
Exploring an Unknown Graph to Locate a Black
Hole Using Tokens

Stefan Dobrev^, Paola Flocchini^, Rastislav Kralovic^''^*, and Nicola Santoro' '

^ SITE, University of Ottawa, {sdobrev,f locchin}Ssi te .uot tawa.ca
^ Dept. of Computer Science, Comenius University, kralovic9dcs.fmph.uniba.sk

^ School of Computer Science, Carleton University, santoroQscs.carleton.ca

Abstract. Consider a team of (one or more) mobile agents operating
in a graph G. Unaware of the graph topology and starting from the same
node, the team must explore the graph. This problem, known as graph
exploration, was initially formulated by Shannon in 1951, and has been
extensively studied since under a variety of conditions. The existing
investigations have all assumed that the network is safe for the agents,
and the solutions presented in the literature succeed in their task only
under this assumption.
Recently, the exploration problem has been examined also when the
network is unsafe. The danger examined is the presence in the network
of a black hole, a node that disposes of any incoming agent without
leaving any observable trace of this destruction. The goal is for at least
one agent to survive and to have all the surviving agents to construct
a map of the network, indicating the edges leading to the black hole.
This variant of the problem is also known as black hole search. This
problem has been investigated assuming powerful inter-agent communi
cation mechanisms: whiteboards at all nodes. Indeed, in this model, the
black hole search problem can be solved with a minimal team size and
performing a polynomial number of moves.
In this paper, we consider a less powerful token model. We constructively
prove that the black hole search problem can be solved also in this
model; furthermore, this can be done using a minimal team size and
performing a polynomial number of moves. Our algorithm works even
if the agents are asynchronous and if both the agents and the nodes are
anonymous.

1 Introduction

1.1 T h e P r o b l e m

The problem of exploring an unknown graph using a team of one or more
mobile agents (or robots) is a classical fundamental problem tha t has been
extensively studied since its initial formulation in 1951 by Shannon [19]. It
requires the agents, start ing from the same node, to visit within finite t ime all

Partially supported by grant VEGA 1/3106/06.

Please use the following format when citing this chapter:

Dobrev, S., Flocchini, P., Kralovic, Santoro, N., 2006, in International Federation for Information Process
ing, Volume 209, Fourth IFIP International Conference on Theoretical Computer Science-TCS 2006, eds.
Navarro, G., Bertossi, L., Kohayakwa, Y., (Boston: Springer), pp. 131-150.

132 S. Dobrev et al.

the sites of a graph whose topology is unknown to them. Different instances
of the problem exist depending on whether or not the agents are required to
eventually stop the exploration; and, if so, whether or not they must construct
an accurate map of the network. Further differences exist depending on a variety
of factors, including the (a)synchrony of the agents, the presence of distinct
agent identifiers, the amount of memory, the coordination and communication
tools available to the agents, etc. (e.g., see [1, 2, 3, 4, 6, 7, 13, 14, 15, 18]).
Notice that, except for trees, the exploration with stop of anonymous graphs is
possible only if the agents are allowed to mark the nodes in some way; various
methods of marking nodes have been used by different authors ranging from
the weak model of tokens to the most powerful model of whiteboards.

The solutions proposed in the literature succeed in their task only assuming
that the network is safe for the agents. This assumption unfortunately does not
always hold in real systems and networks; for example, a node could contain
a local program (virus) that harms the visiting agents; or the network could
contain failed nodes that might damage incoming agents. In fact, protecting an
agent from "host attacks" (i.e., harmful network sites) has become a pressing
security concern (e.g., see [17, 20]).

Recently the exploration problem has been examined also when the network
is unsafe [5, 8, 9, 10, 11, 16]. The danger considered is the presence in the
network of a black hole (B H) , a node that disposes of any incoming agent without
leaving any observable trace of this destruction. Note that such a dangerous
presence is not uncommon; in fact, any undetectable crash failure of a site in
an asynchronous network transforms that site into a black hole. In spite of
this severe danger, the goal is for the team of agents to be able to explore the
network and, within finite time, discover the location of the BH. More precisely,
at least one agent must survive, and any surviving agent must have constructed
a map of the network indicating the edges leading to the BH.

This version of the exploration problem is called black hole search (BHS) .

It is known that, for its solution, the number of nodes of the network must be
known to the agents [9]; furthermore, if the graph is unknown, at least A + 1
agents are needed, where A is the maximum node degree in the graph [10]. In
the case of asynchronous agents in an unknown network, termination with an
exact complete map in finite time is actually impossible; in fact, regardless of
the protocol, a surviving agent upon termination can be wrong on Z\ — deg{BE)
links, where deg{x) denotes the degree of node x [10]. Hence, in the case of
asynchronous agents, BHS requires termination by the surviving agents within
finite time and creation of a map with just that level of accuracy.

The problem of asynchronous agents exploring a dangerous graph has been
investigated assuming powerful inter-agent communication mechanisms: white-
hoards at all nodes. In the whiteboard model, each node has available a local
storage area (the whiteboard) accessible in fair mutual exclusion to all incoming
agents; upon gaining access, the agent can write messages on the whiteboard
and can read all previously written messages. This mechanism can be used by
the agents to communicate and mark nodes or/and edges, and has been em-

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 133

ployed e.g. in [6, 8, 9, 10, 11, 13, 14]. In the whiteboard models, the black
hole search problem can be solved with a minimal team size and performing a
polynomial number of moves (e.g., [8, 9, 10, 11]).

The problem of exploring a dangerous graph has never been investigated
in the less powerful token model, which is instead commonly employed in the
exploration of safe graphs. In the classical token model, each agent has available
a token that can be carried, can be placed in the center on a node, or removed
from it. All tokens are identical (i.e., indistinguishable) and no other form of
marking or communication is available. In our variation {enhanced token modet)
we allow tokens to be placed also on a node in correspondence to a port. Notice
that the classical token model can be implemented with 1-bit whiteboards,
while our variation is not as weak; in fact, it could be implemented by having
a log d-whiteboard on a node with degree d.

