
Realizing Stateful Public Key Encryption in
Wireless Sensor Network

Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

Abstract In this paper, we present our implementation of a stateful public key en-
cryption (stateful PKE) scheme in the wireless sensor network (WSN) environment.
In order to reduce the communication overhead of the stateful PKE scheme we im-
plement, which is of prime importance in WSN, we introduce a technique called
“indexing”. The performance analysis of our implementation shows that there are
significant advantages of using stateful PKE in WSN in terms of computation and
communication costs, compared with normal public key encryption.

1 Introduction

1.1 Motivation

Wireless sensor networks (WSNs) are useful in a variety of domains, including
monitoring the integrity of buildings and building automation, early discovery of
catastrophes (like forest fires and earthquakes), medical surveillance and remote di-
agnosis, pollution control and the battlefield and perimeter defense.

In the typical setting, a WSN consists of numerous tiny nodes communicating
with a few base stations. Among those tiny nodes, there can be some nodes which
have more computation and/or communication capacity. The base stations are often

Joonsang Baek
Institute for Infocomm Research, Singapore, e-mail: jsbaek@i2r.a-star.edu.sg

Han Chiang Tan
Institute for Infocomm Research, Singapore, e-mail: hctan@i2r.a-star.edu.sg

Jianying Zhou
Institute for Infocomm Research, Singapore, e-mail: jyzhou@i2r.a-star.edu.sg

Jun Wen Wong
Institute for Infocomm Research, Singapore, e-mail: jwwong@i2r.a-star.edu.sg

Please use the following format when citing this chapter:

Baek, J., et al., 2008, in IFIP International Federation for Information Processing, Volume 278; Proceedings of the IFIP TC 11 23rd
International Information Security Conference; Sushil Jajodia, Pierangela Samarati, Stelvio Cimato; (Boston: Springer), pp. 95–107.

96 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

assumed to be powerful enough to perform computationally intensive tasks such as
cryptographic computations. The sensor nodes, on the other hand, have constrained
resources in terms of computation, memory and battery power.

Although WSN brings us a great variety of applications as mentioned above, it
is fairly vulnerable to attacks such as eavesdropping and impersonation as sensor
nodes are often deployed in physically accessible areas and often interact with en-
vironments and people. As a result it has become of prime importance to provide
security services for WSNs including data encryption and node authentication.

Not long ago public key cryptography (PKC) was believed to be unsuitable
for providing security services in WSN as PKC usually requires computationally-
intensive cryptographic operations while sensor nodes are severely resource con-
strained [16]. Contrary to this common belief, it has recently been reported that
PKC is in fact feasible to be realized in WSNs [9][20][21].

In this paper, we focus on the realization of PKC in WSN, specifically, efficient
implementation of public key encryption for the confidentiality service in WSN.
Before presenting our contribution, we review the previous work in this line of re-
search.

1.2 Related Work

Although its realization on WSN is challenging, PKC will bring great simplicity and
efficiency in providing a number of essential security services [10]. In this section
we briefly survey the related work on implementation of PKC in WSNs.

Watro et al. [21] designed and implemented public key based protocols that allow
authentication and key agreement between a sensor network and a third party as
well as between two sensor networks. The specific public key algorithm they used
is RSA [15] whose key size varies (512, 768 and 1024 bits). Their protocols were
implemented on UC Berkeley Mica2 motes using the TinyOS [19] environment.

Wander et al. [20] presented implementation of authentication and key exchange
protocols based on public-key cryptography on Atmel ATmega128L low-power 8-
bit microcontroller platform. Two base algorithms for their work are RSA-1024
(RSA with 1024-bit key size) and ECC-160 (Elliptic Curve Cryptography with 160-
bit key size). It was reported in their paper that ECC has a significant advantage
over RSA as it reduces computation time and also the amount of data transmitted
and stored.

