
Software Licence Protection and Management
for Organisations

Muntaha Alawneh and Imad M. Abbadi

Abstract Most organisations have recently converted their physical assets into dig-

ital forms. This underlines the needs to have different types of software products

to manage such information, and raises security concerns for protecting software

products from being illegally used in organisations. This paper proposes a licence

management solution that protects software products from being illegally used. The

proposed scheme is based on dividing an organisation devices into dynamic do-

mains, each of which is bound to a single software product. Each dynamic domain

has a predefined number of devices that can use the dynamic domain-specific soft-

ware product. This number is specified by the software provider and is stored in

the software licence file. In this case a software product can be installed on multiple

devices, and a device can possess multiple software products by joining multiple dy-

namic domains. The proposed mechanism ensures that the number of used copies of

software product does not exceed the limit that is agreed with the software provider.

1 Introduction

Consumers and organisations are moving into digitising content, which becomes

more convenient than physical forms. Organisations in its wider definition including

private and public sectors, universities, governments and many others, have replaced

their system and workflow so that everything is digitised. Digitised information re-

quires software products to process it, stores it and enables it to be easily accessed

so that it achieves organisations’ main functionality.

Software providers understand the importance of providing appropriate software

products that meet the current and expected future needs for managing and accessing

digitised information. However, one of the main problems facing software providers

Muntaha Alawneh and Imad M. Abbadi
Information Security Group, Royal Holloway, University of London, Egham, Surrey, TW20 0EX,
UK, e-mail: {M.Alawneh,I.Abbadi}@rhul.ac.uk

 Please use the following format when citing this chapter:

Alawneh, M. and Abbadi, I.M., 2008, in IFIP International Federation for Information Processing, Volume 278; Proceedings of the
IFIP TC 11 23rd International Information Security Conference; Sushil Jajodia, Pierangela Samarati, Stelvio Cimato; (Boston: Springer),
pp. 509–523.

510 Muntaha Alawneh and Imad M. Abbadi

is that their copyright is not sufficiently protected within organisations. Many or-

ganisations abuse the weak protection for software products by using the software

product on many devices they have without paying usage fees. Currently, more than

one out of three software applications are pirated. It is expected that US$300 billion

will be spent on PC software over the next five years. During the same period it is

expected that almost US$200 billion worth will be pirated [5].

Most researches in this area focus on personal networks. Personal networks have

different requirements than organisations [3, 4]; for example, an organisation has

larger size, more users, different mechanisms for licence enforcement and different

copyright law regulations [6]. This in turn demonstrates the importance of finding a

proper solution focusing on both organisations and software providers requirements.

There are few schemes attempting to address software protection for organisations;

however, these schemes have many problems and security flows in addressing or-

ganisation requirements. These are discussed in section 2.

Software protection is not only for the benefits of software provider (i.e. licence

enforcement), but it is also important for organisations. For example, some organ-

isations need to securely protect their own specific-software products from getting

leaked outside it and used by others, e.g. to protect their own secrets, specific design,

etc. Moreover, protecting a software product from getting leaked helps, in someway

or another, in protecting content. This is because leaking an organisation-specific

software product enables a third party to create, using the leaked software, a forged

content in the same format that could be created in the organisation.

This paper proposes a mechanism for addressing software licence management

for organisations. In this scheme we analyse the main security concerns facing soft-

ware providers, specifically for organisations. Next, we propose a solution for man-

aging software licencing for organisations.

Our novel idea is based on organising an organisation devices into dynamic do-

mains. Each dynamic domain is bound to a single software product, which is itself

bound to a licence file. The licence file specifies the rules for using the software

product, and it includes the maximum number of devices that can use the software

product at any time. These are stored in the licence file and are agreed between soft-

ware providers and organisation administrators. The licence file also specifies the

dynamic domain unique identifier to which this licence file is bound.