The principal question targeted by our research was the impact of the com
munication model to the solvability and complexity of the BHS problem: to
what extent can be the whiteboard model weakened, and still allow the poly
nomial solvability of BHS? With this goal in mind, we examine the problem of
performing black hole search in the enhanced token model. Several immediate
computational and complexity questions naturally arise. In particular, are the
weaker communication and marking capabilities provided by enhanced tokens
sufHcient to solve the problem ? If so, how can the problem be solved? at what
costs? In this paper we provide definite answer to these questions.

1.2 Our Results

In this paper we present an algorithm that works in the token model and solves
the BHS problem with the minimal number of agents and with a polynomial
number of moves. Our algorithm works even if the agents are asynchronous, and
if both the agents and the nodes are anonymous. More precisely, we consider
an unknown, arbitrary, anonymous network and a team of exploring agents
starting their identical algorithm from the same node (home-base). The agents
are anonymous, they move from node to neighboring node asynchronously (i.e.,
it takes a finite but unpredictable time to traverse a link).

Each agent has available an indistinguishable token (or pebble) that can be
placed on, or removed from, a node; on a node, the token can be placed either
in the center or on an incident link. In our algorithm there are never two tokens
placed on the same location (node center or port), nor an agent ever carries
more than one token.

Using only this tool for marking nodes and communicating information, we
show that with A + 1 agents the exploration can be successfully completed.
In fact, we present an algorithm that will allow at least one agent to survive
and, within finite time, the surviving agents will know the location of the black
hole with the allowed level of accuracy. The number of moves performed by the
agents when executing the proposed protocol is shown to be polynomial. The
proposed algorithm is rather complex.

134 S. Dobrev et al.

This work is the first that addresses the problem of exploration of a danger
ous unknown graph using tokens. Our results indicate that, perhaps contrary
to expectation, our variation of the token model is computationally as powerful
as the whiteboard one with regards to black hole search.

topology
arbitrary, unknown
arbitrary, known

arbitrary, unknown

communication # of agents
whiteboard
whiteboard

tokens

A + 1
A + 1

A + 1

of moves

©(iVlogiV)

OiA^M^N'')

Fig. 1. Existing and new results for the BHS problem.

1.3 Related Work

The research on safe exploration of unknown graphs was started in 1951 by
Shannon [19]. Most of the work since has been concentrated on exploration
by a single agent (e.g., [2, 7, 18]). Safe explorations by multiple agents were
initially studied for a team of more recently the investigations have focused
on collaborative exploration by Turing machines. An exploration algorithm for
directed graphs that employs two agents was given in [3], whereas algorithms for
exploration by more agents were given by Prederickson et al. for arbitrary graphs
[15], by Averbakh and Berman for weighted trees [1], and more recently by
Praigniaud et al. for trees [13]. To explore arbitrary anonymous graphs, various
methods of marking nodes have been used by different authors. Bender et al. [2]
proposed the method of dropping a token on a node to mark it and showed that
any strongly connected directed graph can be explored using just one token,
if the size of the graph is known and using ©(log log A'') tokens, otherwise.
Dudek et al. [12] used a set of distinct markers to explore unlabeled undirected
graphs. Yet another approach, used by Bender and Slonim [3] was to employ
two cooperating agents, one of which would stand on a node, thus marking it,
while the other explores new edges. In Praigniaud et al. [13, 14], marking is
achieved by accessing whiteboards located at nodes, and their strategy explores
directed graphs and trees.

The explorations of unsafe graphs are quite recent and have focused mostly
on asynchronous environments. The BHS problem has been studied when the
network is an anonymous ring, characterizing the limits and determining opti
mal solutions [9]. When the network is an arbitrary graph the problem has been
investigated in [10], and several tight bounds have been established, depend
ing on the level of topological knowledge available to the agents. Por example,
when the network is arbitrary, the topology unknown and no form of consistent
edge labehngs are present, A + 1 agents are necessary and Q{N'^) moves are
required in the worst case. Improved bounds on the number of moves have later
been obtained in the case the agents have a complete map of the network (but

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 135

not the location of the BH) [11]. In the case of specific graphs, including many
important interconnection networks, the number of moves can be reduced to
linear [8].

In all these investigations, the nodes of the network have available a white
board, i.e., a local storage area that the agents can use to communicate informa
tion. Access to the whiteboard is gained in mutual exclusion and the capacity
of the whiteboard is always assumed to be at least of f2{logN) bits.

In the synchronous environments, the investigations have produced optimal
solutions for trees [5]; approximation results have been obtained for arbitrary
graphs in [5, 16].

2 The Model

The network G = (V, E) is a simple undirected graph with node-connectivity
two or higher; let A'' = |V |̂ and M = \E\ be the number of nodes and of edges
of G, respectively, d{x) denote the degree of x, and A denote the maximum
degree in G. If {x,y) 6 E then x and y are said to be neighbors. The nodes
of G are anonymous (i.e., without unique names). At each node x there is a
distinct label (called port number) associated to each of its incident links (or
ports). Without loss of generahty, we assume that the labels at x e V are the
consecutive integers # 1 , #2 , . . . , #d(x).

Operating in G is a team of zi -t-1 anonymous agents. The agents know the
number of nodes of the network, can move from node to a neighboring node
in G, have computing capabilities and limited amount of memory (0(Mlog A")
bits suffice for our algorithm). We also assume that agents know the degree A
of the BH.

Each agent has a token that can be placed on on a node and removed
from it; tokens are identical and their placement can be used to mark nodes
and ports/links. More precisely, a node can be marked by a token in different
modalities: in the center, or in correspondence of one of the incident ports.