Bellare et al. [4] discussed how to significantly speed-up the public key encryp-
tion (PKE) by simply allowing a sender to maintain “state” that is re-used across
different encryptions. This new type of PKE is called stateful PKE. As an efficient
construction, Bellare et al. presented a stateful PKE scheme based on the Diffie-
Hellman assumption (Given ga, gb, it is computationally infeasible to compute gab).

Realizing Stateful Public Key Encryption in Wireless Sensor Network 97

1.3 Our Contributions

From the literature review in the previous subsection, one can notice that due to
the efficiency that it could provide, ECC can be a good candidate for the algorithm
that realizes PKE in WSN, which consists of sensor nodes with limited resources
for computation/communication. One can also notice that stateful PKE could bring
further improvement on the realization of PKE in WSN.

Having these in mind, we make the following contributions in this paper:

• In order to enhance communication efficiency of Bellare et al.’s [4] Diffie-
Hellman (DH) based stateful PKE scheme, we modify it using a simple but useful
“indexing” technique whereby the repeated part of ciphertext, which is usually
long, is replaced by a short string.

• We implement the modified version of the DH based stateful PKE scheme on the
MicaZ [8] platform and analyze its security and performance. To our knowledge,
this is the first implementation of stateful PKE in WSN.

2 Our Modified DH-Based Stateful PKE for WSN

2.1 Basic Setting

Fig. 1 Overview of Basic Setting

Security services for WSNs can vary depending on the specific requirements of
each application. For our implementation, we consider a simple (single-hop) but
widely applicable security service architecture in which each sensor node can en-
crypt data using a base station’s public key pk as depicted in Figure 1. We assume
that the public key of the base stations are embedded in each sensor node when they
are deployed. On receiving each ciphertext from each sensor node, the base station
uses the corresponding private key sk to decrypt it.

Like the case for general WSNs, we assume that the base station is powerful
enough to perform computationally intensive cryptographic operations, and the sen-

B ase Station

pk

CiphertextCiphertext
CiphertextCiphertext

CiphertextCiphertext

CiphertextCiphertext

98 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

sor nodes, on the other hand, have constrained resources in terms of computation,
memory and battery power. We also assume that the private key of the base station
is safely stored, e.g., using smart card.

One of the advantages of employing public key encryption in this setting, where
the sensor nodes do not have to perform decryption, is that a long-term private key
does not need be stored inside each sensor node. In contrast, if one wants to run
some key exchange protocol to share symmetric key between the base station and
the sensor node and encrypts subsequent messages using the shared key, the shared
key of the sensor node ought to be protected securely. (Otherwise, an attacher that
has obtained the long-term shared key from the sensor node can freely decrypt the
subsequent ciphertexts as well as the ciphertexts obtained before.)

Of course other more complex settings such as multi-hop exist and the security
services for these settings should be difficult to realize. However, the focus of this
paper is mainly realizing stateful PKE in the basic WSN setting we have described
above, which itself is challenging due to resource constraints of sensors, rather than
advocating that our scheme can solve every security (confidentiality) problem in
WSN.

2.2 Some Preliminaries

Not surprisingly, there are few public key cryptographic tools that we can easily
employ to realize the security services in WSN due to the high level of resource-
constraints in WSN. Nonetheless, the following cryptographic primitives can be
useful:

• Elliptic curve cryptography (ECC): Since its introduction in late 80’s [13][14],
ECC has attracted much attention as the security solutions for wireless networks
due to the small key size and low computational overhead. It is an established
fact that ECC-160 offers a similar level of security of RSA-1024. As mentioned
earlier, Wander et al. [20] showed that ECC has significant advantages over RSA
in the WSN setting.

• Hybrid encryption: Recall that in our basic setting presented previously, each
sensor node has to send encrypted data to the base station. It is a well-known fact
that normal PKE schemes solely constructed from number-theoretic primitive are
too slow to encrypt a large amount of data. Hence hybrid encryption is used in
practice. In a hybrid encryption scheme, a session key is generated by a public
key algorithm called “Key Encapsulation Mechanism (KEM)” [12] and actual
data is encrypted by a symmetric encryption algorithm specifically called “Data
Encapsulation Mechanism (DEM)” [12] under the generated session key. It is
shown [7] that this hybrid encryption scheme is secure against chosen ciphertext
attack (CCA-secure) if both KEM and DEM are CCA-secure.

