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Abstract. Consider a team of (one or more) mobile agents operating 
in a graph G. Unaware of the graph topology and starting from the same 
node, the team must explore the graph. This problem, known as graph 
exploration, was initially formulated by Shannon in 1951, and has been 
extensively studied since under a variety of conditions. The existing 
investigations have all assumed that the network is safe for the agents, 
and the solutions presented in the literature succeed in their task only 
under this assumption. 
Recently, the exploration problem has been examined also when the 
network is unsafe. The danger examined is the presence in the network 
of a black hole, a node that disposes of any incoming agent without 
leaving any observable trace of this destruction. The goal is for at least 
one agent to survive and to have all the surviving agents to construct 
a map of the network, indicating the edges leading to the black hole. 
This variant of the problem is also known as black hole search. This 
problem has been investigated assuming powerful inter-agent communi
cation mechanisms: whiteboards at all nodes. Indeed, in this model, the 
black hole search problem can be solved with a minimal team size and 
performing a polynomial number of moves. 
In this paper, we consider a less powerful token model. We constructively 
prove that the black hole search problem can be solved also in this 
model; furthermore, this can be done using a minimal team size and 
performing a polynomial number of moves. Our algorithm works even 
if the agents are asynchronous and if both the agents and the nodes are 
anonymous. 

1 Introduction 

1.1 T h e P r o b l e m 

The problem of exploring an unknown graph using a team of one or more 
mobile agents (or robots) is a classical fundamental problem tha t has been 
extensively studied since its initial formulation in 1951 by Shannon [19]. It 
requires the agents, start ing from the same node, to visit within finite t ime all 
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the sites of a graph whose topology is unknown to them. Different instances 
of the problem exist depending on whether or not the agents are required to 
eventually stop the exploration; and, if so, whether or not they must construct 
an accurate map of the network. Further differences exist depending on a variety 
of factors, including the (a)synchrony of the agents, the presence of distinct 
agent identifiers, the amount of memory, the coordination and communication 
tools available to the agents, etc. (e.g., see [1, 2, 3, 4, 6, 7, 13, 14, 15, 18]). 
Notice that, except for trees, the exploration with stop of anonymous graphs is 
possible only if the agents are allowed to mark the nodes in some way; various 
methods of marking nodes have been used by different authors ranging from 
the weak model of tokens to the most powerful model of whiteboards. 

The solutions proposed in the literature succeed in their task only assuming 
that the network is safe for the agents. This assumption unfortunately does not 
always hold in real systems and networks; for example, a node could contain 
a local program (virus) that harms the visiting agents; or the network could 
contain failed nodes that might damage incoming agents. In fact, protecting an 
agent from "host attacks" (i.e., harmful network sites) has become a pressing 
security concern (e.g., see [17, 20]). 

Recently the exploration problem has been examined also when the network 
is unsafe [5, 8, 9, 10, 11, 16]. The danger considered is the presence in the 
network of a black hole ( B H ) , a node that disposes of any incoming agent without 
leaving any observable trace of this destruction. Note that such a dangerous 
presence is not uncommon; in fact, any undetectable crash failure of a site in 
an asynchronous network transforms that site into a black hole. In spite of 
this severe danger, the goal is for the team of agents to be able to explore the 
network and, within finite time, discover the location of the BH. More precisely, 
at least one agent must survive, and any surviving agent must have constructed 
a map of the network indicating the edges leading to the BH. 

This version of the exploration problem is called black hole search (BHS) . 

It is known that, for its solution, the number of nodes of the network must be 
known to the agents [9]; furthermore, if the graph is unknown, at least A + 1 
agents are needed, where A is the maximum node degree in the graph [10]. In 
the case of asynchronous agents in an unknown network, termination with an 
exact complete map in finite time is actually impossible; in fact, regardless of 
the protocol, a surviving agent upon termination can be wrong on Z\ — deg{BE) 
links, where deg{x) denotes the degree of node x [10]. Hence, in the case of 
asynchronous agents, BHS requires termination by the surviving agents within 
finite time and creation of a map with just that level of accuracy. 

The problem of asynchronous agents exploring a dangerous graph has been 
investigated assuming powerful inter-agent communication mechanisms: white-
hoards at all nodes. In the whiteboard model, each node has available a local 
storage area (the whiteboard) accessible in fair mutual exclusion to all incoming 
agents; upon gaining access, the agent can write messages on the whiteboard 
and can read all previously written messages. This mechanism can be used by 
the agents to communicate and mark nodes or/and edges, and has been em-
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ployed e.g. in [6, 8, 9, 10, 11, 13, 14]. In the whiteboard models, the black 
hole search problem can be solved with a minimal team size and performing a 
polynomial number of moves (e.g., [8, 9, 10, 11]). 

The problem of exploring a dangerous graph has never been investigated 
in the less powerful token model, which is instead commonly employed in the 
exploration of safe graphs. In the classical token model, each agent has available 
a token that can be carried, can be placed in the center on a node, or removed 
from it. All tokens are identical (i.e., indistinguishable) and no other form of 
marking or communication is available. In our variation {enhanced token modet) 
we allow tokens to be placed also on a node in correspondence to a port. Notice 
that the classical token model can be implemented with 1-bit whiteboards, 
while our variation is not as weak; in fact, it could be implemented by having 
a log d-whiteboard on a node with degree d. 