Using dynamic domains not only provides software protection, but it also helps

organisations to manage their own licences. The latter is ensured, as each software

product only requires a single licence file for all devices that require using the soft-

ware product. This reduces the total number of licences required per software prod-

uct in an organsation, hence helps in managing software licencing, storing it, and

using it. In addition, the proposed solution considers organisations needs by adding

to dynamic domains other features that are required by organisations, such as: ex-

pandability and shrinking; i.e. domains can be expanded or shrink based on organi-

sations dynamic structure and needs, devices can move between different dynamic

domains and use each dynamic domain-specific software product without requiring

to go through the process of ordering new licences or even to pay for new licence

fees (i.e. a device can join the domain, which it needs to use its software product, or

Software Licence Protection and Management for Organisations 511

leave the domain that it does not need to use its software product. This is conditional

by having the number of devices in a domain does not exceed the limit permitted

by software provider, as stored in the domain associated licence file). Moreover, the

proposed solution is designed in such a way it is easy to use, and provides ease of

recovery. Hence, the proposed solution satisfies both software providers and organ-

isations needs.

2 Problem Definition

Software products licensing are, typically, charged based on number of devices, or,

sometimes, on number of users, which use a software product. Although there are

different techniques trying to enforce the rules included inside software licences;

however, most of these techniques have many security flows, also, some of them

have usability limitations (as described below). Moreover, these techniques have

been abused many times, e.g. an organisation could buy one licence for a software

product, and then illegally installs it (using the same licence) on unlimited number

of devices; see, for example, [1, 2]. This is a clear breach of copyright law, and

certainly software providers are not happy with such mechanisms.

Each software product, typically, has a licence-agent that regularly checks the

availability and validity of a proper licence for the associated software product. Li-

cences are protected using software-only techniques, a combination of both soft-

ware and hardware protection techniques, and/or deterrent measures. In the remain-

ing part of this section we discuss these techniques, which are used by software

providers for protecting their own software products. In addition, we discuss other

issues related to managing software licences for organisations.

2.1 Software-only Techniques

A software-only technique is based on having a software agent that is installed on

a consumer device, and which requests a serial key or a password to enable the

accessing of an associated software product. This serial key/password is provided

by the software provider to the consumer after paying a proper licencing fees, and

which needs to be inserted by the consumer whilst installing the software product.

The licence-agent protects the serial key and stores it somewhere inside the con-

sumer device. It then regularly checks the availability and the validity of this key to

authorise the associated software to run.

The serial key/password is either bound to a single device, or it can work on

any device. In the latter case, the software product is easier to be hacked; for ex-

ample all devices in an organisation can use the same serial key to run a software

product, which is originally bought to work on a single device. In the earlier case a

serial key is bound to a permanent factor inside a device. Such a technique is imple-

512 Muntaha Alawneh and Imad M. Abbadi

mented by some vendors such as Sun Microsystems [12] and weblogic [15]. This

typically would be based on either a device hardware-id or IP address. However,

such a mechanism has been attacked, as the hardware-id (after the system starts

up) is stored in unprotected area inside the device memory, which can be bypassed

or changed [1]. Binding the serial number with an IP address could also be easily

hacked; a machine could have multiple network cards with different IP addresses,

so a network card (which should not be connected to the main network to prevent

address conflict) could be configured to have the right IP address that the software

checks before starts up; for example, a company can buy a software product to work

on a single machine that has a predefined IP address, and later on, the company can

configure all its PCs to have two network interfaces each has two IP addresses. The

first interface to have the same IP address used for licencing, and which needs to

be disconnected from the main network (to prevent address conflict). The second

network interface to have a public IP address and is connected to the main network.

2.2 Software and Hardware Techniques

Other solutions are mainly based on combinations of both software and hardware

mechanism. Although these mechanisms are much secure than software-only tech-

niques; however, they still have security flows and usability limitations. Such tech-

niques are mainly based on using a tamper-resistant component storing, for exam-

ple, a serial key that the licence-agent checks every time it runs. A common ex-

ample of this type what is know by a ‘dongle’, which is “a small hardware device

that connects to a computer and acts as an authentication key for a particular piece

of software” [16]. Using a dongle does not solve the defined problem, as it is not

robustly and securely integrated with computer devices [11]. Moreover, and most

importantly, dongles are not practical and more expensive to have. This is because a

dongle is a software-product specific, and a device, typically, has multiple software

products from different vendors each requiring a specific-dongle to be connected to

a device port all the time a software is running. This raises serious usability limita-

tions for small devices. Also a device normally has a limited number of ports that

are usually used for other purposes; e.g. connecting a printer or scanner, so it is not

practical to have multiple software products using this technique on a device.