One of the PKE schemes that are based on the above primitives is Abdalla et al.’s
[1] DHIES (Diffie-Hellman Integrated Encryption Scheme). But Bellare et al. has

Realizing Stateful Public Key Encryption in Wireless Sensor Network 99

shown that DHIES can further be improved using the “stateful encryption” concept,
which will be explained shortly.

2.3 Diffie-Hellman Based Stateful PKE with Indexing

Stateful PKE [4] could be understood as a special type of hybrid encryption which
significantly speeds up the KEM-part of hybrid encryption by allowing a sender to
maintain state which is reused across different encryptions. For example, Bellare
et al’s [4] DH based stateful PKE scheme, which is a stateful version of DHIES,
works as follows. To encrypt a message M, the encryption algorithm computes
(rP,EK(M)), where r is chosen at random from Zq (q, a prime), K = H(rP,Y,rY)
(P, a generator of the ECC-group of order q; H, a hash function; E, a CCA-secure
symmetric encryption function) and Y = xP (x, a private key; Y , a public key). Now,
the value r is kept as state and rP and K do not need to be computed every time a
new message is encrypted. In this way, stateful PKE brings computational efficiency
gains.

But we argue that this scheme can further be improved to save energy for com-
munication. As the sensor nodes lack sufficient amount of energy, reducing com-
munication overhead is also of prime importance. (According to [20], power to
transmit one bit is equivalent to approx. 2,090 clock cycle of execution on the micro-
controller.) Hence, the repeated transmission of the same value U = rP for a number
of different sessions would be a waste of the communication resource.

Our approach to resolve this problem is to employ a natural but useful “indexing”
technique whereby the value U is replaced by a much shorter string. – In our imple-
mentation, for example, the length of U is 21 bytes and the index for this which we
denote by idU is only 3 bytes. To uniquely identify U using idU , we use an identity
of a sensor node and a sequence number. (This will be explained in detail in Section
3.1.) Also, to protect idU from modification by attackers, we hash it with a KEM-
key. More precisely we describe our modified DH based stateful PKE scheme as
follows. - Along with this description, readers are refered to Figure 2.

• Setup: The base station does the following:

Pick a group G of prime order q;
Pick a generator P of G;
Pick a hash function H;
Pick a symmetric encryption scheme SYM = (E,D);
Pick x at random from Z

∗
q and compute Y = xP;

Return pk = (q,P,Y,H,SYM) and sk = (pk,x) // pk and sk denote public key
and private key resp.

• I-Phase (Indexing Phase): Using pk, a sensor node performs the following to
encrypt a plaintext M:

Pick r ∈ Z
∗
q at random and compute U = rP;

Pick an index idU ∈ {0,1}∗ for U in such a way that idU uniquely identifies U ;

100 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

Fig. 2 Overview of DH-Based Stateful PKE with Indexing

Compute K = H(idU ,U,Y,rY);
Compute E = EK(M); // EK(·) denotes symmetric encryption
function under key K
Keep (r,U) as state;
Return C = (idU ,U,E) as ciphertext

Note that the size of idU is much smaller than that of U . Note also that the node
can cache K to save computation further.

Upon receiving C = (idU ,U,E) from the sensor node, the base station performs
the following to decrypt it:

Compute xU = xrP and K = H(idU ,U,Y,xU);
Compute M = DK(E); // DK(·) denotes the symmetric decryption
function under key K
Return M

Note in the above algorithm that M can be ⊥ (meaning “reject”).
• N-Phase (Normal Phase): In this phase, the sensor node performs the following

to encrypt a plaintext M′:

Compute E ′ = EK(M′);
Return C′ = (idU ,E ′) as ciphertext

Upon receiving C′ = (idU ,E ′), the base station conducts the following to decrypt
C′:

Search its database for U that corresponds to idU ;
If the corresponding U does not exists, return ⊥
Else compute xU = xrP, K = H(idU ,U,Y,xU) and return M′ = DK(E ′)

We remark that the choice of idU is very important. For instance, if it were chosen
at random, it would collide with idU ′ that other sensor node has chosen for other
“U ′” value. In this case, the base station cannot decrypt a given ciphertext as there
is an ambiguity as to which one is correct. For this reason, idU ought to uniquely
identify the value U . In Section 3, we will describe how to select idU in details.