The principal question targeted by our research was the impact of the com
munication model to the solvability and complexity of the BHS problem: to 
what extent can be the whiteboard model weakened, and still allow the poly
nomial solvability of BHS? With this goal in mind, we examine the problem of 
performing black hole search in the enhanced token model. Several immediate 
computational and complexity questions naturally arise. In particular, are the 
weaker communication and marking capabilities provided by enhanced tokens 
sufHcient to solve the problem ? If so, how can the problem be solved? at what 
costs? In this paper we provide definite answer to these questions. 

1.2 Our Results 

In this paper we present an algorithm that works in the token model and solves 
the BHS problem with the minimal number of agents and with a polynomial 
number of moves. Our algorithm works even if the agents are asynchronous, and 
if both the agents and the nodes are anonymous. More precisely, we consider 
an unknown, arbitrary, anonymous network and a team of exploring agents 
starting their identical algorithm from the same node (home-base). The agents 
are anonymous, they move from node to neighboring node asynchronously (i.e., 
it takes a finite but unpredictable time to traverse a link). 

Each agent has available an indistinguishable token (or pebble) that can be 
placed on, or removed from, a node; on a node, the token can be placed either 
in the center or on an incident link. In our algorithm there are never two tokens 
placed on the same location (node center or port), nor an agent ever carries 
more than one token. 

Using only this tool for marking nodes and communicating information, we 
show that with A + 1 agents the exploration can be successfully completed. 
In fact, we present an algorithm that will allow at least one agent to survive 
and, within finite time, the surviving agents will know the location of the black 
hole with the allowed level of accuracy. The number of moves performed by the 
agents when executing the proposed protocol is shown to be polynomial. The 
proposed algorithm is rather complex. 
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This work is the first that addresses the problem of exploration of a danger
ous unknown graph using tokens. Our results indicate that, perhaps contrary 
to expectation, our variation of the token model is computationally as powerful 
as the whiteboard one with regards to black hole search. 
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Fig. 1. Existing and new results for the BHS problem. 

1.3 Related Work 

The research on safe exploration of unknown graphs was started in 1951 by 
Shannon [19]. Most of the work since has been concentrated on exploration 
by a single agent (e.g., [2, 7, 18]). Safe explorations by multiple agents were 
initially studied for a team of more recently the investigations have focused 
on collaborative exploration by Turing machines. An exploration algorithm for 
directed graphs that employs two agents was given in [3], whereas algorithms for 
exploration by more agents were given by Prederickson et al. for arbitrary graphs 
[15], by Averbakh and Berman for weighted trees [1], and more recently by 
Praigniaud et al. for trees [13]. To explore arbitrary anonymous graphs, various 
methods of marking nodes have been used by different authors. Bender et al. [2] 
proposed the method of dropping a token on a node to mark it and showed that 
any strongly connected directed graph can be explored using just one token, 
if the size of the graph is known and using ©(log log A'') tokens, otherwise. 
Dudek et al. [12] used a set of distinct markers to explore unlabeled undirected 
graphs. Yet another approach, used by Bender and Slonim [3] was to employ 
two cooperating agents, one of which would stand on a node, thus marking it, 
while the other explores new edges. In Praigniaud et al. [13, 14], marking is 
achieved by accessing whiteboards located at nodes, and their strategy explores 
directed graphs and trees. 

The explorations of unsafe graphs are quite recent and have focused mostly 
on asynchronous environments. The BHS problem has been studied when the 
network is an anonymous ring, characterizing the limits and determining opti
mal solutions [9]. When the network is an arbitrary graph the problem has been 
investigated in [10], and several tight bounds have been established, depend
ing on the level of topological knowledge available to the agents. Por example, 
when the network is arbitrary, the topology unknown and no form of consistent 
edge labehngs are present, A + 1 agents are necessary and Q{N'^) moves are 
required in the worst case. Improved bounds on the number of moves have later 
been obtained in the case the agents have a complete map of the network (but 
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not the location of the BH) [11]. In the case of specific graphs, including many 
important interconnection networks, the number of moves can be reduced to 
linear [8]. 

In all these investigations, the nodes of the network have available a white
board, i.e., a local storage area that the agents can use to communicate informa
tion. Access to the whiteboard is gained in mutual exclusion and the capacity 
of the whiteboard is always assumed to be at least of f2{logN) bits. 

In the synchronous environments, the investigations have produced optimal 
solutions for trees [5]; approximation results have been obtained for arbitrary 
graphs in [5, 16]. 

2 The Model 

The network G = (V, E) is a simple undirected graph with node-connectivity 
two or higher; let A'' = |V |̂ and M = \E\ be the number of nodes and of edges 
of G, respectively, d{x) denote the degree of x, and A denote the maximum 
degree in G. If {x,y) 6 E then x and y are said to be neighbors. The nodes 
of G are anonymous (i.e., without unique names). At each node x there is a 
distinct label (called port number) associated to each of its incident links (or 
ports). Without loss of generahty, we assume that the labels at x e V are the 
consecutive integers # 1 , #2 , . . . , #d(x). 

Operating in G is a team of zi -t-1 anonymous agents. The agents know the 
number of nodes of the network, can move from node to a neighboring node 
in G, have computing capabilities and limited amount of memory (0(Mlog A") 
bits suffice for our algorithm). We also assume that agents know the degree A 
of the BH. 

Each agent has a token that can be placed on on a node and removed 
from it; tokens are identical and their placement can be used to mark nodes 
and ports/links. More precisely, a node can be marked by a token in different 
modalities: in the center, or in correspondence of one of the incident ports. 

