
Acute Stress Response for Self-optimizing
Mechatronic Systems

Holger Giese-" ,̂ Norma Montealegre^, Thomas Miiller^, Simon Oberthiir^, and
Bernd Schulz^

^ Software Engineering Group, University of Paderborn, Germany
•̂ Heinz Nixdorf Institute, University of Paderborn, Germany

3 Power Electronics and Electrical Drives, University of Paderborn, Germany

Abst rac t . Self-optimizing mechatronic systems have the ability to ad­
just their goals and behavior according to changes of the environment
or system by means of complex real-time coordination and reconfig­
uration in the underlying software and hardware. In this paper we
sketch a generic software architecture for mechatronic systems with self-
optimization and outline which analogies between this architecture and
the information processing in natural organisms exist. The architecture
at first exploits the ability of its subsystems to adapt their resource
requirements to optimize its performance with respect to the usage of
available computational resources. Secondly, the architecture achieves,
inspired by the acute stress response of a natural being, that in the
case of an emergency it makes all recources available to address a given
threat in a self-coordinated manner.

1 Introduction

The next generation of advanced mechatronic systems is expected to behave
more intelligently than today's systems. They adjust their goals and behav­
ior according to changes of the environment or system and build communities
of autonomous agents. The agents exploit local and global networking to en­
hance their functionality (cf. [17]). Such mechatronic systems will thus include
complex real-time reconfiguration of the underlying software and hardware as
well as complex real-time coordination to adjust their behavior to the changing
system goals leading to self-adaptation (or self-optimization) [15, 10, 12, 5].

As advanced mechatronic systems usually consist of a complex network of
concurrently running components which are also called (software) agents, we
have developed a general architectural model of its components the so-called
Operator-Controller Module (OCM) [9]. Within a single autonomous mecha­
tronic system, a hierarchy of OCMs is employed to define the strictly hierarchi­
cal architecture. In contrast, at the top level the OCMs are free to connect to
their peers to estabhsh the required coordination. In this paper, we will outhne
which analogies between our architectural approach and related phenomena in
nature exists but also where are the limits of these analogies.

Please use the following format when citing this chapter:

Giese, H., Montealegre, N., Miiller, T., Oberthiir, S., Schulz, B., 2006, in IFIP International Federation for Information

Processing, Volume 216, Biologically Inspired Cooperative Computing, eds. Pan, Y, Rammig, F., Schmeck, H., Solar, M.,

(Boston; Springer), pp. 157-167.

158 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

While the proposed OCM architecture is mainly driven by the requirements
for self-optimizing mechatronic behavior, it also shows some similarities with
several proposed layered architectures. [8] suggests that a two level architecture
with a low-level execution and a higher-level control layer represents a gen­
eral pattern present in natural as well as artificial organic systems. A related
practical approach explained in [14] is the Observer/Controller architecture for
Organic Computing systems. Similar to the OCM it is inspired in the brain stem
as low level structures which reacts to sensory inputs and the limbic system as a
high-level structure which observes and manipulates the first one. In contrast to
this work, the OCM also supports higher cognitive behavior which matches the
planning layer of the Touring Machines [4] (autonomous agents with attitudes)
and tries to reach the goal of a general model for autonomous cognitive agents
as stated in [16], which explains the action selection paradigm of mind for con­
scious software agents and how the most relevant behavior/action is selected
and executed, supporting approach concerning to the method for emergency
situations described below.

Following support for the OCM architecture exist: The model-driven de­
velopment with MECHATRONIC U M L [2] and block diagrams is provided by
the CASE tool Fujaba and CAE tool CAMeL. Additionally, methods for ver­
ification of the real-time behavior, excluding adverse effects due to complex
reconfiguration in hierarchical OCM architectures, [7, 6] exists. The MECHA­
TRONIC UML approach also permits to specify resource-aware OCMs which
can adapt their resource consumption in form of different operational profiles
[1]. These resource-aware OCMs are further supported by a specific extension of
the real-time operating system DREAMS [11]. It optimize the system usage of
the computational resources at run-time. This is similar to the conscious mind
which devotes its attention and efforts for different control behavior so that the
result is optimized.

Concerning dependability, the existing techniques [7, 6] require that haz­
ards or detected faults are explicitly handled within the OCM hierarchy. Such
an explicit handling has to abstract drastically from the different failure configu­
rations of its subsystems, otherwise the resulting combinatoric explosion would
render the development prohibitively expensive. To overcome this limitation
and better handle unanticipated faults, we developed a generic self-organizing
scheme how an self-optimizing mechatronic system can exploit the ability of
its parts to adapt their resource requirements. The scheme is inspired by the
"acute stress response" of a natural being (cf. [3]). It enables that in the case
of an emergency all available resources are assigned in such a manner that the
threat can be addressed with priority.