The agents obey the same set of behavioral rules (the "algorithm") and
initially, they are all located at the same node h, called home-base (home-base).

The agents can be seen as automata, where one computational step of an
agent A in a node v is defined as follows. Based on the state (local memory) of
A and on the presence of tokens at v and incident links (examined atomically):
- change the state (local memory of A)
- remove (or place) at most one token from v or an incident link and
- start waiting (for a token to disappear) or leave v via one of the incident links.

The computational steps are atomic and mutually exclusive, i.e. no more
than one agent computes in the same node at the same time. The links satisfy
FIFO property, i.e. the agents entering a link e = {u, v) at u will arrive at v
and execute the computational steps in the same order they entered e. The
agents are asynchronous in the sense that waiting (for a token to disappear)
and traversing a link can take an unpredictable (but finite) amount of time.

136 S. Dobrev et al.

The network contains a black hole (B H) that destroys any incoming agent
without leaving any trace of that destruction.

The goal of a black hole search algorithm V is to identify the location of
BH; that is, within finite time, at least one agent must terminate, and all the
surviving agents must construct a map of the entire graph where the home-
base, the current position of the agent, and the location of the black hole, are
indicated.

Note that termination with an exact map in finite time is actually impossi
ble. In fact, since an agent is destroyed upon arriving to the BH, no surviving
agent can discover the port numbers of the black hole. Hence, the map will have
to miss such an information. More importantly, the agents are asynchronous and
do not know the actual degree d{Bu) of the black hole (just that it is at most
A). Hence, if an agent has a local map that contains N — 1 vertices and at most
A unexplored edges, it cannot distinguish between the case when all unexplored
ports lead to the black hole, and the case when some of them are connected to
each other; this ambiguity can not be resolved in finite time nor without the
agents being destroyed. In other words, if we require termination within finite
time, an agent might incorrectly label some links as incident to the BH; however
the agents need to be wrong only on at most A--d(BH.) links. Hence, we require
from a solution algorithm V termination by the surviving agents within finite
time and creation of a map with just that level of accuracy.

The complexity measures of a solution protocol are: the number of agents
used, called size of the team, and the total number of moves performed by the
agents during the execution, called cost.

3 The Solution

3.1 Overview

In our algorithm, each agent constructs its own local map (quasi-)independently
from other agents until it enters the B H or explores at least N — 1 vertices and
M - A edges.

In the beginning, the local map of each agent contains only the home-base.
During the computation, the communication ports in the graph are classified
by each agent EIS follows:

- unexplored port/edge - not in the local map: the port is not marked by a
token

- dangerous port - not in the local map; the port is marked by a token
- safe edge - in the local map; connecting two already explored vertices
- quasi-safe edge - in the local map; connecting two already explored vertices,

but could be wrong

Throughout the execution, whenever an agent leaves via a port that might
lead to the BH, it leaves its token there, marking the port as dangerous. The

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 137

algorithm requires tha t no agent enters a dangerous port , ensuring in this way
tha t at most A agents enter the black hole. We will thus say tha t a dangerous
port blocks the (other) agents.

Initially, all ports incident to the home-base are unexplored. The local map
of an agent is constructed by adding edges in a sequential manner according
to Algorithm 1: The searching for an unexplored port is straightforward: any

9
10
11
12
13

loop
traverse the local map and look for an unexplored port p
if unexplored port p found t h e n

EXPLORE(P)

continue the main loop
else

if local map contains N—1 vertices and there are at most A outgoing edges
t h e n
TERMINATE

else
SUSPEND

end if
end if

end loop

traversal of the explored part using only the edges identified as safe in the local
map will do.

In the execution of ExPLORE(p), the agent explores the edge Incident to
port p, determines whether it leads to a new node or to an already discovered
one^, and updates the local map. Due to complex interaction of anonymity
with asynchrony, in some cases the agent might be unsure of whether an edge
leads to a new node or to an already visited one. However, the agent is able to
recognize this uncertainty, and will add this edge to the local map as quasi-safe
instead of safe.

Eventually, no unexplored port is found. If A'' — 1 nodes has been visited,
the remaining node is the B H and the algorithm can terminate. Otherwise,
the access to the unexplored part of the graph is blocked by dangerous ports .
Since G is two-connected, at least one of those ports does not lead to the
B H and the token will eventually be removed from it, making it unexplored.
In order to avoid live-lock, the agent tha t failed to find an unexplored port
suspends itself using procedure SUSPEND until such a progress has been made.
The basic idea of S U S P E N D is to go to the home-base, set a flag there (by using
a token) indicating tha t an agent is waiting for wake-up, verify tha t no progress
has been made before the flag has been set up, and then wait to be woken-

^ p might lead to the B H as well, in which case the agent disappears there and does
not continue the algorithm

138 S. Dobrev et al.

up. Complementarily, whenever an agent removes its token from an edge, it
goes to the home-base and wakes up the agents waiting there (using procedure
W A K E - U P) . There are several technical issues to be dealt with (discussed in
the detailed description), e.g. several agents might be executing SUSPEND and
W A K E - U P simultaneously, the flag can only be implemented using tokens, as
well as the interference with the rest of the algorithm.

3.2 Detailed Description

In this section we give the full description of the algorithm. The following three
rules clarify some terms used in the description:

R l "cautious step" in a vertex v over a Unk I = put a token on link I,
traverse the hnk, return to v, take the token, perform W A K E - U P , return to
V and traverse /

R2 "put token in the home-base" = wait for all known safe links incident
to home-base to become unmarked, then put the token

R 3 "put token on a Unk" (in vertex v) = wait for v to become empty, then
put the token

The nodes on the other ends of the links # 1 and # 2 from home-base are
called s torerooms (SR) and they play special role in the algorithm (as we will
see, they will be employed to allow communication among the agents when they
are temporary suspended looking for a new port to explore).