The agents obey the same set of behavioral rules (the "algorithm") and 
initially, they are all located at the same node h, called home-base (home-base). 

The agents can be seen as automata, where one computational step of an 
agent A in a node v is defined as follows. Based on the state (local memory) of 
A and on the presence of tokens at v and incident links (examined atomically): 
- change the state (local memory of A) 
- remove (or place) at most one token from v or an incident link and 
- start waiting (for a token to disappear) or leave v via one of the incident links. 

The computational steps are atomic and mutually exclusive, i.e. no more 
than one agent computes in the same node at the same time. The links satisfy 
FIFO property, i.e. the agents entering a link e = {u, v) at u will arrive at v 
and execute the computational steps in the same order they entered e. The 
agents are asynchronous in the sense that waiting (for a token to disappear) 
and traversing a link can take an unpredictable (but finite) amount of time. 
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The network contains a black hole ( B H ) that destroys any incoming agent 
without leaving any trace of that destruction. 

The goal of a black hole search algorithm V is to identify the location of 
BH; that is, within finite time, at least one agent must terminate, and all the 
surviving agents must construct a map of the entire graph where the home-
base, the current position of the agent, and the location of the black hole, are 
indicated. 

Note that termination with an exact map in finite time is actually impossi
ble. In fact, since an agent is destroyed upon arriving to the BH, no surviving 
agent can discover the port numbers of the black hole. Hence, the map will have 
to miss such an information. More importantly, the agents are asynchronous and 
do not know the actual degree d{Bu) of the black hole (just that it is at most 
A). Hence, if an agent has a local map that contains N — 1 vertices and at most 
A unexplored edges, it cannot distinguish between the case when all unexplored 
ports lead to the black hole, and the case when some of them are connected to 
each other; this ambiguity can not be resolved in finite time nor without the 
agents being destroyed. In other words, if we require termination within finite 
time, an agent might incorrectly label some links as incident to the BH; however 
the agents need to be wrong only on at most A--d(BH.) links. Hence, we require 
from a solution algorithm V termination by the surviving agents within finite 
time and creation of a map with just that level of accuracy. 

The complexity measures of a solution protocol are: the number of agents 
used, called size of the team, and the total number of moves performed by the 
agents during the execution, called cost. 

3 The Solution 

3.1 Overview 

In our algorithm, each agent constructs its own local map (quasi-)independently 
from other agents until it enters the B H or explores at least N — 1 vertices and 
M - A edges. 

In the beginning, the local map of each agent contains only the home-base. 
During the computation, the communication ports in the graph are classified 
by each agent EIS follows: 

- unexplored port/edge - not in the local map: the port is not marked by a 
token 

- dangerous port - not in the local map; the port is marked by a token 
- safe edge - in the local map; connecting two already explored vertices 
- quasi-safe edge - in the local map; connecting two already explored vertices, 

but could be wrong 

Throughout the execution, whenever an agent leaves via a port that might 
lead to the BH, it leaves its token there, marking the port as dangerous. The 
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algorithm requires tha t no agent enters a dangerous port , ensuring in this way 
tha t at most A agents enter the black hole. We will thus say tha t a dangerous 
port blocks the (other) agents. 

Initially, all ports incident to the home-base are unexplored. The local map 
of an agent is constructed by adding edges in a sequential manner according 
to Algorithm 1: The searching for an unexplored port is straightforward: any 

9 
10 
11 
12 
13 

loop 
traverse the local map and look for an unexplored port p 
if unexplored port p found t h e n 

EXPLORE(P) 

continue the main loop 
else 

if local map contains N—1 vertices and there are at most A outgoing edges 
t h e n 
TERMINATE 

else 
SUSPEND 

end if 
end if 

end loop 

traversal of the explored part using only the edges identified as safe in the local 
map will do. 

In the execution of ExPLORE(p), the agent explores the edge Incident to 
port p, determines whether it leads to a new node or to an already discovered 
one^, and updates the local map. Due to complex interaction of anonymity 
with asynchrony, in some cases the agent might be unsure of whether an edge 
leads to a new node or to an already visited one. However, the agent is able to 
recognize this uncertainty, and will add this edge to the local map as quasi-safe 
instead of safe. 

Eventually, no unexplored port is found. If A'' — 1 nodes has been visited, 
the remaining node is the B H and the algorithm can terminate. Otherwise, 
the access to the unexplored part of the graph is blocked by dangerous ports . 
Since G is two-connected, at least one of those ports does not lead to the 
B H and the token will eventually be removed from it, making it unexplored. 
In order to avoid live-lock, the agent tha t failed to find an unexplored port 
suspends itself using procedure SUSPEND until such a progress has been made. 
The basic idea of S U S P E N D is to go to the home-base, set a flag there (by using 
a token) indicating tha t an agent is waiting for wake-up, verify tha t no progress 
has been made before the flag has been set up, and then wait to be woken-

^ p might lead to the B H as well, in which case the agent disappears there and does 
not continue the algorithm 
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up. Complementarily, whenever an agent removes its token from an edge, it 
goes to the home-base and wakes up the agents waiting there (using procedure 
W A K E - U P ) . There are several technical issues to be dealt with (discussed in 
the detailed description), e.g. several agents might be executing SUSPEND and 
W A K E - U P simultaneously, the flag can only be implemented using tokens, as 
well as the interference with the rest of the algorithm. 