2.3 Deterrent Measures

Other software vendors, such as Oracle [9], do not enforce licences using crypto-

graphic techniques; i.e. this licensing mechanism relies upon deterrent measures,

which is based on copyright law enforcement.

Software Licence Protection and Management for Organisations 513

2.4 Other Issues

In addition to the problems associated with each technique described in the previ-

ous sections, these techniques mainly focus on enforcing licences rules on a single

device (except for the case of site licence, where a licence can be used on any de-

vice). This raises serious licence manageability problems for organisations, as an

organisation, usually, has hundreds or even thousands of devices each run multiple

software products from different vendors. Hence an organisation ends up with thou-

sands, and even tens of thousands, of different licences each of which is bound to a

single device and a single software product.

From the above we can see the importance of finding an acceptable solution for

the problem of software licence management for organisations. In order to find a

practical ground, such solutions should satisfy organisations, software providers,

and copyright law requirements.

3 Dynamic Domains

Software providers need a solution which solves the problems defined in section 2.

Using dynamic domains, which can be reallocated dynamically between organisa-

tion devices, helps to solve these problems. A dynamic domain is a domain con-

sisting of one or more devices chosen from the organisation devices, each dynamic

domain is bound to a single software product. The number of devices in a dynamic

domain must not exceed the number of devices that can use the software prod-

uct bound to that domain, as specified in the licence file which is provided by the

software provider. This ensure that the maximum number of devices using the as-

signed software product do not exceed the maximum permitted number of devices

agreed with the software provider. Each dynamic domain has a unique identifier,

and a unique symmetric key. The dynamic domain symmetric key is used to protect

the software product inside the dynamic domain devices. This key is only avail-

able inside devices member of the domain, so that only these devices can access the

software product bound to the domain.

The dynamic domain creation process is performed by an organisation autho-

rised security administrators, who choose devices that need to be bound to one or

more dynamic domains. This binding is performed using a master control device,

which needs to be trusted by software providers. The master control device inter-

mediates the communication process between software providers and devices in an

organisation that is going to use a software product. In addition, the master control

device enforces the limits inside the licence file by ensuring the number of devices

assigned to a dynamic domain does not exceed the authorised number of devices in

the licence file, which are provided by the software provider whose software product

is binded to the dynamic domain. These are explained in detail in section 5.

514 Muntaha Alawneh and Imad M. Abbadi

4 Proposed Model

In this section we describe the main entities constituting the proposed model.

4.1 Hardware Requirement

4.1.1 Devices.

Devices are commercial off-the-shelf PC hardware enhanced with trusted comput-

ing technology as defined by the Trusted Computing Group (TCG1) specifications

[13, 14]. TCG compliant trusted platforms (TP) are not expensive, and are currently

available from a range of PC manufacturers, including Dell, HP and Intel [10].

4.1.2 TCG Overview.

TPM: The TCG specifications require each TP to include an additional inexpen-

sive hardware chip to establish trust in that platform. This chip is referred to as the

Trusted Platform Module (TPM), which has protected storage and protected capa-

bilities. The TPM is typically implemented as a processing engine that is separate

from the TP’s main processing environment.

Protected Storage: The TP protects all secret keys required by devices. Stored

secrets are only released after the platform’s software state has been measured and

checked. Storage, and retrieval are carried out by the TPM. Therefore, if a soft-

ware process relies on the use of secrets, it cannot operate unless it and its software

environment are correct. The latter ensures that the software process operates as ex-

pected. Once a TPM has been assigned an owner, it generates a new Storage Root

Key pair (SRK), which is used to protect all TPM keys. The private part of the SRK

is stored permanently inside the TPM. Other TPM objects (key objects or data ob-

jects) are protected using keys that are ultimately protected by the SRK in a tree

hierarchy structure. The entries of a TPM platform configuration registers (PCRs),

where integrity measurements are stored, are used in the protected storage mecha-

nism. This is achieved by comparing the current PCR values with the intended PCR

values stored with the data object. If the two values are consistent, access is then

granted and data is unsealed.

