
Using Game Engines for Visualization in
Scientific Applications

Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

Abstract In recent years, the computer gaming industry has become a large and

important market and impressive amounts of money are spent on the development

of new game engines. In contrast to their development costs, the price for the final

product is very low compared to a professional 3D visualization/animation program.

The idea to use this potential for other purposes than gaming seems obvious. This

work gives a review on three Serious Gaming projects, analyzes the encountered

problems in a greater context and reflects the pros and cons of using game engines

for scientific applications in general.

1 Introduction

In 2002 the University of Hannover held its yearly open house day and our depart-

ment had a small presentation as well. One of the projects we showed was a diploma

thesis, showing caves, i.e. former mines, reconstructed from laser scan data. The

focus of the thesis was the reconstruction itself, not the visualization, aiming for

engineering post processing. Still, it was possible to show the reconstructed cave

walls in some way (figure 1).

At that open day we had a visitor who was an archaeologist. She was very inter-

ested in the caves, since they had just discovered a new cave with bones and wall

paintings in a nearby mountain area, which was inaccessible for a larger public.

When we told her that our programs could show only the outside of a cave, without

the possibility to walk through it she was a bit disappointed.

Karl-Ingo Friese, e-mail: kif@gdv.uni-hannover.de
Franz-Erich Wolter, e-mail: few@gdv.uni-hannover.de
Institute of Man-Machine-Communication, Leibniz Universität Hannover, Germany

Marc Herrlich, e-mail: mh@tzi.de
Research Group Digital Media, Universität Bremen, Germany

Please use the following format when citing this chapter:

Friese, K-I., Herrlich, M. and Wolter, F-E., 2008, in IFIP International Federation for Information Processing, Volume 279; New
Frontiers for Entertainment Computing; Paolo Ciancarini, Ryohei Nakatsu, Matthias Rauterberg, Marco Roccetti; (Boston: Springer),
pp. 11–22.

12 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

The idea to visualize these caves also from the inside was born. The goal was

to write a small application that would allow a more natural form of showing our

caves. What we wanted was an application, which would allow to run in a first-

person-perspective through a cave-like virtual dungeon and it was obvious that such

applications already existed in the form of computer games or to be more precise:

first-person-shooters.

Compared to professional scientific visualization software, computer games have

to favor real-time rendering over physical correctness and data accuracy. We took

the challenge to see if we could visualize our reconstructed cave with a 3D com-

puter game, which, after solving some problems at the beginning, turned out to be

possible.

Fig. 1 A (reconstructed)
cave with three chambers,
seen from the outside. The
different colors represent the
different laser measurements.

Since then, several projects using computer games to visualize scientific data fol-

lowed. This paper gives an overview of three of them, classify them in the context of

Serious Gaming and finally reflect if and when the use of game engines in scientific

applications can be useful.

2 What has been done?

The terms Serious Games and Serious Gaming are used in the literature to describe

very different application scenarios. While the concept of Serious Games is orig-

inally stemming from the area of game-based learning and education [1, 17], to-

day it is more generally used to describe a whole spectrum of applications [14]. In

this sense, the area of Serious Games incorporates all aspects of applying computer

game technology to non-entertainment uses, including but not limited to simula-

tion, visualization and VR. For this paper we are only considering 3D-games, not

puzzles, 2D-shooters, etc. and will use the following definition of Serious Games:

Definition 1. Every application that makes significant use of game technology and

is not primarily intended for pure entertainment is a Serious Game.

Historically, games were designed and implemented on a case-to-case basis, leav-

ing only little room for easy modification and reuse. Therefore, the usefulness of

Using Game Engines for Visualization in Scientific Applications 13

game technology for other application areas was somewhat limited. However, this

changed with the appearance of the first modern game engines, e.g. the Quake or

Unreal series, which provided better modularity. Today, developers can choose from

a number of suitable commercial and non-commercial engines.

In this paper we will focus on the area of visualization using modern computer

game engines. Before discussing our own research and results in the following sec-

tions, we will present a current overview of the ongoing research and development,

focusing on indoor and outdoor GIS and CAD data visualization and interaction.

