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Abst rac t . Self-optimizing mechatronic systems have the ability to ad­
just their goals and behavior according to changes of the environment 
or system by means of complex real-time coordination and reconfig­
uration in the underlying software and hardware. In this paper we 
sketch a generic software architecture for mechatronic systems with self-
optimization and outline which analogies between this architecture and 
the information processing in natural organisms exist. The architecture 
at first exploits the ability of its subsystems to adapt their resource 
requirements to optimize its performance with respect to the usage of 
available computational resources. Secondly, the architecture achieves, 
inspired by the acute stress response of a natural being, that in the 
case of an emergency it makes all recources available to address a given 
threat in a self-coordinated manner. 

1 Introduction 

The next generation of advanced mechatronic systems is expected to behave 
more intelligently than today's systems. They adjust their goals and behav­
ior according to changes of the environment or system and build communities 
of autonomous agents. The agents exploit local and global networking to en­
hance their functionality (cf. [17]). Such mechatronic systems will thus include 
complex real-time reconfiguration of the underlying software and hardware as 
well as complex real-time coordination to adjust their behavior to the changing 
system goals leading to self-adaptation (or self-optimization) [15, 10, 12, 5]. 

As advanced mechatronic systems usually consist of a complex network of 
concurrently running components which are also called (software) agents, we 
have developed a general architectural model of its components the so-called 
Operator-Controller Module (OCM) [9]. Within a single autonomous mecha­
tronic system, a hierarchy of OCMs is employed to define the strictly hierarchi­
cal architecture. In contrast, at the top level the OCMs are free to connect to 
their peers to estabhsh the required coordination. In this paper, we will outhne 
which analogies between our architectural approach and related phenomena in 
nature exists but also where are the limits of these analogies. 
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While the proposed OCM architecture is mainly driven by the requirements 
for self-optimizing mechatronic behavior, it also shows some similarities with 
several proposed layered architectures. [8] suggests that a two level architecture 
with a low-level execution and a higher-level control layer represents a gen­
eral pattern present in natural as well as artificial organic systems. A related 
practical approach explained in [14] is the Observer/Controller architecture for 
Organic Computing systems. Similar to the OCM it is inspired in the brain stem 
as low level structures which reacts to sensory inputs and the limbic system as a 
high-level structure which observes and manipulates the first one. In contrast to 
this work, the OCM also supports higher cognitive behavior which matches the 
planning layer of the Touring Machines [4] (autonomous agents with attitudes) 
and tries to reach the goal of a general model for autonomous cognitive agents 
as stated in [16], which explains the action selection paradigm of mind for con­
scious software agents and how the most relevant behavior/action is selected 
and executed, supporting approach concerning to the method for emergency 
situations described below. 

Following support for the OCM architecture exist: The model-driven de­
velopment with MECHATRONIC U M L [2] and block diagrams is provided by 
the CASE tool Fujaba and CAE tool CAMeL. Additionally, methods for ver­
ification of the real-time behavior, excluding adverse effects due to complex 
reconfiguration in hierarchical OCM architectures, [7, 6] exists. The MECHA­
TRONIC UML approach also permits to specify resource-aware OCMs which 
can adapt their resource consumption in form of different operational profiles 
[1]. These resource-aware OCMs are further supported by a specific extension of 
the real-time operating system DREAMS [11]. It optimize the system usage of 
the computational resources at run-time. This is similar to the conscious mind 
which devotes its attention and efforts for different control behavior so that the 
result is optimized. 

Concerning dependability, the existing techniques [7, 6] require that haz­
ards or detected faults are explicitly handled within the OCM hierarchy. Such 
an explicit handling has to abstract drastically from the different failure configu­
rations of its subsystems, otherwise the resulting combinatoric explosion would 
render the development prohibitively expensive. To overcome this limitation 
and better handle unanticipated faults, we developed a generic self-organizing 
scheme how an self-optimizing mechatronic system can exploit the ability of 
its parts to adapt their resource requirements. The scheme is inspired by the 
"acute stress response" of a natural being (cf. [3]). It enables that in the case 
of an emergency all available resources are assigned in such a manner that the 
threat can be addressed with priority. 