3.2 Detailed Description 

In this section we give the full description of the algorithm. The following three 
rules clarify some terms used in the description: 

R l "cautious step" in a vertex v over a Unk I = put a token on link I, 
traverse the hnk, return to v, take the token, perform W A K E - U P , return to 
V and traverse / 

R2 "put token in the home-base" = wait for all known safe links incident 
to home-base to become unmarked, then put the token 

R 3 "put token on a Unk" (in vertex v) = wait for v to become empty, then 
put the token 

The nodes on the other ends of the links # 1 and # 2 from home-base are 
called s torerooms (SR) and they play special role in the algorithm (as we will 
see, they will be employed to allow communication among the agents when they 
are temporary suspended looking for a new port to explore). 

Each agent starts the algorithm by exploring (using cautious step) S R I and 
S R 2 from the home-base (in this order). Since the graph is simple, at least one 
of them is safe; if both these links are dangerous, the agent will simply wait until 
one of the blocking tokens disappears. Eventually, each agent will know about 
one or two safe storerooms. The primary storeroom for an agent is defined as 
the storeroom known to be safe with the lower numbered link leading to it. 

Note that if the B H is located in one of the storerooms, all surviving agents 
will choose the other S R as their primary SR. However, if none of the SR'S 
contains the BH, there might be agents with different primary SR'S (some might 
find S R I safe and choose it, some might find it temporarily dangerous and select 
S R 2 ) . 

As this might lead to problems, the algorithm tries to remedy this situation 
by "updating" the primary store room of agents that had originally selected 
S R 2 and later discover that S R I has become safe in the meanwhile. The update 
rule is called R4 and will be described later. 

Explore 
The execution by agent A of procedure ExPLORE(p) is to enable A to tra

verse an unexplored edge e = {u, v) (starting at port p in u) and add it (possibly 
with the vertex v) to the local map. Agent A starts executing a cautious step 
over the edge e and, if survives, it proceeds with determining whether or not e 
leads to a new (not in the local map) vertex. 
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Notice that recognizing if v is already in the local map would be an easy 
task if either the agents were able to recognize their own tokens, or they were 
able to recognize the home-base. In fact, if agents were able to recognize their 
tokens, then A could simply put its token at v and scan the explored subgraph: 
if it finds its token, v is already explored, otherwise it is a new node. If the 
agents were able to recognize the home-base, then A could determine whether 
V is a new node as follows. For each node w in the local map, A guesses that 
V = w and verifies whether that is really true: Let a be a sequence of port 
labels specifying a safe path (determined by looking in the local map) from w 
to the home-base. Starting from v, A follows^ the port labels specified by a. 
If A finishes in the home-base, then v — w, otherwise A makes another guess. 
If all guesses fail, ?; is a new node. However, in our model the agents can not 
recognize their tokens nor the home-base. Still, the basic structure is to guess for 
all already explored nodes w whether v = w and to verify the guess, although 
the verification is much more involved. 

Let Pw (we will use P when w is clear from the context) be a sequence of 
port labels starting with the label of the port from u to f and then following a 
path (using only edges marked as safe in the agent's map) from w through the 
primary S R and ending in u. Clearly, li v = w then p specifies a simple cycle in 
the graph (and therefore \p\ < n, even if actually v ^ w). 

Agent A verifies whether v —w hy following the labels specified by a cyclic 
repeating of p (we will call it /?*) for up to A''̂  edges or until A finds a difference 
between what it sees in the current node and what it should see (according to 
its map) a V = w. The number of steps is chosen large enough so that following 
P* creates a cycle even ifv^w (as we will see later, using only p is not enough). 
This means (as will be proven later) that if no discrepancy has been found for 
N^ steps, u and v indeed lie on a cycle C passing through the correct SR, with 
the labels specified by /3*. Unfortunately, it is still possible that, although no 
discrepancy is found, v ^ w: this could happen if \C\ is a multiple of |/3|. In this 
case the agent verifies whether v = w or not in the procedure VERIFY, which 
will be described later. 

The N^ steps along /3* must be done in cautious manner, not entering 
dangerous ports, since it may be the case that v ^w and p* leads to the B H . 

The cautious walk is complicated by the fact that a port to be taken (let 
its label be A) from a node w' might be dangerous. If this happens, the agent 
cannot afford to wait in w' until the token is removed, because this edge might 
indeed lead to the BH. Instead, it wants to ensure that, liv = w then the token 
will be removed allowing A to continue its cautious walk through A. To do so, A 
goes backwards for |/3| steps reaching a safe node through safe links; this node 
might indeed be w' (this happens if the guess i; = w is correct), or it could 
be a different node w". Agent A waits here until there is no token on the port 
labelled A. Although not sure about the identity of the node, the agent knows 

cautious walk needs to be used, as v might be different from w, and a from v might 
lead to the BH 
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t ha t A must lead to a safe node {A is now revisiting nodes it has visited earlier) 
thus the token will be eventually removed from there. 

After ensuring the removal of the token, agent A returns to w'. It can happen 
tha t the port A is still dangerous. However, if v = w then this must be a newly 
placed token. Since (as we will see later) during the whole execution of the 
algorithm a token is placed on a given port less then 2AMN^ t imes, if after 
2AMN^ cleaning tries A is still blocked, then v ^ w. 

The Algorithm 2 describes the procedure EXPLORE in full detail. 