Each agent starts the algorithm by exploring (using cautious step) S R I and
S R 2 from the home-base (in this order). Since the graph is simple, at least one
of them is safe; if both these links are dangerous, the agent will simply wait until
one of the blocking tokens disappears. Eventually, each agent will know about
one or two safe storerooms. The primary storeroom for an agent is defined as
the storeroom known to be safe with the lower numbered link leading to it.

Note that if the B H is located in one of the storerooms, all surviving agents
will choose the other S R as their primary SR. However, if none of the SR'S
contains the BH, there might be agents with different primary SR'S (some might
find S R I safe and choose it, some might find it temporarily dangerous and select
S R 2) .

As this might lead to problems, the algorithm tries to remedy this situation
by "updating" the primary store room of agents that had originally selected
S R 2 and later discover that S R I has become safe in the meanwhile. The update
rule is called R4 and will be described later.

Explore
The execution by agent A of procedure ExPLORE(p) is to enable A to tra

verse an unexplored edge e = {u, v) (starting at port p in u) and add it (possibly
with the vertex v) to the local map. Agent A starts executing a cautious step
over the edge e and, if survives, it proceeds with determining whether or not e
leads to a new (not in the local map) vertex.

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 139

Notice that recognizing if v is already in the local map would be an easy
task if either the agents were able to recognize their own tokens, or they were
able to recognize the home-base. In fact, if agents were able to recognize their
tokens, then A could simply put its token at v and scan the explored subgraph:
if it finds its token, v is already explored, otherwise it is a new node. If the
agents were able to recognize the home-base, then A could determine whether
V is a new node as follows. For each node w in the local map, A guesses that
V = w and verifies whether that is really true: Let a be a sequence of port
labels specifying a safe path (determined by looking in the local map) from w
to the home-base. Starting from v, A follows^ the port labels specified by a.
If A finishes in the home-base, then v — w, otherwise A makes another guess.
If all guesses fail, ?; is a new node. However, in our model the agents can not
recognize their tokens nor the home-base. Still, the basic structure is to guess for
all already explored nodes w whether v = w and to verify the guess, although
the verification is much more involved.

Let Pw (we will use P when w is clear from the context) be a sequence of
port labels starting with the label of the port from u to f and then following a
path (using only edges marked as safe in the agent's map) from w through the
primary S R and ending in u. Clearly, li v = w then p specifies a simple cycle in
the graph (and therefore \p\ < n, even if actually v ^ w).

Agent A verifies whether v —w hy following the labels specified by a cyclic
repeating of p (we will call it /?*) for up to A''̂ edges or until A finds a difference
between what it sees in the current node and what it should see (according to
its map) a V = w. The number of steps is chosen large enough so that following
P* creates a cycle even ifv^w (as we will see later, using only p is not enough).
This means (as will be proven later) that if no discrepancy has been found for
N^ steps, u and v indeed lie on a cycle C passing through the correct SR, with
the labels specified by /3*. Unfortunately, it is still possible that, although no
discrepancy is found, v ^ w: this could happen if \C\ is a multiple of |/3|. In this
case the agent verifies whether v = w or not in the procedure VERIFY, which
will be described later.

The N^ steps along /3* must be done in cautious manner, not entering
dangerous ports, since it may be the case that v ^w and p* leads to the B H .

The cautious walk is complicated by the fact that a port to be taken (let
its label be A) from a node w' might be dangerous. If this happens, the agent
cannot afford to wait in w' until the token is removed, because this edge might
indeed lead to the BH. Instead, it wants to ensure that, liv = w then the token
will be removed allowing A to continue its cautious walk through A. To do so, A
goes backwards for |/3| steps reaching a safe node through safe links; this node
might indeed be w' (this happens if the guess i; = w is correct), or it could
be a different node w". Agent A waits here until there is no token on the port
labelled A. Although not sure about the identity of the node, the agent knows

cautious walk needs to be used, as v might be different from w, and a from v might
lead to the BH

140 S. Dobrev et al.

t ha t A must lead to a safe node {A is now revisiting nodes it has visited earlier)
thus the token will be eventually removed from there.

After ensuring the removal of the token, agent A returns to w'. It can happen
tha t the port A is still dangerous. However, if v = w then this must be a newly
placed token. Since (as we will see later) during the whole execution of the
algorithm a token is placed on a given port less then 2AMN^ t imes, if after
2AMN^ cleaning tries A is still blocked, then v ^ w.

The Algorithm 2 describes the procedure EXPLORE in full detail.

A l g o r i t h m 2 Exploring an edge with label h by EXPLORE

1: do a cautious step over link li, let I2 := label of the link upon which you arrived
2: for all w in local map do
3: compute the sequence P
4: for A''̂ steps do
5: while next port 7 in (3* is dangerous and this loop has been executed less

than 2AMN^ times do
6: go back |/3| steps
7: wait until there is no token on the edge along which you arrived
8: go forwards \(3\ steps
9: end while

10: if port 7 is still dangerous then
11: backtrack your steps to v and continue the outermost for cycle for the

next w
12: end if
13: do a cautious step
14: if what you see in the vertex you arrived to is not compatible with the local

map assuming v = w then
15: backtrack your steps to v and continue the outermost for cycle for

then next w
16: end if
17: end for
18: if VERIFY then / / after traversing N^ edges there was no discrepancy, so

I am in a cycle. Is it a short one ?
19: add edge to w to the local map as quasi-safe
20: exit from EXPLORE
21: end if
22: end for
23: add to the local map the new vertex and edge; the added edge is marked as safe

Notice tha t , during the actual exploration, tokens are placed in correspon
dence to links only. Thus, a token found on a link is a clear sign of danger. As
we will soon discover, bo th in the verification process (described below) and in
the suspension process (described later) tokens are instead placed in (and re
moved from) the home-base and the storerooms. In other words, the home-base
and the storerooms are employed to accomplish different tasks and this requires
much care to avoid ambiguity and interference between different activities.