Realizing Stateful Public Key Encryption in Wireless Sensor Network 101

2.4 Security Analysis

The security against chosen ciphertext attack (CCA) for stateful PKE is defined in
[4], which extends the usual IND-CCA (Indistinguishability under CCA [5]) notion
of normal PKE. The essence of this security definition is that an adversary does
not get any significant advantage in breaking the confidentiality of ciphertext even
though he uses the same state to encrypt messages for multiple receivers.

We now prove that our modified DH based stateful PKE scheme is also secure
under this security definition. A basic idea of the proof1 is that even though an
attacker can replace the index of a challenge ciphertext (a ciphertext that the attacker
wants to break the confidentiality) with its own, it cannot break the confidentiality
(indistinguishability of encryption) since, intuitively, the hash function H prevents
idU from alteration. Formally we prove the following thorem.

Theorem 1. Assume that the underlying symmetric encryption scheme E is IND-
CCA secure and the hash function H is random oracle [6]. Then our stateful PKE
scheme proposed above is secure against CCA in the sense defined in [4] under
the assumption that the Gap Diffie-Hellman (GDH) problem is computationally in-
tractable. (The GDH problem refers to a computational problem where an adver-
sary, given (P,aP,bP) for random a,b ∈ Zq, tries to compute a DH-key abP with the
help of DH-oracle, which, given tuple (P,aP,bP,cP), can decide whether c = ab or
not.)

Proof. (Sketch) Let A and B be a CCA adversary and an adversary for GDH respec-
tively. Assume that B is given (P,aP,bP) as instance. B sets U∗ = aP and Y1 = bP,
where Y1 denotes the receiver 1’s public key. B picks K∗ at random from the ap-
propriate key space and sets K∗ = H(idU∗ ,U∗

,Y1,?), where ? denotes “indetermi-
nate”. When A queries receiver i’s public key Yi, where 2 ≤ i ≤ n, as public key
registration query, B picks Ki at random from the appropriate key space and defines
Ki = H(idU∗ ,U∗

,Yi,?).
Now, when A queries (idU ,U,Y,D) to H, B answers as follows:

• Pick K at random
If idU = idU∗ , U = U∗ and D is a DH-key of (U, Y) then

If Y �= Y1 then
If Y = Yi for some i ∈ [2,n] then return Ki (which was selected by B in the
beginning) as answer
Else pick Ki at random, set Ki = H(idU∗ ,U∗

,Yi,D). and return Ki as answer
Else abort the game and return D as DH-key of U∗(= aP) and Y1(= bP)

Note that in the above simulation of H, B keeps a query-answer list, which we
denote by H-List. B deals with the rest of the queries from A as follows.

When A asks for encryption of (i,M), B searches appropriate Ki, computes
E = EKi(M) and returns (idU∗ ,U∗

,E) to A as answer. When A queries (M0,M1)

1 Note that the “proof” here means the “reductionist proof” [2] widely used to provide security
arguments for various schemes and protocols.

102 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

as a challenge, B picks b ∈ {0,1} at random, computes E∗ = EK∗(Mb) and returns
(idU∗ ,U∗

,E∗) to A as a challenge ciphertext.
There are two types of decryption queries. When A queries (idU ,U,E) for de-

cryption, B first checks whether U is an element of group G. If it is not, B sends off
⊥ to A, otherwise it conducts the following:

If idU = idU∗ and U = U∗ then return DK∗(E)
Else search K = H(idU ,U,Y1,?) from the H-List

If it exists return DK(E)
Else pick K at random and return DK(E) and update the query-answer list for
H with K

When A queries (idU ,E) for decryption, B searches the H-List for U . If such
U does not exist, B returns ⊥ to A, otherwise, it conducts the same procedure as
described above.