The structure of the paper is as follows: We start with an example of a
self-optimizing mechatronic system in Section 2 and then introduce our general
architectural model for self-optimizing mechatronic systems, its modehng, and
their ability to adapt their resource consumption using this example. Then,
the safety-driven self-organizing resource management is outlined in Section 3
before we conclude the paper.

Acute Stress Response for Self-optimizing Mechatronic Systems 159

2 Example and Modeling

As a concrete example, we use the Paderborn-based RailCab research project^.
The modular railway system combines sophisticated undercarriages with the
advantage of new actuation techniques as employed in the Transrapid^ to in­
crease passenger comfort, enabling efficient transportation at a high average
speed, and (re)using of the existing railway tracks. We will use in the following
a specific element of the motion control as a running example.

Fig. 1. Structure of the Driving Module with operating point assignment

Fig. 1 shows the structure of driving module of the linear motor of the
railway system. The driving module consists of doubly fed linear drive with
magnetic active coils at the track and at the vehicle. The magnetic fields of
the coils are supported by the electrical currents, which are predetermined with
their frequency by the operating point assignment. The product of the current
defines the thrust 1 and with its frequency it also gives the transferred power
to the vehicle 2. Thence, the operating point assignment of the linear drive is
pivotal for the proper work of the whole vehicle. Without a suitable operating
point assignment, a safe and dependable work of the railway system is not
possible.

FM = KMhdhq (1) PB = 3(7r/i
LhN2

Wid-R2ll,) (2)

A simple operating point assignment can be handled by a full powered pri­
mary at the track. This fix operation point leads to an inefficient operation of
the system. To improve this efficiency the operating point assignment can be
done by a simple efficiency-optimal algorithm outlined in [13]. The concept of

^ http://www-nbp.upb.de/en
^ http://www.transrapid.de/en

160 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

self-optimizing in mechatronic systems allows a more powerful operating point
assignment [18]. This self-optimizing operating point assignment enables the
system self-adapting to the system objectives as a response to changes in the
surrounding of the system.

In case of a low charge state at energy storage system in the vehicle, the
losses in the vehicle became more important than the efficiency of the whole sys­
tem. Otherwise, the efficiency of the whole system can be maximized while the
power transfer is not in the focus of the operating point assignment. Moreover,
the importance of the power transfer to the vehicle depends on the expected
consumption and distance profile of the track.

2.1 A r c h i t e c t u r e

As illustrated by the example, even the control software of the Driving Module
results in a complex network of concurrently running components. Therefore
we suggest to structure the software architecture using Operator-Controller
Modules (OCM) as depicted in Fig. 2 (cf. [9]) as basic building blocks of a
hierarchy.

Linearmotor

Fig. 2. Structure of the Operator-Controller-Module for operating point assigment

Acute Stress Response for Self-optimizing Mechatronic Systems 161

The OCM suggests the following internal structuring: (1) On the lowest level
of the OCM, there is the controller which realizes the currently active control
strategy, processes measurements, and produces the control signals. This part
consists in the example of the drive control for the linear drive. (2) The reflective
operator, in which monitoring and controlling routines are executed, monitors
the controller. In the example, at this level the transfer of the reference value
for the operating point assignment as well as fault detection and management is
done. (3) The cognitive operator is trying to improve the behavior of the OCM
in soft real-time. The calculation and optimization of new reference values in
the example OCM are located here.

The OCM defines the so called micro architecture of the system somehow
inspired by the organization of the information processing as found in more
advanced animals. The behavior located in the cognitive operator relates to the
conscious decisions and planning. The reflective operator more or less fits to the
non conscious behavior which ensures that for a specific situation appropriate
reflexes and control strategies are activated. However, in contrast to natural
organisms the proposed architecture suggest to separate these levels in each
OCM of the hierarchy while in information processing of an organism this sepa­
ration only exists for the whole organism. Another distinction is that in nature
evolution ensures that unsafe behavior is eliminated while in our systems even
the loss of a single individual due to such an "experiment of life" could not
be justified. Therefore, guarantees must be provided using, for example, formal
verification techniques (cf. [7, 6]).

2.2 M o d e l i n g

During the implementation of the software for a Hardware-in-Loop test bed,
we modeled the operating point assignment module as an OCM. We peresent
in Fig. 3 a simplified state chart, which depicts the parallel processing of the
different layers in the cognitive- and reflective operator as well as the controller.