Attestation: Establishing trust in a TP is based on the mechanism that is used for

measuring, reporting and verifying platform integrity metrics. TP measurements are

performed using the RTM (Root of Trust for Measurement), which measures soft-

ware components running on a TP. The RTS (Root of Trust for Storage) stores these

measurements inside TPM shielded locations, which is referred to as the Platform

Configuration Registers (PCR). Next, the RTR (Root of Trust for Reporting) mech-

1 http://www.trustedcomputinggroup.org

Software Licence Protection and Management for Organisations 515

anism allows TP measurements to be reliably communicated to an external entity in

the form of an integrity report. The integrity report is signed using an AIK (Attes-

tation Identity Key) private key, and is sent with the appropriate identity credential.

This enables a Verifier to be sure that an integrity report is bound to a genuine TPM2.

4.2 Master Control Device

The master control device is a trusted device that has all TP features, as defined in

section 4.1. The master controller is a single logical entity, although its implemen-

tation may be a distributed one[4]. Each organisation has a specific master control

device in charge of managing the organisation dynamic domains and all devices

membership in each dynamic domain. The master control device has the following

main functionalities.

� The master control device communicates with third parties, i.e. software providers,

for downloading software products associated with proper licence files. The li-

cence file, associated with the software product, contains a limit specifying the

total number of devices that can use the software product. The master control

device enforces this limit

� Creating and managing dynamic domains. This includes the following:

• Securely generating and storing each dynamic domain-specific unique identi-

fier, protection key, and a public key list which includes the public keys for all

devices member in the dynamic domain.

• Attesting to the execution environment status of devices added to a dynamic

domain, ensuring they are trusted to securely store dynamic domain keys and

execute as expected.

• Adding devices to a dynamic domain by releasing the dynamic domain-

specific key (i.e. the software protection key) to devices member of the dy-

namic domain.

� Managing software licencing, by ensuring each software product is bound to a

single dynamic domain that has a maximum number of devices does not exceed

the number of devices in the licence file associated with the software product.

5 Process Workflow

The workflow of the proposed system is divided into the following phases.

2 One might argue that the device states might change after getting attested. This is solved by using
the new generation of Intel/AMD hardware technology that stops DMA or by using Virtualisation
technology as has been described in [10].

516 Muntaha Alawneh and Imad M. Abbadi

5.1 Master Control Device Initialisation

This section describes the process of initialising a master control device, which es-

tablishes the dynamic domains. The first time a master control device is initialised,

the master control device instructs the organisation security administrators to pro-

vide their authentication credentials. The master control device then stores in its

protected storage3 the authentication credentials of the organisation security admin-

istrators associated with its trusted execution environment state (which is stored in

the TPM’s PCR based on TCG specification; see, for example, section 4.1). The au-

thentication credential is used to authenticate security administrators before using

the master control device. The master control device is used each time the security

administrators want to create, expand, shrink or change a dynamic domain.

5.2 Buying Software Licences

This section describes the process of buying and downloading software products,

which involves the following steps (figure 1 summarises the protocol for this stage).

1. The organisation administrators need to specify the number of licences the or-

ganisation need for a software product, say X (the number of devices in a dy-

namic domain that will use this software product should not exceed the value of

X).

2. An organisation then negotiates the price with the software provider, for X li-

cences. If the organisation agrees on a price, a formal contract is established

between the software provider and the organisation that specifies the software

product terms and conditions of usage and the maximum number of devices

permitted to use the software product.

3. Next, the organisation administrators instructs the master control device to send

a request to the software provider to download the software product. The soft-

ware provider and the master control device exchange each other certificate,

extracts the signature verification key from the certificates, and checks that it

has not been revoked, e.g. by querying an Online Certificate Status Protocol

(OCSP) service, [8]. If so, the software provider attests to the execution sta-

tus of the master control device based on TCG specifications; see, for example,

section 4.1. If the attestation shows that the master control device is trusted, the

software provider encrypts the software product with a symmetric key kS, and

creates a licence file containing a one-way hash value of the encrypted soft-

ware product. This is to bind the software product with the licence file. The

licence file also contains the following: the software product encryption key kS
encrypted using the master control device public key, the value of X , the soft-

3 We mean by storing data in a protected storage is protecting data using the SRK, which its private
key part is stored inside the TPM. The protected data is then stored in an unprotected storage (see
section 4.1).