A l g o r i t h m 2 Exploring an edge with label h by EXPLORE 

1: do a cautious step over link li, let I2 := label of the link upon which you arrived 
2: for all w in local map do 
3: compute the sequence P 
4: for A''̂  steps do 
5: while next port 7 in (3* is dangerous and this loop has been executed less 

than 2AMN^ times do 
6: go back |/3| steps 
7: wait until there is no token on the edge along which you arrived 
8: go forwards \(3\ steps 
9: end while 

10: if port 7 is still dangerous then 
11: backtrack your steps to v and continue the outermost for cycle for the 

next w 
12: end if 
13: do a cautious step 
14: if what you see in the vertex you arrived to is not compatible with the local 

map assuming v = w then 
15: backtrack your steps to v and continue the outermost for cycle for 

then next w 
16: end if 
17: end for 
18: if VERIFY then / / after traversing N^ edges there was no discrepancy, so 

I am in a cycle. Is it a short one ? 
19: add edge to w to the local map as quasi-safe 
20: exit from EXPLORE 
21: end if 
22: end for 
23: add to the local map the new vertex and edge; the added edge is marked as safe 

Notice tha t , during the actual exploration, tokens are placed in correspon
dence to links only. Thus, a token found on a link is a clear sign of danger. As 
we will soon discover, bo th in the verification process (described below) and in 
the suspension process (described later) tokens are instead placed in (and re
moved from) the home-base and the storerooms. In other words, the home-base 
and the storerooms are employed to accomplish different tasks and this requires 
much care to avoid ambiguity and interference between different activities. 
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Verification 
The test of a candidate vertex w in the procedure E X P L O R E may end, after 

traversing the sequence /3* for A'"̂  steps, in a situation where the agent knows 
tha t either (3 or its multiple forms a safe cycle connecting u and v. The procedure 
V E R I F Y is used to verify whether the cycle consists of just one repetition of /3 
(in which case v = w). 

A l g o r i t h m 3 VERIFY - let p be the S R , if the hypothesis about w is t rue 
1: PosCount = NegCount = 0 
2: loop 
3: go to home-base, wait until it becomes empty, and go to the primary S R 
4: if the S R is empty t h e n 
5: put token and exit loop 
6: else 
7: wait until the S R becomes empty 
8: end if 
9: end loop 

10: while PosCount < 2AMN^ + AMN and NegCount < 2AMN^ + AMN do 
11: if known, go to the other S R and wait until it becomes empty 
12: go to the home-base, wait until it becomes empty 
13: go to p 
14: if there is a token t h e n 
15: PosCount = PosCount + 1 
16: else 
17: NegCount — NegCount + 1 
18: end if 
19: go to the primary SR and if empty update the knowledge of storerooms using 

rule R4 and restart algorithm 
20: end while 
21: take token 
22: if PosCount > 2AMN^ + AMN t h e n 
23: return TRUE 
24: else 
25: return FALSE 
26: end if 

The idea of V E R I F Y is to use a token in the primary S R for breaking symme
try on the /3*-cycle. An agent A performing a V E R I F Y first makes sure tha t it 
is not interfering with any other agent by waiting until both the home-base and 
the S R ' S it knows to be safe are empty. It then puts its token in the primary S R 
and walks^ along the /?*-cycle for |/3| steps to a vertex w' and checks whether 
there is a token in w'. The idea is tha t \iv — w then w' is the S R and contains 
the token, iiv^w then w' should be empty as it is not the correct S R . 

•* Note that it is not needed to use cautious steps, as the cycle identified by (3* has 
already been traversed and is known to be safe 
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Notice that a straightforward check on whether there is a token in w' can 
fail for two reasons. (1) It may happen that w' is not a SR but, say, the home-
base. As mentioned above, the home-base is also used by procedure SUSPEND 
and WAKE UP, which are employed when an agent has not found a suitable port 
to explore and is waiting for one to become available. If some other agent has 
started to perform a SUSPEND (which requires putting a token in home-base) 
while A traveled to w', A is deceived since it finds a token in w', but this is not 
the token it left in SR! (2) It may happen that w' is indeed a S R but some other 
agent took the token from the SR in the meanwhile (when finishing SUSPEND); 

so A is again deceived because it does not find its own token. 
Luckily, as will be shown later, each of these two cases occurs less than K 

times, where K = 2AMN^ + AMN. Hence, if A saw a token in w' at least K 
times, then w' must be the SR; conversely, if A saw no token in w' at least K 
times, then w' is not the SR. 

One last complication comes from the fact that, at the beginning of each 
iteration of the while cycle, A has to make sure that the home-base and the SR'S 
are empty. The problem is that agents cannot always agree on one primary SR. 
In fact, (if the B H is not in a SR) there are three types of agents: some think 
that only S R I is safe, other thing that only SR2 is safe, while the third group 
knows that both SR'S are safe. However, if an agent does not know that both 
SR'S are safe, it cannot make sure that both of them are empty. In this case it 
may happen that the result of VERIFY is wrong. This is the reason why when 
A decides that v = w,\t marks the edge {u,v) as quasi-safe and never uses it 
for traversals. Note that if EXPLORE declares w to be a new vertex it never errs, 
so the spanning tree defined by the safe edges is always available for traversal. 

As we prove later, the only way for an agent A to find an empty S R on 
line 19 is if A does not know about (safe) SR 1. This means that after seeing 
an empty SR, A can update its knowledge about the storerooms and reset the 
algorithm according to rule R4. 

