^ ) . 

Let R he a, random matrix as above and .B > 1 be some constant. For 
symmetric Rlet U CV he given by 

u £ U if and only if S}i{V, {u}) = SR{{U}, V) < B • fi • n. 

For non-symmetric R we define 

U = {u&V : max(sfl({M}, V), SR{V, {U})) <B-fi-n}. 

The following lemma is at the heart of our results. It is a transfer of Lemma 3.3 
in [3] and Theorem 2.2 in [12]. In contrast to [3] and [12] we require that only the 
vector y is perpendicular to 1. The proof is similar to [3] and [12]. In particular 
recall item 3. of the notation as introduced above. 

Lemma 3. For R and U as above with probability 1 — o(l) we have for all unit 
vectors x,y G (K")* with y ± 1 that |a:'i?y| = 0 ( ^ / i • n). 

3 The analysis of the algorithm 

Let G = (V,-E), D, Vi, V2 and wi,.. .,Wn as in Subsection 1.1. Let di he the 
actual degree of i in G. For W QV we define ^{W) = "^Zi^w'"'» '̂ '̂̂  abbreviate 
^i := ${Vi)/${V). Since al\wi>e-w = i?(wJ) and \Vi\ = J7(n) we have 

^{V) wn wn n 

and each ^i are bounded away from 0 by some constant. For i GVI we have 

E [d,] = «;̂  = 5 ^ du • ̂ ^ ^ +^d^2- ^ ^ ^ = Wi . ( dn^ i + di2^2) 

jevi 

and for i e V2 we get 

w • n - ^ w • n 

'w[=Wi- {di2$i + 0(22^2)• 
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Since D is of full rank, we have no row containing only 0. So, each wj is 7̂  0 
and w[ = 0{wi). The expected average degree w' in G is 

n , I 

• ^ n ^ n ^—^ n 
i= i ieVi ieV2 

n 
= w • (dn^l + 2 • di2^i^2 + d22^l) = 0{w). 

Let A be the adjacency matrix of G. We construct R by multiplying each entry 
Uij with w''^/{wl • w'j) — Q{vP'j{wi • Wj)) = 0 ( l / e^) . So each entry in R is 
bounded by some constant. 

We have for i,j e Vi 

E[rijJ = d i i • -=— ' - • — j,= du 
w-n w[-w'-' w-n (dii<?i + ^12^2)^' 

for i € V̂ i, j G V2 or the other way round 

E [vij] ^ di 
uJ'2 

'•̂  ^̂  w-n {dn^i + ^12^2) • (^12^1 + d22^2)' 

and finally for i,j G V2 

w'^ 

•' w-n {di2^i +d22^2Y 

We obtain a symmetric 2 x 2-matrix M = {niij) of expectations such that 
E [vij] = m^{i),^{j)- With 

X (d i i# l+dl2^2)"^ 0 
0 {di2^i + d22< 2̂) - 1 

we get 

M = ^-X-('{'''{''~]-X = ^-X-D-X 
w - n \ui2 "22/ w • n 

If e = (ei 62) is some eigenvector of D, then (e i /xn 627x22) is an eigen­
vector of X • £) • X with the same eigenvalue. So, the eigenvalues oi X - D - X 
are determined only by D, and are ^ 0. 

We divided the entries of e by the xu. This makes the entries larger, but 
at most by some constant factor independent of w' or n. So, the normalized 
eigenvectors oi X • D - X have entries, that are bounded away from 0 by some 
constant. We need this fact later. 

We summarize, M has 2 eigenvalues, whose absolute value is 

Q{w'^/{wn)) ^ fi{w'/n) 
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and all the entries of the normalized eigenvectors are Q{1). 
The expected row-sum sji{{i},V) for some i £Vi is 

w -n \ xf 1 xii • 0:22 

W'^ ( di2\Vi\ , ^221^2 
+ -^ff^ = 0(^')- (2) 

and for i G V2 

w • n \ x i i • X22 a;22 

The number of rows with SR{{i}, V̂ ) > 5 • E [si?({i}, V)] is with high prob­
ability e-^(^') • n. This can be shown as follows: Use Lemma 1 to calculate 
the probability that a fixed i is such a row. This probability is e-^^""'). So, 
we have an expected number of such rows bounded by e^^^'" •* • n. Since the 
dependence between any two rows is small, we have a relatively small variance 
and Chebycheff's inequaltity gives the result. 