Software Licence Protection and Management for Organisations 517

ware product identifier id, and other usage rules. The software provider signs

the licence file and sends the encrypted software product associated with the

licence file to the organisation master control device.

4. The master control device verifies the software provider signature, and verifies

the content is bound to the licence file by recomputing a one-way hash value of

the received encrypted software product and comparing it with the one stored in

the licence file. If the verifications succeed, the master control device signs the

licence file, and then stores the encrypted software product associated with the

signed licence file. Before installing the software product into devices, the mas-

ter control device should first bind the software product to a specific dynamic

domain. This binding could be performed by storing the dynamic domain spe-

cific identifier i in a specific field inside the software product licence file. This

filed is exclusive for only one dynamic domain identifier, which ensures that

each software licence is bound to a single dynamic domain.

Fig. 1 Buying Software Licence Protocol

5.3 Dynamic Domain Establishment

Whenever an organisation wishes to install a software product into a set of devices,

it must do the following (figure 2 1 summarises the protocol for this stage).

1. The organisation system administrators decide how many devices need to use

a specific software product at this stage, say N. N would be the initial size of a

dynamic domain, and it should not exceed the value of X stored in the licence

file (it can be less than that).

2. The organisation system administrators decide which devices that will use the

software product; the selection process is based on organisation needs, for ex-

ample, a dynamic domain could consist of devices owned only by managers

518 Muntaha Alawneh and Imad M. Abbadi

layer, seniors layer, or mixed between different layers. These devices constitute

the dynamic domain.

3. The security administrators instruct the master control device to create a new

dynamic domain. The master control device then authenticates the organisation

security administrators, e.g. using a password.

4. If authentication succeeds, the master control device instructs the security ad-

ministrators to provide the number N, the public keys of devices that will be in

the dynamic domain, and the identifier of the software product id that will be

used on this dynamic domain.

5. The master control device verifies that the software licence is not bound to an

existing domain, by verifying a field in the licence file showing whether it is

used by another domain or not, as described in section 5.2, point (4).

6. If the above succeeds, the master control device then securely generates a dy-

namic domain specific symmetric key kD, and a dynamic domain specific iden-

tifier i. The master control device creates a public key list for this domain con-

sisting of the provided public keys. It then ensures that the size of the public

key list equals to N, and verifies that the value of N does not exceed the value of

X . kD and i are associated with the public key list and the value of N, and then

stored in the master control device protected storage and bound to a trusted exe-

cution environment based on TCG specifications; see, for example, section 4.1.

The dynamic domain specific identifier i is also stored in the software product

licence file. This is to bind the software product licence with a specific dynamic

domain, and to make sure each software licence is bound to a single dynamic

domain. The master control device then decrypts the software product encryp-

tion key (as stored in the licence file; see section 5.2 point 3), and re-encrypts it

using the dynamic domain key kD and stores the result in the licence file.

5.4 Adding Devices into a Domain and Software Installation

This section describes the process for adding a device into a dynamic domain and

the process of software installation, which are performed as follows (in this section

we describe the process using bull technique; i.e. a device sends a join request to the

master control device. The same process applies using push technique; i.e. when a

master control device sends a join domain requst to all devices in the domain. Which

way to go for depends on the organisation policy).

1. From each device in the public key list, the organisation security administrators

sends a join domain request to the master control device to install the dynamic

domain specific key. This request includes the dynamic domain specific identi-

fier i identifying which domain to join.

2. The master control device and the joining device mutually authenticates each

other conforming to the three-pass mutual authentication protocol described in

Software Licence Protection and Management for Organisations 519

Fig. 2 Domain Establishment and Adding Devices Protocols

[7]. The master control device then attests to the execution environment of the

joining device and validates its trustworthiness; as described in section 4.1.