3 Our Implementation

3.1 Implementations of Symmetric Encryption and Index idU

As shown in the preceding section, for the modified DH based stateful PKE scheme
to be secure, we need to use an IND-CCA secure symmetric encryption scheme. We
select the IND-CCA secure symmetric encryption scheme (DEM 3) recommended
by ISO standard [12], which can be described as follows.

• Encryption: First, this algorithm splits the key K(= H(idU ,U,Y,rY)) into K1 and
K2 such that K = K1||K2, where the length of K1 is the same as the length of a
plaintext M and the length of K2 is appropriate for the key length of Message
Authentication Code function MAC. Next, this algorithm computes S = K1⊕M
and σ = MACK2(S). Finally, it outputs a ciphertext E = (S,σ). (Note that the
particular MAC scheme used in our implementation is HMAC [3].)

• Decryption: On input E = (S,σ) and the key K, this algorithm computes K =
K1||K2 and checks whether σ = MACK2(S). If it is, this algorithm returns M =
S⊕K1 otherwise, returns ⊥.

As remarked at the end of Section 2.3, selecting idU so that it uniquely identifies
the value U is important. In our implementation, we construct idU as follows:

idU = IDnode||N,

where IDnode denotes a unique identity of a sensor node and N denotes a sequence
number for the current value U . The size of IDnode and N is 2 bytes and 1 byte
respectively. In our implementation, the base station is set to replace idU (in its

Realizing Stateful Public Key Encryption in Wireless Sensor Network 103

database) with new one whenever N changes. - Consequently, only one idU exists
for each sensor node.

Note that since each sensor node has a different identity IDnode, it is not possible
to find a collision if less than 216(= 65536) sensor nodes exist. Hence, if constructed
in the way described above, idU uniquely identifies U depending on how many
sensor nodes should be deployed. (One can of course enlarge the size of IDnode

to increase the number of sensor nodes that can be deployed. Even if one byte is
stretched, the number of deployable senor nodes increases dramatically.)

Item Value

Transmission Frequency 2450 MHz
Transmission Power 0 dBm (=1 mW)
Data Rate 250 kbps
Energy to Transmit (Measured) 1.56 μJ/byte

Table 1 Characteristic Data for MicaZ

3.2 Performance Analysis

The WSN platform on which our implementation is based is MicaZ, developed by
Crossbow Technology [8]. The RF transceiver for this MicaZ complies with IEEE
802.15.4/ZigBee, and the 8-bit microcontroller is Atmel ATmega128L, which is the
major energy consumer. We use a laptop PC (Lenovo T60 1.83GHz (Intel Core 2)
CPU, 512MB RAM) as a base station.

In Table 1, we summarize some characteristic data for the MicaZ platform, which
include the energy to transmit one byte, which we measured.

Fig. 3 Data Format

The programming languages we used for our implementation are nesC, C and
Java (mainly used for interface design on base station). The base operating system
for the MicaZ platform is TinyOS [19]. The ECC component of our stateful PKE is
based on TinyECC [18], which we modify for our implementation. The size of key
for ECC is 160 bits.

Figure 3 illustrates the data format of a packet in our implementation. We assume
that the size of each packet be 50 bytes, 5 bytes for the header and 45 bytes for the
payload.

104 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

We now analyze the computational overhead of our implementation. In Table 2,
we summarize and compare the energy consumptions of our implementation when
a plaintext message of 20 bytes is encrypted in I-Phase and N-Phase respectively.
– It would not be surprising that I-Phase needs much more energy than N-Phase
since I-Phase includes two point-multiplications in order to compute U(= rP) and
rY , which are not needed in N-Phase where U and rY are reused.