The controller has to support the motion Control of the vehicle at all cir­
cumstances. The reflective operator at first has to support the critical tasks of
Analyzing the advisability of the optimized set values for the controller. In the
parallel Adjust state, the reflective operator remains in the Normal state and
provides optimized set values to the controller as long as suitable operating
points set values where available. Otherwise, in case of inappropriate operating
point set values, which can be the result of an unexpected thrust demand or
quick changing parameters of the motor, the Adjust state of the reflective opera­
tor will switch over to the Emergency state. In parallel, the Parameter Estimation
state is required for parameter estimation of the motor parameters to enable the
cognitive operator to make a suitable optimization. In the cognitive operator of
the OCM suitable objectives for the next optimization cycle are elected in the
Pre-Adjust state. At the Optimization state, the multi objective optimization is
done and afterwards the pareto point selection follows in the Decision Making
state. The selected operating point for a discrete time is then employed in the

162 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

' OuLiiitU! Cu-il'S kr r. odj

1 C'_J I KJf ii,-i.t ISO

\

)
Pl" l ' >l 'iV."i J ^ '

fi(»".C.I.i' J , " 'P'O

. ^

' I ' . I ^ • • ' " ' ' ' ^ ' ' ' * ' j

i[ll/'i^LlJ
I r ^ T — 1 ^

\

7

Fig. 3. States and profiles of the Operating Point Assigment OCM

Path Following state to calculate the selected operating point for the next few
seconds. This calculated path will be send the reflective operator and a review
of the calculated optimization results in the Wait and Evaluate state is used to
decide whether a new optimization cycle is required or whether it is sufficient
to continue the path jumping to the Path Following state.

2.3 R e s o u r c e M a n a g e m e n t

The resource-aware OCM becomes possible due to our RTOS named DREAMS
(Distributed Real-time Extensible Application Management System) which
provides a special resource manager [11] (Flexible Resource Manager - FRM).
DREAMS is tailored to the special demands of the dynamic class of self-
optimizing applications. The manager tries to optimize the resource utiliza­
tion at run-time. The optimization includes a safe overallocation of resources,
by putting resources that are held back for worst-case szenarios by OCMs at
other OCMs disposal. The interface to the FRM is called Profile Framework.
By means of the Profile Framework the developer can define a set of profiles per
application. Profiles describe different service levels of the application, including
different quality and different resource requirements.

All states belonging to one profile build the state space that can be reached
when the profile is active. In Fig. 3 the inclusion of the states in profiles is
depicted by assigning the related profile numbers. The required resources of
the controller are always the same if the system is in operation. Therefore,
the Control state must be in all profiles. The resource requirements of the
reflective operator in contrast vary depending on the current profile. In the
"Self-Optimizing min/max" profiles all three parallel states are active while in
"Fail-Operation min/max" they are subsequently disabled. The cognitive opera-

Acute Stress Response for Self-optimizing Mechatronic Systems 163

tor can be switched off if required. Therefore, the states Pre-Adjust, Optimizing,
and Decision Making, which require high calculation-resources are only sup­
ported in the "Self-Optimizing max" profile. On the other hand the Path Fol­
lowing and Wait and Evalute state, which needs just less resources, are also in
the "Self-Optimizing min" proiile. None of this states are present in any of the
"Fail-Operation min/max" profiles. This reflects the fact that the decoupling of
the OCM concept permits to suspend the complete cognitive operator at any
time. A recovering of the cognitive features will leads to possible restart of the
optimization cycle.

The mentioned profile information can be generated out of the state chart
as described in detail in [1].

3 Safety driven resource management

The different profiles can be assigned to specific emergency categories using
a generic monitoring concept for self-optimizing systems. We developed this
concept originally in order to protect OCMs systematically against hazards or
faults. These hazards or faults might result from their cognitive self-optimizing
behavior themselves, but self-optimizing behavior can also support the reallo­
cation of resource to handle threats as outlined in the following.

// ///

Fig. 4. Monitoring Concept for self-optimizing Systems

We have integrated the monitoring in the reflectoring operator of the OCM.
The monitoring concept is a guideline, when and how self-optimization is rea­
sonable to use. Furthermore it describes which emergency categories should be
supported and when a switching between them should be initiated to avoid
major consequences (cf. Fig. 4) and which characteristics a profile should fulfill
in order to be included in each category. The monitoring concept distinguishes
four different emergency categories:

I The system operates regularly and uses the self-optimization for the major
system objectives; e.g. comfort and energy efficiency if useful. All regular
profiles fall into this category, in our example "Self-Optimizing max/min".