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 141

Verification
The test of a candidate vertex w in the procedure E X P L O R E may end, after

traversing the sequence /3* for A'"̂ steps, in a situation where the agent knows
tha t either (3 or its multiple forms a safe cycle connecting u and v. The procedure
V E R I F Y is used to verify whether the cycle consists of just one repetition of /3
(in which case v = w).

A l g o r i t h m 3 VERIFY - let p be the S R , if the hypothesis about w is t rue
1: PosCount = NegCount = 0
2: loop
3: go to home-base, wait until it becomes empty, and go to the primary S R
4: if the S R is empty t h e n
5: put token and exit loop
6: else
7: wait until the S R becomes empty
8: end if
9: end loop

10: while PosCount < 2AMN^ + AMN and NegCount < 2AMN^ + AMN do
11: if known, go to the other S R and wait until it becomes empty
12: go to the home-base, wait until it becomes empty
13: go to p
14: if there is a token t h e n
15: PosCount = PosCount + 1
16: else
17: NegCount — NegCount + 1
18: end if
19: go to the primary SR and if empty update the knowledge of storerooms using

rule R4 and restart algorithm
20: end while
21: take token
22: if PosCount > 2AMN^ + AMN t h e n
23: return TRUE
24: else
25: return FALSE
26: end if

The idea of V E R I F Y is to use a token in the primary S R for breaking symme
try on the /3*-cycle. An agent A performing a V E R I F Y first makes sure tha t it
is not interfering with any other agent by waiting until both the home-base and
the S R ' S it knows to be safe are empty. It then puts its token in the primary S R
and walks^ along the /?*-cycle for |/3| steps to a vertex w' and checks whether
there is a token in w'. The idea is tha t \iv — w then w' is the S R and contains
the token, iiv^w then w' should be empty as it is not the correct S R .

•* Note that it is not needed to use cautious steps, as the cycle identified by (3* has
already been traversed and is known to be safe

142 S. Dobrev et al.

Notice that a straightforward check on whether there is a token in w' can
fail for two reasons. (1) It may happen that w' is not a SR but, say, the home-
base. As mentioned above, the home-base is also used by procedure SUSPEND
and WAKE UP, which are employed when an agent has not found a suitable port
to explore and is waiting for one to become available. If some other agent has
started to perform a SUSPEND (which requires putting a token in home-base)
while A traveled to w', A is deceived since it finds a token in w', but this is not
the token it left in SR! (2) It may happen that w' is indeed a S R but some other
agent took the token from the SR in the meanwhile (when finishing SUSPEND);

so A is again deceived because it does not find its own token.
Luckily, as will be shown later, each of these two cases occurs less than K

times, where K = 2AMN^ + AMN. Hence, if A saw a token in w' at least K
times, then w' must be the SR; conversely, if A saw no token in w' at least K
times, then w' is not the SR.

One last complication comes from the fact that, at the beginning of each
iteration of the while cycle, A has to make sure that the home-base and the SR'S
are empty. The problem is that agents cannot always agree on one primary SR.
In fact, (if the B H is not in a SR) there are three types of agents: some think
that only S R I is safe, other thing that only SR2 is safe, while the third group
knows that both SR'S are safe. However, if an agent does not know that both
SR'S are safe, it cannot make sure that both of them are empty. In this case it
may happen that the result of VERIFY is wrong. This is the reason why when
A decides that v = w,\t marks the edge {u,v) as quasi-safe and never uses it
for traversals. Note that if EXPLORE declares w to be a new vertex it never errs,
so the spanning tree defined by the safe edges is always available for traversal.

As we prove later, the only way for an agent A to find an empty S R on
line 19 is if A does not know about (safe) SR 1. This means that after seeing
an empty SR, A can update its knowledge about the storerooms and reset the
algorithm according to rule R4.

R4 = When an agent first realizes that both SR'S are safe, it performs the
following actions:
- If you have no token and your old primary SR is S R 2 , execute GRAB-

TOKEN starting from S R 2 , else execute GRAB-TOKEN from the home-base.
- Update the knowledge about SR'S.
- If you came to the home-base to perform W A K E - U P but have not done
so, do it now
- Restart the whole algorithm

Grab-Token
The procedure GRAB-TOKEN is used by an agent A to pick up a token that

it has previously put at the home-base or a SR. It might happen that some
other agent B has meanwhile picked the A's token instead of its own. However,
in such case B's token must be somewhere around (in the home-base or in a

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 143

SR) and A will take it (or the token of yet another agent).

Algor i thm 4 GRAB-TOKEN - starts in home-base
1: if there is a token in home-base, get it and exit GRAB-TOKEN

2: go to primary SR, if there is a token there, get it and exit GRAB-TOKEN

3: go to the home-base and if there is a token there, get it and exit GRAB-TOKEN

4: go to the other SR and get token

Suspend & Wake-Up
Recall that an agent A performs SUSPEND when further exploration progress

is blocked by dangerous links, but A knows that eventually at least one of those
link will become unblocked. The basic idea is to put the token in the home-base
to signal "I want to be waken-up", check whether a progress has been made
before the token was put down (to prevent deadlock, as an agent performing
W A K E - U P after removing its token from a dangerous edge might have arrived
to the home-base before the token was put there) and, if not, then wait until
the token disappears. An agent performing W A K E - U P simply moves a token
from the home-base (if there is any) to its primary SR.