If (1) and (2) differ by a factor of at least 25, we can simply detect large parts 
of Vi and V2 by partitioning the rows by the value of sii{{i},V). This is the 
reason for si in the algorithm. If (1) and (2) are closer, then both are relatively 
near to the average row-sum, which is 0{w'). Now, let U be the set of all i, with 
SR{{'>-}J y) ^ C • w'. The exact value of C depends on D, e and the lower bound 
S on |l^|/n. A similar calculation as above shows, that \U\ > (1 — e"^'^'^ )) • n. 

Lemma 4. With high probability for any set X CV with \X\ = e"^^'^^ • n we 
have SR(X, V) = Q-^^"^'^ • n. 

Proof. Let Xi = X nVi.We have that 

2 

sn{X,V)= J2SR{X,,VJ). 

If we can show, that with high probability for each summand the bound 
g-fi(«)) . ^ holds, then the assertion follows. We give the proof for SR{XI,VI) 

explicitly. The remaining cases follow analogously. 
Fix some set Xi C Vi with \Xi\ = Sn = e""^"^ • n, where ci is some 

arbitrarily small constant. Then FI[SR(XI,VI)] = 0{mii • \Xi\ • \Vi\) = 0{w' • 
| X i | ) = e - ^ ( ^ ' ) - n . 

Let t — \Xi\- \Vi\. We use Lemma 1. For {u, v} C Xi we set Xj in the lemma 
to ruv with u < V and ai to 2, because such entries are counted twice in the 
sum. For the other terms in SR{XI, VI), namely ruv with u & Xi and v ^ Xi 
we let Xi = ruv and â  = 1. This gives for the lemma, that a = 2, D <2t and 
jj, = mil. We choose 5 = c • e"̂  • mn -t = c-e'^ • 0(w' • Sn) = e"^^"' ^ • n for some 
constant c determined later. Then 

Pr{\sR{Xi,Vi)-mn-t\>S]<2' -n{S^/{mii-e''-t)) 

= 2 • e~^(<= «"•'""•*) 

^ 2 . g-«(c^'e°-tu'-i5n) 
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The number of sets Xi possible is bounded by 

f\Vi\\ < / ^ " ^ < / '£y"^gfc-5in5.n^gfc+0(fe. i« ') 

A union bound gives that the probabihty for the existence of a set Xi contra­
dicting the claim is 

if c is large enough (but still constant). For sets Xi with cardinality < 5n the 
same bounds for SR{XI, Vi) and the probability hold, since we can fill them up 
until they contain exactly 5n elements without decreasing SR{XI, VI). U 

By the above lemma we see that the sum of the entries we loose by building 
R* is bounded e-'"^^') • n. Thus, we have that ||i? - i?* || < e-"^"^'^ • n. And for 
all unit vectors f,gwe have max/,g \f{R - R*)g\ < \\R - i?*|| = e-^(^') • n. 

Let e = (ei 62) be some normalized eigenvector of M and xii X2 be 
the characteristic vectors of 14, V2 (XiiJ) = 1 if j G 1̂  and 0 otherwise) 
and a = |Vi| /n, /? = IV2I /n . Let g = e\ • 0 • xi + ^2 • oi • X2 • Then 
ll̂ ll = Vefa/32n + e'ia^pn = 0(V^) . 

We have with probability 1 — o(l) that asymptotically 

g'Rg = el • /3''SR{VI, VI) + 2eie2 • a/3sR{Vr,V2) + elsR{V2, V2) 

= e\ • a^0^ • n^ • m n + 2eie2 • a^/3^ • n^ • mu + el • a^/3^ • n^ • m22 

= a^/3^ • n^ • (el • m n + 2eie2 • mi2 + 6̂ 77122) 

= a^(3'.n'.{e,e2)-M.(llj. 