I I A possible threat has been detected and the self-optimization is not only used
to optimize the behavior but also reach system states, which are considered
to be safer than the current one. We describe in the next section our na­
ture inspired method which ensures that the system can in this case provide

164 H. Giese, N. Montealegre, T. MuUer, S. Oberthiir, B. Schulz

more resources to enable more efficient countermeasures. In our example the
Analysis substate of the reflective operator will detect this problem and only
the profiles "Self-Optimizing max/min" and "Fail-Operation max" fit to this
category.

IIIA hazard has been detected that endangers the system. Fast and robust
countermeasures, like a reflex, are performed in the reflective operator in hard
real-time in order to reach a safer state (I or II). Depending on the specific
OCM, profiles where the cognitive reactions runs in the background may
still be employed, profiles with additional functionality may be employed, or
only robust profiles without self-optimization are used. The "Fail-Operation
min/max" profiles fit into this category, which use robust standard parameter
settings to get back to a safe operational behavior.

IVThe system is no longer under control; the system must be immediately
stopped or a minimal safe-operational mode must be warranted, to minimize
damage. In rare cases, cognitive reactions in the OCM may be employed in
order to rescue the system if no fail-safe or minimal fail-operational behavior
is possible. In our example the "Fail-Operation min" profile may be employed
during the emergency brake of the system.

3.1 Emergency categories and the a c u t e s t r e s s r e s p o n s e

The American physiologist Walter Cannon published the "Fight-or-flight "-
Theory in 1929 [3], also known as acute stress response. It describes the re­
action of humans and animals to threats. In such "stress" situations specific
physiological actions are taking place by the sympathetic nervous system of the
organism as an automatic regulation system without the intervention of con­
scious thought. For example, epinephrine a hormone is released which causes
the organism to release energy to react on the threat (fight or flight).

We imitate this behavior inside our OCMs with support of our resource
management of the RTOS. The idea is, when an OCM of the system detects
a threat for the system the agent releases virtual epinephrine. This distributed
epinephrine force non-critical OCMs in a profile with lower resource consump­
tions to free resources and thus permits the agent to hanlde the threat more
appropriatley by switching in a profile of the emergency category II.

Concrete the epinephrine carries the information how much additional re­
sources the OCM, which released the epinephrine, requires to activate his opti­
mal profile to handle the threat (eg. figure 3). All OCMs are sorted according
their safety critical nature. As the blood system in an organism, our resource
manager distributed the epinephrine to the OCMs. Starting with the OCMs
with the lowest safety level, the epinephrine is injected to this OCMs and it can
react on the epinephrine by switching into a special profile with lower resource
requirements. If the OCM is only responsible for comfort it could for example
switch to a "Off" profile with no or minimal resource requirements. The OCM
"consumes " the epinephrine, this means the information inside the epinephrine
how much resources are still required is updated. Then the resources manager

Acute Stress Response for Self-optimizing Mechatronic Systems 165

distributes the updated epinephrine to the next OCM, even if no resources are
required anymore, so every OCM has information about the threat and can
react accordingly. This procedure has the advantage that we achieve a faster
self-organized reallocation than in the case of the regular resource optimization
of the RTOS.

In practice the switching to lower proviles of none or low critical OCMs is
done, after collecting the information from all OCMs. This is done to ensure that
all profile switches can be realized. The complexity of this process is linear to
the number of OCMs. The reaction of the OCMs to the epinephrine (consuming
it) is specified to be done in a short, constant time. The methodology to derive
the profiles ensures that the basic safety countermeasures of the OCM to react
to threats are always inchided in a current profile. So the countermeasures
can be initiated without any delay, as no additional resources are required,
while more advanced responses, which require additional resources can only be
employed if the required additional resources are made available due to the
stress response. If higher emergency categories such as II or IV are present, the
outlined mechanism will propagate the resource demands in a similar manner
considering the emergency category into account.

4 Conclusion

The presented generic OCM software architecture borrows the distinction be­
tween different levels of information processing present in natural organisms to
handle better the complexity of mechatronic systems with self-optimization. In
addition, a generic monitoring concept for each OCM and its self-coordination
via the RTOS have been presented which emulate the acute stress response of a
natural beings in the case of an emergency such that available resources are best
allocated to address a given threat. The outlined self-coordinated adaptation
of the system promises to enhance the dependability of systems as resources
are employed more focused. It promizes to be also helpful for unanticipated
problems as the investment of more resources to the control of misbehaving
mechatronic subsystems is in many cases sufficient to compensate smaller sys­
tematic failures.

References

1. S. Burmester, M. Gehrke, H. Giese, and S. Oberthiir. Making Mechatronic Agents
Resource-aware in order to Enable Safe Dynamic Resource Allocation. In B. Geor-
gio, editor, Proc. of Fourth ACM International Conference on Embedded Software
2004 (EMSOFT 2004), Pisa, Italy, pages 175-183. ACM Press, September 2004.