The problems arise because several agents might be executing SUSPEND,
W A K E - U P and VERIFY simultaneously, and because the agents do not neces
sarily agree on the correct SR. Dealing with that constitutes the most technical
part of the algorithm. The basic idea is to wait until any activity going on (de
tected by non-empty home-base or SR) looks to have finished and then restart
SUSPEND. Still, there are many possible cases how the agents can steal each
other's tokens and/or misinterpret what is going on. The reasons behind the
design of SUSPEND and W A K E - U P will become fully apparent only when reading
the formal proofs in the next section.

The idea of W A K E - U P is to wake-up an agent suspended at home-base by
moving its token to a SR. In order to make GRAB-TOKEN work, the waking-
up agent first places its token in the SR and then removes the token from the
home-base. If the home-base is empty or the S R is full, W A K E - U P does nothing,
because either there is nobody suspended, or it has been already waken-up and
just has to pick up its token. When an agent suspended at home-base sees
that its token has disappeared, it will search around and find its token (using
GRAB-TOKEN)

4 Correctness and Complexity

Let us call an agent informed if its knowledge about which storerooms are safe
is correct. If the B H is located in one of the storerooms, all agents (that have
finished initialization) are informed; otherwise an informed agent knows that

144 S. Dobrev et al.

Algori thm 5 SUSPEND

9
10
11
12
13

go to home-base, wait until it is empty and put a token there
scan all known SR'S and return to home-base
if SR'S were empty then

traverse the local map
else

if there is a token in home-base then
get token
go to the SR that contained a token, wait until it becomes empty and

restart SUSPEND
else / / my token has been moved

GRAB-TOKEN

restart SUSPEND
end if

end if

1
2
3
4
5
6

upon return from traversal
if traversal revealed progress then

GRAB-TOKEN

else
wait until home-base becomes empty
GRAB-TOKEN

end if

Algor i thm 6 W A K E - U P

go to home-base and if empty, abort
go to "correct" SR
if SR full then

abort
else

put token
go to home-base
GRAB-TOKEN

end if

both storerooms are safe. However, the notion of an informed agent is for the
purpose of the proof only. The agents themselves may not know whether they
are informed or not.

The overall structure of the correctness proof, which is quite complicated, is
the following: we first prove that during the whole algorithm, at most A agents
enter the BH, and all agents that are alive make progress by eventually exploring
a new edge. Second, we prove that all informed agents maintain a correct local
map, i.e. the local map of an informed agent is at any time Isomorphic to some
subgraph of the network (including port labels).

The above arguments are formally carried out through a sequence of Claims
and Lemmas, which will lead to the main Theorem:

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 145

Theorem 1. (Main Theorem) At least one agent successfully terminates with
a correct map.

Due to the lack of space, we present only the key lemmas, we omit some
proofs and we only informally sketch some reasonings.

Let us start with some basic observations. Since a token is put in a vertex
only in SUSPEND, W A K E - U P or VERIFY, we get:

Claim. l.A token is in the vertex v only if i; is a home-base or a SR.

The most technical part of the algorithm is the implementation of the com
munication between agents by means of tokens. We are specifically interested
in agents who have put their token in the home-base or in the S R and are
now without a token; we will call them empty-handed to distinguish them from
agents who do not have a token because they are performing a cautious step.
Prom the definition of cautious step, from Claim 1, and by construction we get:

Claim. 2. There are as many empty-handed agents as tokens in the home-base
and storerooms.

An agent performing procedure GRAB-TOKEN visits the home-base and
possibly some SR'S a constant number of times in a search for a token. For
the correctness of the algorithm it is important to prove that a token is always
found.

Lemma 1. An agent always gets a token in procedure GRAB-TOKEN.

Proof. Consider, for the sake of contradiction, an agent A executing GRAB-

TOKEN that has not found a token. Let to be the time when A sees that its
primary S R X is empty and starts to travel back to home-base. Let ii > io be
the time when A arrives to the home-base, finds it empty again, and starts to
travel to S R y. By Claim 2, at time to there must be at least one token T in
home-base or S R y. However, since A does not find T, T must have disappeared
after to before A gets there. The only way for T to disappear is if it is taken by
some empty-handed agent B. However, since B is empty-handed, there must
be another token T' in some vertex (home-base or SR) at the time when B
grabs T. The idea is to argue about T and T' and show that A would find one
of them. In particular, we first prove that at some point in time after to both
home-base and SR y are full, and then prove that from this fact it follows that
A finds a token.

Let us focus on the time t' when B put T' and thus became empty-handed.
We distinguish three cases. First, consider t' > ti. B could not have removed
T from the home-base before time ti, therefore at time ^i (and t' as well, as it
is B that removes it) T must be in S R y. Since A started traveling from the
home-base to SR y at time ti < t' and due to the FIFO property, B cannot get
to SR y before A and so A finds T in SR y - contradiction.

146 S. Dobrev et al.

Next, let t' < to- This means that at time to both A and B are empty-
handed, and moreover, SR X is empty. Hence, due to Claim ??, at time to both
home-base and S R y are full.

Third, let to < t' < ti. There are two possibilities: (1) B (at time t') put
T' in S R X. Since to < t', due to FIFO property B cannot take T from the
home-base before A does - contradiction. (2) B (at time t') put T' somewhere
else (home-bgise or S R y). In such a case, at time t' both home-base and S R
y are full, containing T and T': By assumption, B is the agent that takes T,
therefore T did not move between to and t'.

Hence, it must be the case that the home-base and S R y are full at some
time t between to and ti . Since we suppose that A does not find a token, it
must be that both tokens in home-base and SR y disappear at some time after
t. However, at time to, SR X is empty, so at that time at most one agent other
than A is empty-handed. Any agent that becomes empty-handed by putting a
token in S R X after to cannot, due to FIFO, prevent A from grabbing a token.
This means that only one of the tokens in home-base and S R y can disappear
after time t and before A arrives there, i.e. A will find a token - contradiction.