R4 = When an agent first realizes that both SR'S are safe, it performs the 
following actions: 
- If you have no token and your old primary SR is S R 2 , execute GRAB-

TOKEN starting from S R 2 , else execute GRAB-TOKEN from the home-base. 
- Update the knowledge about SR'S. 
- If you came to the home-base to perform W A K E - U P but have not done 
so, do it now 
- Restart the whole algorithm 

Grab-Token 
The procedure GRAB-TOKEN is used by an agent A to pick up a token that 

it has previously put at the home-base or a SR. It might happen that some 
other agent B has meanwhile picked the A's token instead of its own. However, 
in such case B's token must be somewhere around (in the home-base or in a 
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SR) and A will take it (or the token of yet another agent). 

Algor i thm 4 GRAB-TOKEN - starts in home-base 
1: if there is a token in home-base, get it and exit GRAB-TOKEN 

2: go to primary SR, if there is a token there, get it and exit GRAB-TOKEN 

3: go to the home-base and if there is a token there, get it and exit GRAB-TOKEN 

4: go to the other SR and get token 

Suspend & Wake-Up 
Recall that an agent A performs SUSPEND when further exploration progress 

is blocked by dangerous links, but A knows that eventually at least one of those 
link will become unblocked. The basic idea is to put the token in the home-base 
to signal "I want to be waken-up", check whether a progress has been made 
before the token was put down (to prevent deadlock, as an agent performing 
W A K E - U P after removing its token from a dangerous edge might have arrived 
to the home-base before the token was put there) and, if not, then wait until 
the token disappears. An agent performing W A K E - U P simply moves a token 
from the home-base (if there is any) to its primary SR. 

The problems arise because several agents might be executing SUSPEND, 
W A K E - U P and VERIFY simultaneously, and because the agents do not neces
sarily agree on the correct SR. Dealing with that constitutes the most technical 
part of the algorithm. The basic idea is to wait until any activity going on (de
tected by non-empty home-base or SR) looks to have finished and then restart 
SUSPEND. Still, there are many possible cases how the agents can steal each 
other's tokens and/or misinterpret what is going on. The reasons behind the 
design of SUSPEND and W A K E - U P will become fully apparent only when reading 
the formal proofs in the next section. 

The idea of W A K E - U P is to wake-up an agent suspended at home-base by 
moving its token to a SR. In order to make GRAB-TOKEN work, the waking-
up agent first places its token in the SR and then removes the token from the 
home-base. If the home-base is empty or the S R is full, W A K E - U P does nothing, 
because either there is nobody suspended, or it has been already waken-up and 
just has to pick up its token. When an agent suspended at home-base sees 
that its token has disappeared, it will search around and find its token (using 
GRAB-TOKEN) 

4 Correctness and Complexity 

Let us call an agent informed if its knowledge about which storerooms are safe 
is correct. If the B H is located in one of the storerooms, all agents (that have 
finished initialization) are informed; otherwise an informed agent knows that 
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Algori thm 5 SUSPEND 

9 
10 
11 
12 
13 

go to home-base, wait until it is empty and put a token there 
scan all known SR'S and return to home-base 
if SR'S were empty then 

traverse the local map 
else 

if there is a token in home-base then 
get token 
go to the SR that contained a token, wait until it becomes empty and 

restart SUSPEND 
else / / my token has been moved 

GRAB-TOKEN 

restart SUSPEND 
end if 

end if 

1 
2 
3 
4 
5 
6 

upon return from traversal 
if traversal revealed progress then 

GRAB-TOKEN 

else 
wait until home-base becomes empty 
GRAB-TOKEN 

end if 

Algor i thm 6 W A K E - U P 

go to home-base and if empty, abort 
go to "correct" SR 
if SR full then 

abort 
else 

put token 
go to home-base 
GRAB-TOKEN 

end if 

both storerooms are safe. However, the notion of an informed agent is for the 
purpose of the proof only. The agents themselves may not know whether they 
are informed or not. 

The overall structure of the correctness proof, which is quite complicated, is 
the following: we first prove that during the whole algorithm, at most A agents 
enter the BH, and all agents that are alive make progress by eventually exploring 
a new edge. Second, we prove that all informed agents maintain a correct local 
map, i.e. the local map of an informed agent is at any time Isomorphic to some 
subgraph of the network (including port labels). 

The above arguments are formally carried out through a sequence of Claims 
and Lemmas, which will lead to the main Theorem: 
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Theorem 1. (Main Theorem) At least one agent successfully terminates with 
a correct map. 

Due to the lack of space, we present only the key lemmas, we omit some 
proofs and we only informally sketch some reasonings. 

Let us start with some basic observations. Since a token is put in a vertex 
only in SUSPEND, W A K E - U P or VERIFY, we get: 

Claim. l.A token is in the vertex v only if i; is a home-base or a SR. 

The most technical part of the algorithm is the implementation of the com
munication between agents by means of tokens. We are specifically interested 
in agents who have put their token in the home-base or in the S R and are 
now without a token; we will call them empty-handed to distinguish them from 
agents who do not have a token because they are performing a cautious step. 
Prom the definition of cautious step, from Claim 1, and by construction we get: 

Claim. 2. There are as many empty-handed agents as tokens in the home-base 
and storerooms. 

An agent performing procedure GRAB-TOKEN visits the home-base and 
possibly some SR'S a constant number of times in a search for a token. For 
the correctness of the algorithm it is important to prove that a token is always 
found. 

Lemma 1. An agent always gets a token in procedure GRAB-TOKEN. 