2. S. Burmester, H. Giese, and M. Tichy. Model-Driven Development of Reconfig-
urable Mechatronic Systems with Mechatronic UML. In U. Assmann, A. Rensink,
and M. Aksit, editors. Model Driven Architecture: Foundations and Applications,

166 H. Giese, N. Montealegre, T. Miiller, S. Oberthiir, B. Schulz

volume 3599 of Lecture Notes in Computer Science, pages 47-61. Springer Verlag,
Aug. 2005.

3. W. B. Cannon. Bodily Changes in Pain, Hunger, Fear and Rage: An Account of
Recent Research Into the Function of Emotional Excitement. Appleton-Century-
Crofts, 1929.

4. I. A. Ferguson. Touringmachines: Autonomous agents with attitudes. IEEE Com­
puter, 25(5):51-55, 1992.

5. U. Frank, H. Giese, F. Klein, O. Oberschelp, A. Schmidt, B. Schulz, H. Vocking,
and K. Witting. Selbstoptimierende Systeme des Maschinenbaus - Definitionen
und Konzepte. Number Band 155 in HNI-Verlagsschriftenreihe. Bonifatius GmbH,
Paderborn, Germany, first edition, Nov. 2004.

6. H. Giese, S. Burmester, W. Schafer, and O. Oberschelp. Modular Design and Ver­
ification of Component-Based Mechatronic Systems with Online-Reconfiguration.
In Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pages 179-188. ACM Press, November 2004.

7. H. Giese, M. Tichy, S. Burmester, W. Schafer, and S. Flake. Towards the Com­
positional Verification of Real-Time UML Designs. In Proc. of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna­
tional symposium on Foundations of software engineering (ESEC/FSE-11), pages
38-47. ACM Press, September 2003.

8. A. Herkersdorf. Towards a framework and a design methodology for autonomic in­
tegrated systems. In M. Reichert, editor. Proceedings of the Workshop on Organic
Computing, 2004.

9. T. Hestermeyer, O. Oberschelp, and H. Giese. Structured Information Process­
ing For Self-optimizing Mechatronic Systems. In H. Araujo, A. Vieira, J. Braz,
B. Encarnacao, and M. Carvalho, editors, Proc. of 1st International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2004), Setubal,
Portugal, pages 230-237. INSTICC Press, Aug. 2004.

10. D. J. Musliner, R. P. Goldman, M. J. Pelican, and K. D. Krebsbach. Self-Adaptive
Software for Hard Real-Time Environments. IEEE Inteligent Systems, 14(4),
July/Aug. 1999.

11. S. Oberthiir and C. Boke. Flexible resource management - a framework for self-
optimizing real-time systems. In B. Kleinjohann, G. R. Gao, H. Kopetz, L. Klein-
johann, and A. Rettberg, editors, Proceedings of IFIP Working Conference on
Distributed and Parallel Embedded Systems (DIPES'04), pages 177-186. Kluwer
Academic Publishers, 23 - 26 Aug. 2004.

12. P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54-62,
May/June 1999.

13. A. Pottharst. Energieversorgung und Leittechnik einer Anlage mit Linearmotor
getriebenen Bahnfahrzeugen. Dissertation, University of Paderborn, Powerelec-
tronic and Electrical Drives, Dec. 2005.

14. T. Scholer and C. Miiller-Schloer. An observer/controller architecture for adaptive
reconfigurable stacks. In M. Beigl and P. Lukowicz, editors, ARCS, volume 3432
of Lecture Notes in Computer Science, pages 139-153. Springer, 2005.

15. J. Sztipanovits, G. Karsai, and T. Bapty. Self-adaptive software for signal process­
ing. Commun. ACM, 41(5):66-73, 1998.

Acute Stress Response for Self-optimizing Mechatronic Systems 167

16. J. F. Vincent Decugis. Action selection in an autonomous agent with a hier­
archical distributed reactive planning architecture. In Proceedings of the second
international conference on Autonomous agents, pages 354-361. ACM Press, 1998.

17. M. Wirsing, editor. Report on the EU/NSF Strategic Workshop on Engineering
Software-Intensive Systems, Edinburgh, GB, May 2004.

18. K. Witting, B. Schulz, A. Pottharst, M. Dellnitz, J. Bocker, and N. Prohleke. A
new approach for online multiobjective optimization of mechatronical systems.
Accepted for Int. J. on Software Tools for Technology Transfer STTT (Special
Issue on Self-Optimizing Mechatronic Systems), 2006.