3. If the joining device execution environment is trusted, the master control de-

vice checks if the device’s public key is included in the public key list for the

dynamic domain (as specified in step (1) above). If so, it securely releases the

dynamic domain specific key to the device.

4. The device stores the domain key in its protected storage, and binds it to a

specific execution environment. This device is now part of the domain, as it

possesses a copy of the domain key and its public key matches the one stored in

the master control device.

5. Now, all devices member of the domain can download from the master control

device the encrypted software product associated with the licence file, which

is bound to the domain. All these devices have a copy of the dynamic domain-

specific key kD. Therefore, these devices can decrypt the software encryption

key, which is stored inside the licence file encrypted with the key kD. These

devices can then decrypt the software product and access it.

6 Domain Management

In order for a solution to be accepted and be widely used, it should adapt with

organisations dynamic structure; for example, an organisation might need to change

its strategy, layout, business work flow, and/or replace its devices. In this section

we discuss how the proposed scheme covers these requirements, i.e. removing a

520 Muntaha Alawneh and Imad M. Abbadi

device from a dynamic domain, adding a device into a dynamic domain, and key

revocation.

6.1 Domain Shrinking

An organisation might need to use a software product on fewer number of devices

than it is currently use, or it might need to replace its devices for several reasons,

e.g. a hardware failure and the device cannot be recovered, or replace the device

with newer technology. In these cases the organisation should still have the right to

use the software product on other devices by adding them to the domain, as long as

the number of devices in a domain N does not exceed the value of the maximum

number of devices X that can use a software product, as stored in the licence file.

The way to remove a device from a dynamic domain is as follows. The master

control device needs to attest to the execution status of the device ensuring it is

trusted to remove the dynamic domain key from its storage (based on TCG speci-

fications; see, for example, section 4.1). If the device is trusted, the master control

device (for each dynamic domain) instructs the device to delete the dynamic domain

key. The master control device then removes this device public key from the public

key list of the dynamic domain, and decrements the value of N. On the other hand,

if the execution status of the device is not trusted, the master control device will not

remove this device; i.e. it will not decrement the value N and will not remove the

device public key from the dynamic domain-specific public key list.

6.2 Domain Expansion

An organisation can expand a dynamic domain as long as the value of N does not

exceed the value of X . In this case, the master control device instructs the security

administrators to enter the public keys of the new devices. The master control device

then add the number of the new devices to N. The master control device check the

new value of N is still less than or equal the value of X . If so, the master control

device securely stores the new value of N and updates the public key list with the

added values, and finally it allows the new devices to join the domain as described

in section 5.4.

6.3 Key Revocation

Hacking a dynamic domain specific key only affects the dynamic domain-specific

software product protection. As a precautionary measure, security administrators

need to revoke the domain key, and generate a new domain key, which can be done

Software Licence Protection and Management for Organisations 521

as follows. The security administrators instruct the master control device to change

the key for a specific dynamic domain. The master control device then authenti-

cates the organisation security administrators. If authentication succeeds, the master

control device generates a new domain-specific key, and then decrypt the domain-

specific software protection key stored in associated licence file with the old domain

key, and re-encrypts it with the new domain key. The master control device then re-

install this key and the licence file on domain devices; the master control device

identifies devices using their public keys, which are securely stored inside the mas-

ter control device, as described in section 5.3. For each device, the master control

device releases the licence file, and the new value of the domain key encrypted using

the device public key. The device replaces the old licence file, and stores the domain

key in its protected storage and binds it to the same execution environment used for

the old key, as it has already been verified as trusted; see section 5.4 point (3).

7 System Analysis

In this section we discuss the pros of using dynamic domains, which are summarised

as follows.

� Software Protection and Licence Enforcement. A software is protected from be-

ing abused in organisations, as each software product is bound to a single domain

with a maximum number of devices must not exceed the number of devices al-

lowed to use the software product. This latter number is specified in the licence

file associated with the software product. Having a trusted master control device

enforces this limit. Each domain has a unique key, which is used to encrypt the

software protection key. This encrypted key is stored in the software-specific li-

cence file. The domain key is securely stored in domain devices, so only domain

devices can decrypt the software protection key and access the software prod-

uct. Moreover, the domain key is bound to a trusted execution environment that

should work as expected. Hence, these devices are trusted to enforce the rules

stored inside the associated licence file.