The structure of the paper is as follows: We start with an example of a 
self-optimizing mechatronic system in Section 2 and then introduce our general 
architectural model for self-optimizing mechatronic systems, its modehng, and 
their ability to adapt their resource consumption using this example. Then, 
the safety-driven self-organizing resource management is outlined in Section 3 
before we conclude the paper. 
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2 Example and Modeling 

As a concrete example, we use the Paderborn-based RailCab research project^. 
The modular railway system combines sophisticated undercarriages with the 
advantage of new actuation techniques as employed in the Transrapid^ to in­
crease passenger comfort, enabling efficient transportation at a high average 
speed, and (re)using of the existing railway tracks. We will use in the following 
a specific element of the motion control as a running example. 

Fig. 1. Structure of the Driving Module with operating point assignment 

Fig. 1 shows the structure of driving module of the linear motor of the 
railway system. The driving module consists of doubly fed linear drive with 
magnetic active coils at the track and at the vehicle. The magnetic fields of 
the coils are supported by the electrical currents, which are predetermined with 
their frequency by the operating point assignment. The product of the current 
defines the thrust 1 and with its frequency it also gives the transferred power 
to the vehicle 2. Thence, the operating point assignment of the linear drive is 
pivotal for the proper work of the whole vehicle. Without a suitable operating 
point assignment, a safe and dependable work of the railway system is not 
possible. 

FM = KMhdhq (1) PB = 3(7r/i 
LhN2 

Wid-R2ll,) (2) 

A simple operating point assignment can be handled by a full powered pri­
mary at the track. This fix operation point leads to an inefficient operation of 
the system. To improve this efficiency the operating point assignment can be 
done by a simple efficiency-optimal algorithm outlined in [13]. The concept of 

^ http://www-nbp.upb.de/en 
^ http://www.transrapid.de/en 
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self-optimizing in mechatronic systems allows a more powerful operating point 
assignment [18]. This self-optimizing operating point assignment enables the 
system self-adapting to the system objectives as a response to changes in the 
surrounding of the system. 

In case of a low charge state at energy storage system in the vehicle, the 
losses in the vehicle became more important than the efficiency of the whole sys­
tem. Otherwise, the efficiency of the whole system can be maximized while the 
power transfer is not in the focus of the operating point assignment. Moreover, 
the importance of the power transfer to the vehicle depends on the expected 
consumption and distance profile of the track. 

2.1 A r c h i t e c t u r e 

As illustrated by the example, even the control software of the Driving Module 
results in a complex network of concurrently running components. Therefore 
we suggest to structure the software architecture using Operator-Controller 
Modules (OCM) as depicted in Fig. 2 (cf. [9]) as basic building blocks of a 
hierarchy. 

Linearmotor 

Fig. 2. Structure of the Operator-Controller-Module for operating point assigment 
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The OCM suggests the following internal structuring: (1) On the lowest level 
of the OCM, there is the controller which realizes the currently active control 
strategy, processes measurements, and produces the control signals. This part 
consists in the example of the drive control for the linear drive. (2) The reflective 
operator, in which monitoring and controlling routines are executed, monitors 
the controller. In the example, at this level the transfer of the reference value 
for the operating point assignment as well as fault detection and management is 
done. (3) The cognitive operator is trying to improve the behavior of the OCM 
in soft real-time. The calculation and optimization of new reference values in 
the example OCM are located here. 

The OCM defines the so called micro architecture of the system somehow 
inspired by the organization of the information processing as found in more 
advanced animals. The behavior located in the cognitive operator relates to the 
conscious decisions and planning. The reflective operator more or less fits to the 
non conscious behavior which ensures that for a specific situation appropriate 
reflexes and control strategies are activated. However, in contrast to natural 
organisms the proposed architecture suggest to separate these levels in each 
OCM of the hierarchy while in information processing of an organism this sepa­
ration only exists for the whole organism. Another distinction is that in nature 
evolution ensures that unsafe behavior is eliminated while in our systems even 
the loss of a single individual due to such an "experiment of life" could not 
be justified. Therefore, guarantees must be provided using, for example, formal 
verification techniques (cf. [7, 6]). 

2.2 M o d e l i n g 

During the implementation of the software for a Hardware-in-Loop test bed, 
we modeled the operating point assignment module as an OCM. We peresent 
in Fig. 3 a simplified state chart, which depicts the parallel processing of the 
different layers in the cognitive- and reflective operator as well as the controller. 