Lemma 2. A token is removed from a given link less then 2AMN^ times.

Proof. A token is put and removed on a link only during cautious step. Cautious
steps are performed only on line 13 in EXPLORE, which is executed less than
A''̂ times (at most A'"-̂ iterations of the inner loop, for at most A' — 1 candidate
vertices). EXPLORE is called by each of the A agents at most M times. Finally,
each agent might reset the algorithm once, applying rule R 4

We now aim at proving that at most A agents disappear in the BH. In
order to do so we need to show first that an agent can enter a B H only during a
cautious step, i.e. that edges marked safe in the local map of an agent correspond
to safe edges in the network. To do so, we use the following technical lemmas,
whose proofs are omitted due to the lack of space.

Lemma 3. Consider a situation when both SR'S are full and agents A and B
are the only empty-handed agents. Then, before A or B grabs a token from the
home-base or some SR, no agent other than A or B grabs a token from a SR.

Lemma 4. No token placed in S R I will be stolen. Moreover, let A be an agent
knowing that S R I is safe that puts a token in the home-base. Then A's token
will not be kicked out to S R 2 .

Lemma 5. A token put in a SR x by an informed agent A executing VERIFY
can be removed from x only by A.

We can now prove the following:

Lemma 6. When an agent A adds a vertex v to its local map as a new vertex,
then the local map indeed did not contain v.

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 147

Proof. A vertex v is added as new only if the test w = v \u EXPLORE failed for
every candidate w. We show that if the test fails then indeed w ^ v. The test
for a given w can fail:
- By having the port 7 still dangerous after executing the loop on lines 5..9 for
2AMN^ times. However, if to = u, then between each iteration of that loop the
port 7 is cleared which is a contradiction with Lemma 2. Hence, w ^ v.
- By noticing (in line 14) difference between what the map tells what should be
seen if w = to and what really is visible. Clearly, in such case v ^ w.
- By having VERIFY return false. VERIFY returns false if the agent A has not
found the token in the vertex p (which is equal to its correct SR x if v = w) for
at least 2AMN^ times. Note that A always leaves S R X with its token there.
We distinguish two cases:
(i) If a;=SRl the lemma follows from the second part of Lemma 4: no other
agent steals A's token from S R I , SO ii V = W then A always sees a token in p
and, subsequently, VERIFY never returns FALSE.
(ii) Let X = S R 2 . Which agent could remove ^ ' s token from S R 2 ? Prom Lemmas
4 and 5 we know that ^ ' s token was not removed from S R 2 by an agent B
executing VERIFY from S R I , because in that case B's token remains in S R I .
It cannot be the case that ^ ' s token was removed by an agent B executing
VERIFY from S R 2 , because that agent would have first placed its token in S R 2 .

Therefore, A's token was removed by an agent B executing a GRAB-TOKEN as
a part of SUSPEND or W A K E - U P . However, for each removal of a token from a
S R by an agent B executing SUSPEND there must have been a wake-up of some
other agent that kicked out a token from the home-base to a SR (otherwise
B would have picked up its token in the home-base). The only exception are
the cases when an agent becomes informed and first takes a token from its old
primary SR, which can happen at most A times. The lemma follows from the
fact that there are less then 2AMN^ wake-ups.

Using the previous lemma, we can argue that an agent disappears in a B H
only during a cautious step:

Lemma 7. / / A enters BH, the link e upon which it arrived is marked by its
token.

Since no agent enters a link marked by a token and the degree of the B H is
at most A, we get:

Theorem 2. At most A agents die.

The next lemmas are needed to show that no deadlock can occur, i.e. every
agent is always able to continue its algorithm after some finite time. First, we
prove that no deadlock occurs when an agent is waiting for a disappearance of
a token:

Lemma 8. A token from the home-base eventually disappears.

148 S. Dobrev et al.

Proof. The only way a token can be put in the home-base is in SUSPEND.

Consider for the sake of contradiction that an agent A puts a token in the
home-base at time to and that token never disappears. That means A went to
its primary SR X and found in empty at time i i , then returned and went to
rescan.

We claim that if the token from the home-base does not disappear, then no
token appears in the SR X after time i i . An agent B executing VERIFY cannot
place a token in S R X after ti ~ ii B checked the home-base (line 3. of VERIFY)

before to, then A would have found its token in SR a;, if it checked it after Ô) it
would wait in the home-base until it becomes empty. The only other possibility
is that B is executing WAKE-IJpand placed its token in SR X after ti. In such
case B would find A's token in the home-base (when executing GRAB-TOKEN)

and take it. Contradiction.
Because A did not take its token after returning from rescan, it has seen

no progress and did not terminate. This means (by Theorem 2 and from the
two-connectivity of G) that it cannot be the case that all blocked links lead to
the BH. Therefore one of them will eventually be freed and some agent B will
execute W A K E - U P .

If a; = 1 (i.e. A's primary S R is S R I) , B will execute W A K E - U P using S R I

(either because S R I was its primary SR, or because of rule R4 - the link to the
S R I is free due to rules R2 and R3) and since S R I is empty after time ti, it
will indeed remove A's token from the home-base. Contradiction.

If a; = 2, there are two cases. If J5's primary S R is S R 2 , the same argument
as above applies. Otherwise S R I does not contain the B H and the link leading to
it will eventually become free and due to rule R 3 remain so. That means A will
eventually notice that S R I is safe and apply rule R4, executing GRAB-TOKEN

starting from S R 2 . Since SR2 remains empty after i i , A will pick its token from
the home-base. Contradiction.

In a similar fashion, we can show the following lemma, which is, due to space
constraints, presented without proof:

Lemma 9. A token from a SR eventually disappears.