In 2002, Rhyne [13] argued that scientists today have much to learn from the

computer games industry regarding computer graphics, visualization, and interfaces,

especially with the background of cluster computing. In this area it is an ongoing

trend to build clusters from standard PC hardware instead of specialized worksta-

tions or mainframes. In Rhyne’s opinion, scientific visualization applications can

benefit from computer game technology, as most computer games are optimized for

commodity hardware. On the other hand, she states some drawbacks in using com-

puter game engines, especially concerning data accuracy and reliability. She also

mentions the traditionally short release cycles in the games industry, which may

lead to incomplete or unstable graphics drivers.

While this is certainly true, these short release cycles also have their advantages.

Namely the availability and support for new hardware and software features. Fur-

thermore, as production costs for modern games are exploding, the development

processes have matured and there is a specialization taking place that is dividing

game companies into technology developers and technology users, which will lead

to more robust solutions.

In the same year, Herwig and Paar [10] discussed the suitability of game engines

for landscape visualization and planning. They presented different usage scenar-

ios and analyzed the requirements of landscape architects concerning supporting

tools and to what extend game engines can solve these problems. They also showed

preliminary results of tests conducted with a landscape visualization based on the

Unreal Engine. Their findings fit in very well with our own research in landscape

visualization based on the CryEngine presented in section 3.3.

In the following, we will report on a number of visualization projects, which

approximately fall into the same time span as our own projects described thereafter.

In 2001, Freudenberg et al. [6] described a low-cost VR installation powered by

the Shark3D game engine. Using commodity hardware, i.e. three standard PCs and

beamers, they employed the game engine’s built-in rendering and networking fea-

tures to create a distributed rendering system capable of driving the VR projection

in real-time. Their system had enough power reserves to render pre-distorted images

to compensate for the spherical projection plane. Opposed to expensive off-the-shelf

VR solutions, the game-based solution clearly demonstrated the advantage of being

able to use standard commodity hardware.

In 2002, Shiratuddin and Thabet [15] described the implementation of a virtual

office walkthrough system based on the Unreal Engine. They derived the geometry

from 2D CAD data importing it into the engine. Furthermore they used cheap input

devices like the Microsoft Sidewinder Freestyle Pro gamepad in conjunction with

14 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

the engine’s real-time capabilities to allow 6-DOF real-time interaction in a photo-

realistic environment. Most of the data conversion was either executed manually or

using commercial tools. In our own research, presented in the following sections,

we tried to automate the process as much as possible.

Germanchis et al. [8, 9] explored 2004 the potential of game technology for the

visualization of geographical data in the context of human path finding and spatial

cognition research.

The visual quality and the level of interaction provided by modern game en-

gines had certainly reached a level making them suitable for research in the area

of human cognition. The authors used a full set of professional commercial tools,

e.g. ArcGIS, to prepare the data for the game engine. This again contrasts our own

(semi-)automatic approaches.

Fritsch and Kada [7] discussed 2004 indoor as well as outdoor visualization of

geographical data based on different game engines, among them the Quake3 En-

gine and the Unreal Engine 2. They also discussed the benefits of game engines

compared to other software libraries and presented concepts for integrating them

with other software packages for different purposes, e.g. Computer Aided Facility

Management-Systems. They came to the conclusion that the conversion process of

geographical data into the data format of the game engine is one of the major obsta-

cles for every game engine based application.

Arendash [2] demonstrated 2004 how the Unreal editor could be exploited as

an intuitive authoring tool for web-based virtual worlds, i.e. VRML or X3D based

virtual worlds. He presented a tool to extract geometry, texturing, and lighting data

from the Unreal data format into a valid VRML/X3D representation.

Also in 2004, Lepouras and Vassilakis [12] presented the concept of building

virtual museums by using a game engine. This virtual exhibition space took advan-

tage of the high visual quality of modern game engines. Lepouras and Vassilakis

also conducted a user acceptance study of their virtual museum prototype, which

showed very promising results.

In 2005, Jacobson and Lewis [11] presented an open source project derived from

the Unreal Engine called CaveUT for immersive Cave-like virtual reality projec-

tion environments. In the same year, Stock et al. [16] demonstrated how the Torque

Game Engine can be connected to a web-based map server to create an easy-to-use

collaborative environment for landscape visualization and planning. They exploited

not only the rendering capabilities, but especially the networking features present in

most computer game engines.