The controller has to support the motion Control of the vehicle at all cir­
cumstances. The reflective operator at first has to support the critical tasks of 
Analyzing the advisability of the optimized set values for the controller. In the 
parallel Adjust state, the reflective operator remains in the Normal state and 
provides optimized set values to the controller as long as suitable operating 
points set values where available. Otherwise, in case of inappropriate operating 
point set values, which can be the result of an unexpected thrust demand or 
quick changing parameters of the motor, the Adjust state of the reflective opera­
tor will switch over to the Emergency state. In parallel, the Parameter Estimation 
state is required for parameter estimation of the motor parameters to enable the 
cognitive operator to make a suitable optimization. In the cognitive operator of 
the OCM suitable objectives for the next optimization cycle are elected in the 
Pre-Adjust state. At the Optimization state, the multi objective optimization is 
done and afterwards the pareto point selection follows in the Decision Making 
state. The selected operating point for a discrete time is then employed in the 
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Fig. 3. States and profiles of the Operating Point Assigment OCM 

Path Following state to calculate the selected operating point for the next few 
seconds. This calculated path will be send the reflective operator and a review 
of the calculated optimization results in the Wait and Evaluate state is used to 
decide whether a new optimization cycle is required or whether it is sufficient 
to continue the path jumping to the Path Following state. 

2.3 R e s o u r c e M a n a g e m e n t 

The resource-aware OCM becomes possible due to our RTOS named DREAMS 
(Distributed Real-time Extensible Application Management System) which 
provides a special resource manager [11] (Flexible Resource Manager - FRM). 
DREAMS is tailored to the special demands of the dynamic class of self-
optimizing applications. The manager tries to optimize the resource utiliza­
tion at run-time. The optimization includes a safe overallocation of resources, 
by putting resources that are held back for worst-case szenarios by OCMs at 
other OCMs disposal. The interface to the FRM is called Profile Framework. 
By means of the Profile Framework the developer can define a set of profiles per 
application. Profiles describe different service levels of the application, including 
different quality and different resource requirements. 

All states belonging to one profile build the state space that can be reached 
when the profile is active. In Fig. 3 the inclusion of the states in profiles is 
depicted by assigning the related profile numbers. The required resources of 
the controller are always the same if the system is in operation. Therefore, 
the Control state must be in all profiles. The resource requirements of the 
reflective operator in contrast vary depending on the current profile. In the 
"Self-Optimizing min/max" profiles all three parallel states are active while in 
"Fail-Operation min/max" they are subsequently disabled. The cognitive opera-
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tor can be switched off if required. Therefore, the states Pre-Adjust, Optimizing, 
and Decision Making, which require high calculation-resources are only sup­
ported in the "Self-Optimizing max" profile. On the other hand the Path Fol­
lowing and Wait and Evalute state, which needs just less resources, are also in 
the "Self-Optimizing min" proiile. None of this states are present in any of the 
"Fail-Operation min/max" profiles. This reflects the fact that the decoupling of 
the OCM concept permits to suspend the complete cognitive operator at any 
time. A recovering of the cognitive features will leads to possible restart of the 
optimization cycle. 

The mentioned profile information can be generated out of the state chart 
as described in detail in [1]. 

3 Safety driven resource management 

The different profiles can be assigned to specific emergency categories using 
a generic monitoring concept for self-optimizing systems. We developed this 
concept originally in order to protect OCMs systematically against hazards or 
faults. These hazards or faults might result from their cognitive self-optimizing 
behavior themselves, but self-optimizing behavior can also support the reallo­
cation of resource to handle threats as outlined in the following. 

// /// 

Fig. 4. Monitoring Concept for self-optimizing Systems 

We have integrated the monitoring in the reflectoring operator of the OCM. 
The monitoring concept is a guideline, when and how self-optimization is rea­
sonable to use. Furthermore it describes which emergency categories should be 
supported and when a switching between them should be initiated to avoid 
major consequences (cf. Fig. 4) and which characteristics a profile should fulfill 
in order to be included in each category. The monitoring concept distinguishes 
four different emergency categories: 

I The system operates regularly and uses the self-optimization for the major 
system objectives; e.g. comfort and energy efficiency if useful. All regular 
profiles fall into this category, in our example "Self-Optimizing max/min". 