Energy cost

Encryption in I-Phase 46.76 mJ
Encryption in N-Phase 0.89 mJ

Table 2 Comparison between the energy consumptions for encryption of a 20-byte plaintext in
I-Phase and N-Phase

Another interpretation of this result is that the modified DH based stateful PKE
scheme we implement actually saves significant amount of energy compared with
its non-stateful version in which U and rY should be computed according to the
randomness of r every time a new message is encrypted. In other words, in the non-
stateful version, I-Phase is repeated whenever a new plaintext message is inputted
to the encryption function. – In fact, I-Phase of our modified DH based stateful PKE
scheme is almost the same2 as Bellare et al.’s DHIES [1], a normal PKE scheme
based on the GDH problem, from which the DH based stateful PKE scheme in [4]
is derived.

Based on this observation, we can compare the encryption cost of our modified
DH based stateful PKE scheme with that of the non-stateful version. Using the mea-
sured energy costs for encryption presented in Table 2 and assuming encryption is
conducted 10 times, we demonstrate the comparison between the energy cost of
encryption in our modified DH based stateful PKE scheme (simply termed “state-
ful PKE”) and that of its non-stateful version (simply termed “non-stateful PKE”)
in Figure 4. Notice that the non-stateful version consumes roughly 8.5 times more
energy than stateful one.

Before analyzing the communication overhead, we remark that the performance
of our implementation is comparable to those of the ECDSA implementation on
MicaZ presented in [18] and the DH-key exchange implementation on Mica2dot
presented in [20]. According to [18], the measured energy costs of signature gen-
eration and verification of the ECDSA implementation are 46.2 mJ and 58.4 mJ
respectively when using 160-bit key. Also, it is reported in [20] that the energy cost
for the DH-key generation is 22.3 mJ. (Note that the DH-key generation involves
one point multiplication while our implementation of the DH based stateful PKE
scheme needs two point multiplications in encryption.)

We now analyze the communication overhead. Recall that we use a packet size of
50 bytes. However, 50 bytes are not enough to send all the required data in I-Phase

2 The only difference is that idU should be chosen and hashed together with the Diffie-Hellman
key.

Realizing Stateful Public Key Encryption in Wireless Sensor Network 105

Fig. 4 Comparison between the energy costs of encryption in our modified DH based stateful PKE
and its non-stateful version assuming that encryption is conducted 10 times

as the value U , which takes up 21 bytes, needs to be transmitted in this phase. So,
in the actual implementation, we make a sensor node send actually two packets in
I-Phase. Since U is replaced by idU which is 3 bytes in length in N-Phase, we do
not need to send two packets. On the other hand, if this “indexing” method is not
used, U should be transmitted every time a new message is encrypted and hence,
two packets should be transmitted every time. More precisely, we can obtain the
energy consumption for transmitting two packets 1 time and one packet nt−1 times
by computing

1.56μJ/byte ×
(
(50+50)+50(nt −1)

)
bytes

= 78(nt +1)μJ

and the energy for transmitting two packets nt times by computing

1.56μJ/byte× (2 ·50nt) bytes = 156nt μJ,

where nt denotes the total number of transmissions.
The implication of this result is that our indexing method can save at least 45%

of transmission energy when using stateful PKE as illustrated in Figure 5.

4 Concluding Remarks

In this paper, we presented another positive result regarding the feasibility of pub-
lic key cryptography (PKC) in WSNs: We successfully implemented a statful PKE
scheme on MicaZ node [8].

106 Joonsang Baek, Han Chiang Tan, Jianying Zhou and Jun Wen Wong

Fig. 5 Comparison between the energy costs of communication when the indexing method is used
and when it is not

To enhance the communication efficiency of the stateful PKE, which is very im-
portant in WSN, we introduced a technique called “indexing”. The performance
analysis of our implementation showed that our indexing technique reduced the
communication overhead significantly. An interesting direction of research on the
indexing technique would be to provide different designs of index (idU) for different
purposes.

Finally, we note that this work focused only on how to provide confidentiality
service for WSNs using PKC. How to provide authentication service for WSN using
PKC is interesting future work.