In other works, game engines have also been used to provide visualization and

interaction metaphors in completely different and more abstract areas, which are not

listed here because they would go beyond the scope of this paper.

Using Game Engines for Visualization in Scientific Applications 15

3 Projects at the Welfenlab

This section will report on three projects, realized with students of the Welfenlab.

The first is a (very basic) visualization of caves with Quake3. A second approach

with Unreal Tournament 2004 had the same goal. The third project focused on land-

scape visualization in planing processes with FarCry.

The base for the first two projects was a digital model of man-made caves, which

we reconstructed before in a previous work. Its original goal was to receive a re-

construction as precise as possible, resulting in a highly detailed triangle surface,

which could also be exported as a solid volume model for CAD applications like

AutoCAD.

3.1 Cave Visualization with Quake3

The first approach to visualize the reconstructed caves in a first person perspective

used the (even at that time) rather old Quake3. The main reason for this was that

Quake3 was well understood and available for Windows and Linux. Quake3 was

produced and published by IdSoftware, released in December 1999 and supported

shaders, curved surfaces, 32-bit color and of course hardware rendering. Only a

single license (of the original game) was necessary for the presentation of the results.

The goal of this first project was not only to see if it is possible to visualize the

cave, but also to analyze how difficult it would be to convert our high resolutional

scientific data into the restricted surface representation of a computer game, without

losing too many details. This work was done by Dominik Sarnow in his junior thesis.

The choice of the game engine was based on the following criteria:

• the engine must support dynamic light computations

• it should have no license conflicts

• it should use an open file format that is easy to understand

• it should have at least some available documentation

Quake3 fulfilled all but the third criterion, because as almost all other game en-

gines, the native Quake3 level format is binary, proprietary and far from being hu-

man readable. Fortunately, there was an easy solution for this: the existence of the

level editor GtkRadiant.

GtkRadiant is a level editor for Quake3 and other games. It is free for non-

commercial use and is available for several platforms. Its native map format is a

sequence of numbered entities, the first entity always being the world which con-

tains geometrical objects (brushes). An entity consists of a class name, an origin that

defines the place of the entity in the map and texture/material properties.

Instead of writing a converter of our data into the binary format of Quake3, we

decided to export into the text format of GtkRadiant. Still we had to deal with the

specific restrictions of Quake3: a limited number of triangles (per level), a map

16 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

format that can only interpret convex objects and most obvious: all coordinates had

to be of integer value.

Since the maximal number of triangles was limited, a prestep reducing the num-

bers of triangles was necessary. We used a simple shortest-edge removal procedure

which was easy to implement and produced acceptable results.

The geometry supported by GtkRadiant consisted of planar and convex geomet-

ric entities, cut out of a plane. Since our original data was a triangulated surface,

the natural approach seemed to be to turn each triangle into a map entity. However,

this resulted in a huge number of entities, consequently we spent the extra effort

of locating planar areas in our original surface and finding suitable compositions of

convex polygons, reducing the number of entities significantly. This interesting ge-

ometrical problem was looked into more deeply in the bachelor’s thesis of Daniela

Lauer.

The problem of transferring vertex coordinates to integer was easy to solve: cen-

ter the cave data, scale the coordinates (taking into account that the maximum sup-

ported integer value for a coordinate is 64k) and delete extra decimal places. After-

wards a correction step was necessary to remove degenerated triangles. Due to the

nature of the internal geometry description, it was very important to create closed

surfaces, because otherwise the number of polygons in the resulting level file ex-

ploded.

Fig. 2 Walking through the reconstructed cave with Quake3

In the resulting Quake3 level, colored light sources were placed at the exact posi-

tions of the lasers during the measuring of the original caves, giving a very intuitive

impression of the visibility region of each measurement, shown in figure 2.

3.2 Cave Visualization with UT 2004

During the work with Quake3, we realized that the visual restrictions would be quite

strong, resulting in a second project using the more modern game Unreal Tourna-

ment 2004 (UT 2004), leading to the bachelor’s thesis of Michael Hanel.

Using Game Engines for Visualization in Scientific Applications 17

In the UT 2004 project, we followed a similar approach: writing a converter that

would not export to the (proprietary and binary) format of the game itself, but into

the text format of its level editor, which is free for download.