Proof. Consider, for the sake of contradiction, an agent A executing GRAB-

TOKEN that has not found a token. Let to be the time when A sees that its 
primary S R X is empty and starts to travel back to home-base. Let ii > io be 
the time when A arrives to the home-base, finds it empty again, and starts to 
travel to S R y. By Claim 2, at time to there must be at least one token T in 
home-base or S R y. However, since A does not find T, T must have disappeared 
after to before A gets there. The only way for T to disappear is if it is taken by 
some empty-handed agent B. However, since B is empty-handed, there must 
be another token T' in some vertex (home-base or SR) at the time when B 
grabs T. The idea is to argue about T and T' and show that A would find one 
of them. In particular, we first prove that at some point in time after to both 
home-base and SR y are full, and then prove that from this fact it follows that 
A finds a token. 

Let us focus on the time t' when B put T' and thus became empty-handed. 
We distinguish three cases. First, consider t' > ti. B could not have removed 
T from the home-base before time ti, therefore at time ^i (and t' as well, as it 
is B that removes it) T must be in S R y. Since A started traveling from the 
home-base to SR y at time ti < t' and due to the FIFO property, B cannot get 
to SR y before A and so A finds T in SR y - contradiction. 
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Next, let t' < to- This means that at time to both A and B are empty-
handed, and moreover, SR X is empty. Hence, due to Claim ??, at time to both 
home-base and S R y are full. 

Third, let to < t' < ti. There are two possibilities: (1) B (at time t') put 
T' in S R X. Since to < t', due to FIFO property B cannot take T from the 
home-base before A does - contradiction. (2) B (at time t') put T' somewhere 
else (home-bgise or S R y). In such a case, at time t' both home-base and S R 
y are full, containing T and T': By assumption, B is the agent that takes T, 
therefore T did not move between to and t'. 

Hence, it must be the case that the home-base and S R y are full at some 
time t between to and ti . Since we suppose that A does not find a token, it 
must be that both tokens in home-base and SR y disappear at some time after 
t. However, at time to, SR X is empty, so at that time at most one agent other 
than A is empty-handed. Any agent that becomes empty-handed by putting a 
token in S R X after to cannot, due to FIFO, prevent A from grabbing a token. 
This means that only one of the tokens in home-base and S R y can disappear 
after time t and before A arrives there, i.e. A will find a token - contradiction. 

Lemma 2. A token is removed from a given link less then 2AMN^ times. 

Proof. A token is put and removed on a link only during cautious step. Cautious 
steps are performed only on line 13 in EXPLORE, which is executed less than 
A''̂  times (at most A'"-̂  iterations of the inner loop, for at most A' — 1 candidate 
vertices). EXPLORE is called by each of the A agents at most M times. Finally, 
each agent might reset the algorithm once, applying rule R 4 

We now aim at proving that at most A agents disappear in the BH. In 
order to do so we need to show first that an agent can enter a B H only during a 
cautious step, i.e. that edges marked safe in the local map of an agent correspond 
to safe edges in the network. To do so, we use the following technical lemmas, 
whose proofs are omitted due to the lack of space. 

Lemma 3. Consider a situation when both SR'S are full and agents A and B 
are the only empty-handed agents. Then, before A or B grabs a token from the 
home-base or some SR, no agent other than A or B grabs a token from a SR. 

Lemma 4. No token placed in S R I will be stolen. Moreover, let A be an agent 
knowing that S R I is safe that puts a token in the home-base. Then A's token 
will not be kicked out to S R 2 . 

Lemma 5. A token put in a SR x by an informed agent A executing VERIFY 
can be removed from x only by A. 

We can now prove the following: 

Lemma 6. When an agent A adds a vertex v to its local map as a new vertex, 
then the local map indeed did not contain v. 
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Proof. A vertex v is added as new only if the test w = v \u EXPLORE failed for 
every candidate w. We show that if the test fails then indeed w ^ v. The test 
for a given w can fail: 
- By having the port 7 still dangerous after executing the loop on lines 5..9 for 
2AMN^ times. However, if to = u, then between each iteration of that loop the 
port 7 is cleared which is a contradiction with Lemma 2. Hence, w ^ v. 
- By noticing (in line 14) difference between what the map tells what should be 
seen if w = to and what really is visible. Clearly, in such case v ^ w. 
- By having VERIFY return false. VERIFY returns false if the agent A has not 
found the token in the vertex p (which is equal to its correct SR x if v = w) for 
at least 2AMN^ times. Note that A always leaves S R X with its token there. 
We distinguish two cases: 
(i) If a;=SRl the lemma follows from the second part of Lemma 4: no other 
agent steals A's token from S R I , SO ii V = W then A always sees a token in p 
and, subsequently, VERIFY never returns FALSE. 
(ii) Let X = S R 2 . Which agent could remove ^ ' s token from S R 2 ? Prom Lemmas 
4 and 5 we know that ^ ' s token was not removed from S R 2 by an agent B 
executing VERIFY from S R I , because in that case B's token remains in S R I . 
It cannot be the case that ^ ' s token was removed by an agent B executing 
VERIFY from S R 2 , because that agent would have first placed its token in S R 2 . 

Therefore, A's token was removed by an agent B executing a GRAB-TOKEN as 
a part of SUSPEND or W A K E - U P . However, for each removal of a token from a 
S R by an agent B executing SUSPEND there must have been a wake-up of some 
other agent that kicked out a token from the home-base to a SR (otherwise 
B would have picked up its token in the home-base). The only exception are 
the cases when an agent becomes informed and first takes a token from its old 
primary SR, which can happen at most A times. The lemma follows from the 
fact that there are less then 2AMN^ wake-ups. 