Since all eigenvalues of M are in absolute value 0(w'/n) we get 

\9'R*9\ > \9*Rg\-e'"'-^"^ -n = a'^13'^ -n^ -Qiw' /n)-e-"^'^'^ -ein) = Q{w' -n), 

by using the triangle inequality. Thus, using the 2 eigenvectors of M, we can 
construct 2 orthogonal vectors g and h for R* such that 

h' 
R* 

\\h\\ " 
h 

m n{w') and F n r - ^ * - ¥ I ¥ =^(w'). 9l_ T,* _9_ 
M • • M 

By Fact 3 we obtain, that at least two eigenvalues of R* are f2{w') in absolute 
value. 

It is important that all the other eigenvalues of R* are bounded by O ( v ^ ) 
in absolute value. Let u and v some unit-vectors with u perpendicular to g 
and h. Because both g and h are linear combinations of xi and X2, u is also 
perpendicular to xi and X2-

We partition u into ui, U2 as V is partitioned into Vi, V2- By the same 
principle we construct iij, -Rĵ - and R*i,y Then 



max 
uA.g,h 

2 

Yl î̂ **.i"i 
«,i=i 

2 

< max > \v^R*i jUj 
u±g,h i,j=i 
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max \v*R*u\ — max "S " t>,*J?*j oW, < max \ " \v^R*i ^uA . (3) 

If u and t; maximize the above terms, we can assume that u = u* and v = v*. 
Then the Uj = Wj* are perpendicular to 1. In addition we have v\-R*i^j -Uj = 

Vj** • Rij • Uj*. By the construction of R we have for all Rij that the entries 
are bounded by some constant and the expectation of each entry is the same, 
namely 0{dij -w'/n). Lemma 3 allows us to bound each term in the above sum 
by 0{\w'). Fact 3 can be used to bound the remaining eigenvalues of R* by 
O ( V ^ ) . 

Finally we show that it is possible to obtain Vi and V2 by investigating the 
eigenvectors of R*. 

For this let vi, V2 be two orthonormal eigenvectors of R* with eigenvalue 
Q{w') (in absolute value). Then Vi can be written as Vi = Ci • rrii + di • Ui with 
11 Will = 11 Will = 1 and cf + df = 1. rrii comes from the space spanned by g and 
h, and Ui comes from the orthogonal complement. Then by the bound for (3) 

\v^R*Ui\ = n{w') • \vl • Ui\ = Q{w') • \di\ = 0{\/^), 

and \di\ must be 0{l/^/W). As |ci| + \di\ > c? + rf? = 1, we have |cj| = 
l - 0 ( l / v ^ ) . 

Since 

0 = v\v2 = ciC2m\m2 + Cid2m\u2 + C2diu\m2 + d\d2u\u2 

we have 

\c1C2m\m2\ = \c1d2m\u2 + C2diu\m2 + did2u\u2\ 

< \c1d2m\u2\ + \c2d1u\m2\ + |(ild2WiW2| 

= \did2u\u2\ < \did2\ 

= 0{l/w'). 

Together with Cj = 1 — 0{1/Vw') we can follow that mi and 1712 must be 
almost perpendicular. We write rrii = ji- Xi/\/n-\-5i • X2/V^- For at least one i 
we have |7i — 5i| > e for some small constant e, otherwise TOI and m2 could not 
be almost perpendicular. Taking this nii, we have that the entries belonging to 
Vi differ from the other entries by at least e/i /n. This gives us the chance to 
identify the Vi, V2 by the entries of rrij. 

Unfortunaly, we have only Vi and not mj. But we can assume, that in Cj • rrii 
the distance of e/{2y/n) still holds, because Cj > (1 — 0{l/w')) > 1/2. It is 
possible, that some entries j in u change the value of Cj • mi{j), such that we 
put j into the wrong partition. This may happen, if the value is changed by at 
least £/(4y^). But such entries are relatively rare. The entry in Wj must have 
an absolute value of J7(vw) • e/{4^/n), because \di\ = 0 ( 1 / V w ) is small. The 
number of such entries is bounded by 0{n/w') since u has length 1. We obtain, 
that we are able to partition at least (1 — 0{l/w')) • n vertices correctly by 
visiting the eigenvector Vi of R*. This finishes our proof of Theorem 2. 
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