The Unreal Engine 2 was designed for PC, Sony PlayStation2 and Microsoft

XBox and runs with Microsoft Windows XP and Linux. It was used in Unreal Tour-

nament 2004 and Unreal 2. It supports CSG (constructive solid geometry) and BSP

(binary space partitioning) geometry, 12 steps of MIP-Mapping, static and dynamic

light sources. The texture format is 32 bit with a resolution up to 2048 × 2048

pixels. The engine can show up to 150.000 triangles in view.

Contrary to UT 2004, which also runs on Linux, the map editor UnrealEd 3.0

is a Windows-based application. It can read and write two native data formats: Un-
real Tournament Map .ut2 (binary) and Unreal Text Format .t3d (plain). Within the

editor, every object is represented by an Actor. Actor objects combine general and

specific attributes, such as the object class, position, size, color, etc. The most im-

portant actor classes are Brushes, TriggerLights (Lights) and the PlayerStart.

Fig. 3 BSP Holes and their solution: segmenting the surface into several brushes

One of the biggest problems in this work was that the original data consisted of

several thousand triangles for the cave surface, producing high computing costs for

the engine. The first approach was to convert the whole cave as a single brush object,

which turned out to be problematic, since the resulting level contained BSP holes.

Therefore we had to reduce the number of triangles per brush. Experiments showed

that 500 triangles per brush seemed to be an upper limit.

In the bachelor’s thesis of Michael Hanel, this was solved by an equidistant seg-

mentation of the original data into horizontal slices, illustrated in figure 3. These

segments were converted into brushes that needed to be closed with side walls for

the automated merging within the engine. The equidistant segmentation approach

was not optimal, since it did not guarantee an upper limit of triangles per brush, but

relatively easy to implement and chosen due to time constraints.

The restriction of 500 triangles per brush cannot be taken for granted, it just

appeared to reduce the BSP holes (almost) to zero, which we found out experimen-

tally. In all three projects, similar engine limitations turned out during development

18 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

Fig. 4 A screen shot showing the UT 2004 version of the cave in the level editor and the game
itself

and had to be analyzed with trial-and-error methods. This seems to be a common

problem for Serious Gaming projects, as described in section 4.

After this was done, the last remaining problem was the lack of a texture mapping

method, that would provide the cave walls with a sufficiently realistic appearance.

Together with dynamic lighting, the result was very convincing as seen in figure

4, giving people not involved in the project the immediate impression of a natural

cave, much more than in the former Quake3 visualization.

3.3 Landscape Visualization with FarCry

The third project we want to describe in this paper focuses on landscape visualiza-

tion and planning (cf. [10]). Its main goal is to apply the visualization and interaction

capabilities of modern game engines, in this case the CryEngine, to build the proto-

type of a visualization tool for landscape architects. Our goal was to provide a tool

that generates a quick but photo-realistic visualization of an area based on real geo-

graphical data, allowing interactive movement through the landscape and real-time

interactive modification of the terrain layout and vegetation placement.

One possible usage scenario could be a landscape architect, having a meeting

with customers and trying to present his ideas and how they will transfer into re-

ality. Many people have difficulties to imagine how the look of a landscape might

change, e.g. with different arrangements of trees and other plants, therefore it is of-

ten crucial to provide images or models of the target outcome. This can be a very

time consuming and expensive process. Under these circumstances the use of game

engines might help to reduce the cost, when compared to professional solutions,

while at the same time enhancing the visual quality of the final images. Game En-

gines also provide the opportunity for collaborative, interactive walkthroughs with

no or very low additional cost.

A crucial requirement for a landscape planning tool is the possibility of fast mod-

ifications of the terrain and of the placement and arrangement of the vegetation and

Using Game Engines for Visualization in Scientific Applications 19

other objects. This poses an additional challenge in comparison to ’simple’ visu-

alization tasks. In section 1 we argued that one major benefit of computer game

technology is the optimization for commodity hardware. This was also a major con-

cern in this project because in our scenario a landscape architect would have to be

able to use his standard desktop or notebook computer to run our tool in front of his

customers.

The CryEngine [4] is a commercial game engine developed by Crytek. It was

first employed in the game Farcry, which we used for this project. The engine itself

is accompanied by an editor tool called CryEngine Sandbox [3].