Prom the construction and Lemmas 8 and 9 we get:

Theorem 3. An agent never deadlocks.

The next two lemmas are crucial for bounding the number of moves. Due
to space restrictions we present them without proofs.

Lemma 10. An agent spends 0{AMN'^) moves in one call to VERIFY.

Lemma 11. An agent spends 0{AMN'^) steps executing one iteration of the
outer loop of Algorithm 1.

The last property we need for the proof of Theorem 1 is:

Exploring an Unknown Graph to Locate a Black Hole Using Tokens 149

Lemma 12. Each informed agent has a correct map.

Proof. It follows from Lemma 6 that if an agent A adds a new vertex v to its
map, then indeed v has not been in ^ ' s local map before. So it remains to be
proven that if an informed agent A adds an edge (w, w) between two visited
vertices to its map, then there is an edge (w, w) in the graph. Adding an edge
{u,w) requires that the hypothesis v = w tested in EXPLORE and VERIFY

returns TRUE.
We first prove that after successfully finishing A''̂ iterations of the loop on

line 4 in EXPLORE the sequence /3* defines a (not necessarily simple) cycle
connecting v and u, whose length is a multiple of |/?|. Let /3 = {l3i,P2, • • • ,Pk)
where each (ii specifies two port numbers: a consistent traversal must arrive via
port pi and leave via port P2. Since k < N ,hy traversing (3* for A''̂ steps it
must happen that the agent visits a particular vertex q twice with the same
position in the sequence /?; say /?j. Clearly, from now on the agent walks in
cycle. Let q be the first such vertex. However, since /3j specifies also the arriving
port number, it means that the agent has both times arrived to q using the
same port, i.e. it already started in the cycle.

To conclude, we prove that if VERIFY returns TRUE for some informed
agent it must be that the cycle formed by /3* has length |/3| and hence v = w.li
VERIFY returns TRUE it means that A saw a token in p at least 2AMN'^ times
and between every two successive visits of p there was a time when home-base
was free and, if there are two storerooms, also a time when SR2 was free. If p
was not S R I , it must be that either p is home-base or p is S R I and each of the
2AMN^ times some agent put its token at p (which was removed before the
next visit of A in p).

We conclude the proof by showing that a token is put in p less then
2AMN^ + AMN times. There are two possible situations when an agent B
could put its token to p: either B performs a VERIFY in S R 2 (there are at
most AMN such cases: B must be a non-informed agent and it puts its to
ken once per each call of VERIFY before getting informed), or B performs a
SUSPEND-WAKE-UP pair. However, in the latter case there must be a cautious
step that triggers this W A K E - U P which, according to Lemma 2, accounts for
another 2AMN^ possibilities.

By Lemmas 1-12, the main theorem (Theorem 1) follows.

Let us now consider the number of moves. By Lemmas 10,11 plus the fact
that each of the A agents performs at most M iterations of the loop in Algo
rithm 1, we have

Theorem 4. The B H can he located using 0{A'^M'^N'^) moves.

References

1. I. Averbakh and O. Berman. A heuristic with worst-case analysis for minimax
routing of two traveling salesmen on a tree. Discr. Appl. Math., 68:17-32, 1996.

150 S. Dobrev et al.

2. M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a
pebble: Exploring and mapping directed graphs. In Proc. 30th ACM Symp. on
Theory of Computing (STOC'98), 269-287, 1998.

3. M. Bender and D. K. Slonim. The power of team exploration: two robots can
learn unlabeled directed graphs. In Proc. 35th Symp. on Foundations of Computer
Science (FOCS'94), 75-85, 1994.

4. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In 19th Symposium on Foundations of Computer Science
(FOCS'78), 132-142, 1978.

5. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in
tree networks. In Proc. 8th International Conference on Principles of Distributed
Systems (OPODIS 2004), 35-45, 2004.

6. S. Das, P. Flocchini, A. Nayak, and N. Santoro. Exploration and labelling of
an unknown graph by multiple agents. In Proc. 12th Int. Coll. on Structural
Information and Communication Complexity (SIROCCO'05), 99-114, 2005.

7. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of
Graph Theory, 32(3):265-297, 1999.

8. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Optimal search for a black hole in common interconnection networks. Networks,
47(2):61-71, 2006.

9. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black
hole in an anonymous ring. Algorithmica. To appear.

10. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole
in arbitrary networks: optimal mobile agents protocols. Distributed Computing.
To appear.

11. S. Dobrev, P. Flocchini, and N. Santoro. Improved bounds for optimal black
hole search in a network with a map. In Proc. of 10th Int. Coll. on Structural
Information and Communication Complexity (SIROCCO'04), 111-122, 2004.

12. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph
construction. Transactions on Robotics and Automation, 7(6):859-865, 1991.

13. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.
In 6th Latin American Theoretical Informatics Symp. (LATIN'04), 141-151, 2004.

14. P. Fraigniaud and D. Ilcinkas. Digraph exploration with little memory. In 21st
Symp. on Theoretical Aspects of Computer Science (STACS'04), 246-257, 2004.

15. G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for
some routing problems. SIAM J. on Computing, 7:178-193, 1978.

16. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary graphs. In Proc. 12th Coll. on Structural
Information and Communication complexity (SIROCCO'05), 200-215, 2005.

17. R. Oppliger. Security issues related to mobile code and agent-based systems.
Computer Communications, 22(12):1165 - 1170, 1999.

18. P. Panaite and A. Pelc. Exploring unknown undirected graphs. J. Algorithms,
33:281-295, 1999.

19. CL. E. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the
Josiah Macy Jr. Found. (Cybernetics), 173-180, 1951.

20. Jan Vitek and Giuseppe Castagna. Mobile computations and hostile hosts. In
D. Tsichritzis, editor. Mobile Objects, 241-261, 1999.