Using the previous lemma, we can argue that an agent disappears in a B H 
only during a cautious step: 

Lemma 7. / / A enters BH, the link e upon which it arrived is marked by its 
token. 

Since no agent enters a link marked by a token and the degree of the B H is 
at most A, we get: 

Theorem 2. At most A agents die. 

The next lemmas are needed to show that no deadlock can occur, i.e. every 
agent is always able to continue its algorithm after some finite time. First, we 
prove that no deadlock occurs when an agent is waiting for a disappearance of 
a token: 

Lemma 8. A token from the home-base eventually disappears. 
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Proof. The only way a token can be put in the home-base is in SUSPEND. 

Consider for the sake of contradiction that an agent A puts a token in the 
home-base at time to and that token never disappears. That means A went to 
its primary SR X and found in empty at time i i , then returned and went to 
rescan. 

We claim that if the token from the home-base does not disappear, then no 
token appears in the SR X after time i i . An agent B executing VERIFY cannot 
place a token in S R X after ti ~ ii B checked the home-base (line 3. of VERIFY) 

before to, then A would have found its token in SR a;, if it checked it after Ô) it 
would wait in the home-base until it becomes empty. The only other possibility 
is that B is executing WAKE-IJpand placed its token in SR X after ti. In such 
case B would find A's token in the home-base (when executing GRAB-TOKEN) 

and take it. Contradiction. 
Because A did not take its token after returning from rescan, it has seen 

no progress and did not terminate. This means (by Theorem 2 and from the 
two-connectivity of G) that it cannot be the case that all blocked links lead to 
the BH. Therefore one of them will eventually be freed and some agent B will 
execute W A K E - U P . 

If a; = 1 (i.e. A's primary S R is S R I ) , B will execute W A K E - U P using S R I 

(either because S R I was its primary SR, or because of rule R4 - the link to the 
S R I is free due to rules R2 and R3) and since S R I is empty after time ti, it 
will indeed remove A's token from the home-base. Contradiction. 

If a; = 2, there are two cases. If J5's primary S R is S R 2 , the same argument 
as above applies. Otherwise S R I does not contain the B H and the link leading to 
it will eventually become free and due to rule R 3 remain so. That means A will 
eventually notice that S R I is safe and apply rule R4, executing GRAB-TOKEN 

starting from S R 2 . Since SR2 remains empty after i i , A will pick its token from 
the home-base. Contradiction. 

In a similar fashion, we can show the following lemma, which is, due to space 
constraints, presented without proof: 

Lemma 9. A token from a SR eventually disappears. 

Prom the construction and Lemmas 8 and 9 we get: 

Theorem 3. An agent never deadlocks. 

The next two lemmas are crucial for bounding the number of moves. Due 
to space restrictions we present them without proofs. 

Lemma 10. An agent spends 0{AMN'^) moves in one call to VERIFY. 

Lemma 11. An agent spends 0{AMN'^) steps executing one iteration of the 
outer loop of Algorithm 1. 

The last property we need for the proof of Theorem 1 is: 
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Lemma 12. Each informed agent has a correct map. 

Proof. It follows from Lemma 6 that if an agent A adds a new vertex v to its 
map, then indeed v has not been in ^ ' s local map before. So it remains to be 
proven that if an informed agent A adds an edge (w, w) between two visited 
vertices to its map, then there is an edge (w, w) in the graph. Adding an edge 
{u,w) requires that the hypothesis v = w tested in EXPLORE and VERIFY 

returns TRUE. 
We first prove that after successfully finishing A''̂  iterations of the loop on 

line 4 in EXPLORE the sequence /3* defines a (not necessarily simple) cycle 
connecting v and u, whose length is a multiple of |/?|. Let /3 = {l3i,P2, • • • ,Pk) 
where each (ii specifies two port numbers: a consistent traversal must arrive via 
port pi and leave via port P2. Since k < N ,hy traversing (3* for A''̂  steps it 
must happen that the agent visits a particular vertex q twice with the same 
position in the sequence /?; say /?j. Clearly, from now on the agent walks in 
cycle. Let q be the first such vertex. However, since /3j specifies also the arriving 
port number, it means that the agent has both times arrived to q using the 
same port, i.e. it already started in the cycle. 

To conclude, we prove that if VERIFY returns TRUE for some informed 
agent it must be that the cycle formed by /3* has length |/3| and hence v = w.li 
VERIFY returns TRUE it means that A saw a token in p at least 2AMN'^ times 
and between every two successive visits of p there was a time when home-base 
was free and, if there are two storerooms, also a time when SR2 was free. If p 
was not S R I , it must be that either p is home-base or p is S R I and each of the 
2AMN^ times some agent put its token at p (which was removed before the 
next visit of A in p). 

We conclude the proof by showing that a token is put in p less then 
2AMN^ + AMN times. There are two possible situations when an agent B 
could put its token to p: either B performs a VERIFY in S R 2 (there are at 
most AMN such cases: B must be a non-informed agent and it puts its to
ken once per each call of VERIFY before getting informed), or B performs a 
SUSPEND-WAKE-UP pair. However, in the latter case there must be a cautious 
step that triggers this W A K E - U P which, according to Lemma 2, accounts for 
another 2AMN^ possibilities. 

By Lemmas 1-12, the main theorem (Theorem 1) follows. 

Let us now consider the number of moves. By Lemmas 10,11 plus the fact 
that each of the A agents performs at most M iterations of the loop in Algo
rithm 1, we have 

Theorem 4. The B H can he located using 0{A'^M'^N'^) moves. 
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