Our overall approach can be described as follows. In the first step, very similar

to the Quake 2 and UT 2004 project, the geographical data is converted into a for-

mat that can be read by the CryEngine Sandbox. In the second step, the real-time

editing features of the Sandbox are then exploited to perform any necessary mod-

ifications or rearrangements or to try out different landscape scenarios. Finally, a

map is generated from within the Sandbox that can be used directly by the game,

e.g. for collaborative exploration. It is important to note, that we try to automate the

conversion process as much as possible to provide landscape architects with an easy

to use tool. The key idea is, that the landscape architect only provides the basic data

files and the visualization is then boot-strapped by the conversion tool.

Fig. 5 The CryEngine Sand-
box [3] is automatically in-
stalled together with the game
and free for non-commercial
use. It provides real-time
interactive tools for terrain
shaping and vegetation place-
ment.

We decided to employ the CryEngine because it supports very large outdoor ter-

rains, naturally an important point in our application. The CryEngine Sandbox has

also been a key factor. In contrast to many other editing tools, the Sandbox provides

real-time interactive editing and a very comprehensive set of tools for terrain shap-

ing and vegetation placement. It also supports seamless switching between in-game

and editor modes (figure 5).

Our terrain visualization and the automatic placement of vegetation is based on

two types of data. First, we need a digital elevation model (DEM), which describes

the general shape of the landscape to a degree limited by the resolution of the avail-

able DEM. Second, we need a segmentation of the terrain according to types of

vegetation present in the respective areas to be visualized. This segmentation usu-

20 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

ally decomposes the landscape into areas like forest, field, or meadow. For the pur-

pose of storing the segmentation we used ESRI shape files [5], which is a standard

data format commonly used in geographic information systems.

Fig. 6 Ground Texture vs.
Aerial Photography. The
generated ground texture and
the aerial photography of the
same area match very well
even though we used a coarse
segmentation.

We have tested out prototype with sample data from certain areas in Lower Sax-

ony and have received some very convincing results concerning realism and visual

quality, shown in figure 6.

The biggest difficulties we encountered during the project were connected to the

data conversion process. The resolution of the DEMs is in general very different

compared to the internal heightmap resolution used in the game engine. Therefore

this data needs to be resampled to be used by the Sandbox. The shape file data has

to be matched and positioned correctly onto the terrain and of course it has to be

clipped accordingly. Finally, the file formats used by the CryEngine are not publicly

documented.

4 Reflection

In the last section, we presented three approaches to use existing computer game

technology in scientific applications. The question that remains is: Was it a good

idea or would it have been more suitable to use professional visualization software?

The answer is as usual: It depends.

Using commercial computer games for a non-gaming context has huge advan-

tages. First of all, they usually bring state-of-the-art graphics, often supporting a

client/server concept which can be used for multi-user applications. Their most im-

portant advantage is of course the price: a single license usually does not cost more

than 100 US$, while professional visualization tools easily cross 10,000 US$ per

copy. Also, the professional software usually requires professional hardware, while

computer games are designed to run on last year’s low budget PC as well.

However, every advantage comes with a trade-off. The problems of the three

projects from the last section seem to be exemplary for the field of Serious Gaming
and can be divided into four categories:

Using Game Engines for Visualization in Scientific Applications 21

1. Lack of documentation
No matter how good a game engine and its editors are documented and how large

its community is, it seems to be impossible to find out concrete numbers, e.g. the

maximum number of polygons per object or the maximum file size of a level.

The process of writing tools that convert scientific data into the file format of a

game engine (or for its level editor) is usually very experimental.

2. Engine-Dependent Restrictions
As seen in all three projects, every game engine had very specific restrictions,

for example the ’integer-coordinates-only’ drawback of Quake3 (section 3.1) or

the maximum number of triangles per brushes in UT 2004 (section 3.2. These

restrictions are usually not obvious before the development starts and result in

time-expensive workarounds.

3. Short Life-Span
Computer hardware evolves fast and a modern computer game usually lasts only

a few years. As long as it is new, it is usually supported well, but compared

to professional animation software, it is very unlikely that it will run on future

operating systems or on hardware that will come out 3-4 years after its launch.

4. Not Extendable
The application can do what the game can do. Nothing more, nothing less. Future

customer requests might be expensive or impossible to implement.