Acknowledgements The authors are grateful to the anonymous referees of IFIP SEC ’08 for their
helpful comments. This work is partially funded by the EU project SMEPP-033563.

References

1. M. Abdalla, M. Bellare and P. Rogaway, The Oracle Diffie-Hellman Assumptions and an
Analysis of DHIES, In CT-RSA ’01, LNCS 2020, pp. 143–158, Springer-Verlag, 2001.

2. M. Bellare, Practice-Oriented Provable-Security, Lectures on Data Security – Modern Cryp-
tology in Theory and Practice, LNCS 1561, pp. 1–15, Springer-Verlag 1999.

3. M. Bellare, R. Canetti and H. Krawczyk, Keying Hash Functions for Message Authentication,
In Crypto ’96, LNCS 1109, pp. 1–15, Springer-Verlag, 1996.

4. M. Bellare, T. Kohno and V. Shoup, Stateful Public-Key Cryptosystems: How to Encrypt with
One 160-bit Exponentiation, In ACM-CCS 2006, pp. 380–389, 2006.

5. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, Relations Among Notions of Security
for Public-Key Encryption Schemes, In Crypto ’98, LNCS 1462, pp. 26–45, Springer-Verlag,
1998.

6. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols, In ACM-CCS ’93, pp. 62–73, ACM, 1993.

Realizing Stateful Public Key Encryption in Wireless Sensor Network 107

7. R. Cramer and V. Shoup, Design and Analysis of Practical Public-key Encryption Schemes
Secure against Adaptive Chosen Ciphertext Attack, SIAM Journal of Computing 33, pp. 167–
226, 2003.

8. MicaZ Wireless Sensor Network Platform, Crossbow Technology, http://www.xbow.com/
9. G. Gaubatz, J.-P. Kaps and B. Sunar, Public Key Cryptography in Sensor Networks Revisited,

In European Workshop on Security in Ad-Hoc and Sensor Networks 2004 (ESAS ’04), LNCS
3313, pp. 2–18, Springer-Verlag, 2005.

10. G. Gaubatz, J.-P. Kaps, E. Oztruk and B. Sunar, State of the Art in Ultra-Low Power Public
Key Cryptography for Wireless Sensor Networks, In IEEE International Workshop on Perva-
sive Computing and Communication Security 2005 (PerSec ’05), 2005.

11. J. Hoffstein, J. Pipher, J. Silverman, NTRU: A Ring-Based Public Key Cryptosystem. In Al-
gorithmic Number Theory (ANTS III), LNCS 1423, pp. 267–288, Springer-Verlag, 1998.

12. ISO 18033-2, An Emerging Standard for Public-Key Encryption, Working Group 2 of
ISO/IEC JTC 1/SC27, 2004.

13. N. Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computation 48, pp. 203–209,
1987.

14. V. Miller, Use of Elliptic Curves in Cryptography, In Crypto ’85, LNCS 218, pp. 417–426,
Springer-Verlag, 1986.

15. R. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems, Communications of the ACM 21 (2), pp. 120–126, 1978.

16. A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, D.E. Culler, SPINS: Security Protocols for Sensor
Networks. Wireless Networks 8 (2002), pp. 521–534, 2002.

17. M.O. Rabin, Digitalized signatures and Public Key Functions as Intractable as Factorization.
Mit/lcs/tr-212, Massachusetts Institute of Technology, 1979.

18. TinyECC, http://discovery.csc.ncsu.edu/software/TinyECC/
19. TinyOS, http://www.tinyos.net/
20. A. Wander, N. Gura, H. Eberle, V. Gupta and S Shantz, Energy Analysis of Public-Key Cryp-

tography for Wireless Sensor Networks, In IEEE International Conference on Pervasive Com-
puting and Communication 2005 (PerCom ’05), pp. 324–328, IEEE Computer Society, 2005.

21. R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn and P. Kruus, TinyPK: securing sensor
networks with public key technology, In ACM workshop on Security of ad hoc and sensor
networks 2004 (SASN ’04), pp. 59–64. ACM Press, 2004.