I I A possible threat has been detected and the self-optimization is not only used 
to optimize the behavior but also reach system states, which are considered 
to be safer than the current one. We describe in the next section our na­
ture inspired method which ensures that the system can in this case provide 
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more resources to enable more efficient countermeasures. In our example the 
Analysis substate of the reflective operator will detect this problem and only 
the profiles "Self-Optimizing max/min" and "Fail-Operation max" fit to this 
category. 

IIIA hazard has been detected that endangers the system. Fast and robust 
countermeasures, like a reflex, are performed in the reflective operator in hard 
real-time in order to reach a safer state (I or II). Depending on the specific 
OCM, profiles where the cognitive reactions runs in the background may 
still be employed, profiles with additional functionality may be employed, or 
only robust profiles without self-optimization are used. The "Fail-Operation 
min/max" profiles fit into this category, which use robust standard parameter 
settings to get back to a safe operational behavior. 

IVThe system is no longer under control; the system must be immediately 
stopped or a minimal safe-operational mode must be warranted, to minimize 
damage. In rare cases, cognitive reactions in the OCM may be employed in 
order to rescue the system if no fail-safe or minimal fail-operational behavior 
is possible. In our example the "Fail-Operation min" profile may be employed 
during the emergency brake of the system. 

3.1 Emergency categories and the a c u t e s t r e s s r e s p o n s e 

The American physiologist Walter Cannon published the "Fight-or-flight "-
Theory in 1929 [3], also known as acute stress response. It describes the re­
action of humans and animals to threats. In such "stress" situations specific 
physiological actions are taking place by the sympathetic nervous system of the 
organism as an automatic regulation system without the intervention of con­
scious thought. For example, epinephrine a hormone is released which causes 
the organism to release energy to react on the threat (fight or flight). 

We imitate this behavior inside our OCMs with support of our resource 
management of the RTOS. The idea is, when an OCM of the system detects 
a threat for the system the agent releases virtual epinephrine. This distributed 
epinephrine force non-critical OCMs in a profile with lower resource consump­
tions to free resources and thus permits the agent to hanlde the threat more 
appropriatley by switching in a profile of the emergency category II. 

Concrete the epinephrine carries the information how much additional re­
sources the OCM, which released the epinephrine, requires to activate his opti­
mal profile to handle the threat (eg. figure 3). All OCMs are sorted according 
their safety critical nature. As the blood system in an organism, our resource 
manager distributed the epinephrine to the OCMs. Starting with the OCMs 
with the lowest safety level, the epinephrine is injected to this OCMs and it can 
react on the epinephrine by switching into a special profile with lower resource 
requirements. If the OCM is only responsible for comfort it could for example 
switch to a "Off" profile with no or minimal resource requirements. The OCM 
"consumes " the epinephrine, this means the information inside the epinephrine 
how much resources are still required is updated. Then the resources manager 
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distributes the updated epinephrine to the next OCM, even if no resources are 
required anymore, so every OCM has information about the threat and can 
react accordingly. This procedure has the advantage that we achieve a faster 
self-organized reallocation than in the case of the regular resource optimization 
of the RTOS. 

In practice the switching to lower proviles of none or low critical OCMs is 
done, after collecting the information from all OCMs. This is done to ensure that 
all profile switches can be realized. The complexity of this process is linear to 
the number of OCMs. The reaction of the OCMs to the epinephrine (consuming 
it) is specified to be done in a short, constant time. The methodology to derive 
the profiles ensures that the basic safety countermeasures of the OCM to react 
to threats are always inchided in a current profile. So the countermeasures 
can be initiated without any delay, as no additional resources are required, 
while more advanced responses, which require additional resources can only be 
employed if the required additional resources are made available due to the 
stress response. If higher emergency categories such as II or IV are present, the 
outlined mechanism will propagate the resource demands in a similar manner 
considering the emergency category into account. 

4 Conclusion 

The presented generic OCM software architecture borrows the distinction be­
tween different levels of information processing present in natural organisms to 
handle better the complexity of mechatronic systems with self-optimization. In 
addition, a generic monitoring concept for each OCM and its self-coordination 
via the RTOS have been presented which emulate the acute stress response of a 
natural beings in the case of an emergency such that available resources are best 
allocated to address a given threat. The outlined self-coordinated adaptation 
of the system promises to enhance the dependability of systems as resources 
are employed more focused. It promizes to be also helpful for unanticipated 
problems as the investment of more resources to the control of misbehaving 
mechatronic subsystems is in many cases sufficient to compensate smaller sys­
tematic failures. 
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