So why is it still reasonable to continue the work with game engines? Because of

their potential. Computer games are highly specialized but also highly optimized,

with development costs matching those of Hollywood movies. These games are

sold at a very reasonable price as they are produced for a mass market. The situation

can be compared with the current run on GPU-Programming. It can be safely said

that (ab)using the GPU for non-rendering purposes is a very unpleasant if not ques-

tionable way of writing programs. Yet the impressive speedup that is gained with

additional hardware costs of zero (almost every computer already has a fast GPU)

made it very popular.

If the scientific application matches the potential of a game engine close enough,

as in the use of FarCry for visualizing landscape planning processes, the costs of

developing software with similar capabilities would by far go beyond the costs of

finding solutions for the engine restrictions or buying a professional software. As

long as the original problem does not exceed the capabilities too much, it might

always be worth a closer look. However, one should always keep the drawbacks

mentioned above in mind.

5 Summary and Outlook

In this work we reported on three different visualization projects making use of 3D

computer games and tried to classify them in the context of other Serious Gaming
projects (sections 2 and 3). We have shown that the visualization of scientific data

22 Karl-Ingo Friese, Marc Herrlich, and Franz-Erich Wolter

with game engines is possible and leads to promising results. We also discussed its

drawbacks (section 4) and tried to extract common problems of all three projects.

In the future we would like to extend the presented work. Firstly, we would like

to incorporate the latest developments in the area of game technology, i.e. enhanced

rendering methods and the like. Secondly, we would like to explore the full potential

of game engines not only in graphical terms. We think there is a great potential

in using the available artificial intelligence and networking capabilties of modern

engines.

References

1. Abt, C.C.: Serious Games. University Press of America (1987)
2. Arendash, D.: The unreal editor as a web 3d authoring environment. In: Proceedings of the

ninth international conference on 3D Web technology, pp. 119–126. ACM, Monterey, Califor-
nia (2004)

3. Crytek GmbH: CryEngine Sandbox Far Cry Edition User Manual, 1.1 edn. (2004)
4. Crytek GmbH: Far Cry Engine Overview, 1.0 edn. (2005)
5. Environmental Systems Research Institute: ESRI Shapefile Technical Description (1998).

White Paper
6. Freudenberg, B., Masuch, M., Röber, N., Strothotte, T.: The computer-visualistik-raum: Ver-

itable and inexpensive presentation of a virtual reconstruction. VAST2001: Virtual Reality,
Archaelogy, and Cultural Heritage (2001)

7. Fritsch, D., Kada, M.: Visualisation using game engines. Archiwum ISPRS 35 (2004)
8. Germanchis, T., Cartwright, W.: The potential to use games engines and games software to

develop interactive, three-dimensional visualisations of geography. ICC Proceedings, Durban
pp. 352–357 (2003)

9. Germanchis, T., Pettit, C., Cartwright, W.: Building a three-dimensional geospatial virtual
environment on computer gaming technology: Geographic visualization. Journal of spatial
science 49, 89–95 (2004)

10. Herwig, A., Paar, P.: Game engines: Tools for landscape visualization and planning? Trends
in GIS and Virtualization in Environmental Planning and Design (2002)

11. Jacobson, J., Lewis, M.: Game engine virtual reality with caveut. Computer 38, 79–82 (2005)
12. Lepouras, G., Vassilakis, C.: Virtual museums for all: employing game technology for edu-

tainment. Virtual Reality 8, 96–106 (2004)
13. Rhyne, T.M.: Computer games and scientific visualization. Commun. ACM 45, 40–44 (2002)
14. Sawyer, B.: Serious games: Broadening games impact beyond entertainment. Computer

Graphics Forum 26, xviii (2007)
15. Shiratuddin, M.F., Thabet, W.: Virtual office walkthrough using a 3d game engine. Interna-

tional Journal of Design Computing 4, 1329–7147 (2002)
16. Stock, C., Bishop, I.D., O’Connor, A.: Generating virtual environments by linking spatial

data processing with a gaming engine. Trends in Real-time Landscape Visualization and
Participation, Proceedings at Anhalt University of Applied Sciences, Wichmann pp. 324–329
(2005)

17. Zyda, M.: From visual simulation to virtual reality to games. Computer 38, 25–32 (2005)