� Licence management. By using dynamic domains a software product is protected

with a single licence file shared between a set of devices, rather than having a

device-specific licence for each software product. Hence, this reduces the total

number of required licences, and so it eases licence management.

� Flexibility. This is realised as follows.

• As it is known, organisations have different layers, e.g. managers, seniors. In

addition, organisations are organized in different business processes, e.g. a

newspaper type of organisation has an editorial work flow, a publishing work

flow, and page layout. A dynamic domain can contain devices from a single

layer, or from different layers, based on organisation requirements. This pro-

vides an organisation the flexibility to layout its software products on devices

based on the organisation functionality.

522 Muntaha Alawneh and Imad M. Abbadi

• An organisation can dynamically move devices between dynamic domains

based on changes in its needs. For example, if an organisation requires to

change its layout, say after one year, this might require software re-allocation.

Assuming dynamic domains are not implemented, some software licences re-

quire renewing based on redistributing software products on different organ-

isation devices. This is because a software licence would typically be bound

to a device hardware id or an IP address (as discussed in section 2). On the

other hand, by using dynamic domains, an organisation does not require re-

newing software licences. In this case, when a device is reallocated to be used

by a new layer (i.e. different business process) that require different software

products than it already has, it can join all dynamic domains where the new

software products are bound, as long as the number of devices in each domain

does not exceed the domain-specific number X stored in each domain licece

file. The device also needs to remove all softwares it no longer needs to give

chance for another device to use it.

• As we said earlier, the security administrators can make a dynamic domain

with a number of devices less than the number of devices allowed to use the

software licence, which is bound to the domain. We propose this feature, to

add more flexibility and to cover organisations requirements. Having the num-

ber of devices less than the number of licences allows the organisation admin-

istrators to add devices in future time i.e. if the organisation changes its layout

by moving devises between different layers, or if the organisation expanded.

For example, system administrators could buy a 50 user licence for a software

product and install it on 30 devices (still has the right to use the remaining 20

user devices at a later time), If the corporation expanded after 6 months and

decided to add 10 more devices to use that software, the organisation can use

the 10 licences as it has the right to use them, also, it is still has the rights to use

the remaining 10 licences. One reason for doing this is cost, as the more num-

ber of devices that can use a software lincece the cheaper the licence would

be per device. In addition, going into the process of buying another licence

would, typically, require repeating the process of buying licences and many

other procurement procedures, which we manage to eliminate in our solution.

• Removing a device from a domain does not mean loosing the licence asso-

ciated with the device, as dynamic domains provide the flexibility to shrink

domains and re-allocate licences to new devices that can replace the leaving

one (now or in the future).

� Using a software-specific dynamic domain provides better protection for soft-

ware products. For example, hacking the key of a dynamic domain affects only

the protection of a single software product, i.e. it does not cause a global impact

on other software products protection.

� Ease of Recover. Using a software-specific dynamic domain provides ease of re-

covery for a hacked software product. For example, hacking the key of a dynamic

domain requires the recovery of only one dynamic domain.

Software Licence Protection and Management for Organisations 523

8 Conclusion

In this paper we propose a solution to protect software products and manage licence

files used by organisations. The proposed solution uses dynamic domains, consisting

of devices owned by an organisation, which can be dynamically reallocated between

dynamic domains, following the organisation needs. The proposed solution ensures

that software products are protected from being illegally used.

References

1. spoofing hostids, 2005. http://blogs.sun.com/relling/entry/spoofing hostids.
2. Spoofing time and space with DTrace, 2005. http://blogs.sun.com/relling/entry/spoofing time

3. Imad Abbadi. Digital asset protection in personal private networks. In 8th International
Symposium on Systems and Information Security (SSI 2006), Sao Jose dos Campos, Sao Paulo,
Brazil, November 2006.

4. Imad Abbadi. Digital rights management using a master control device. In I. Cervesato, editor,
ASIAN ’07: Proceedings of the 12th Annual Asian Computing Science Conference Focusing on
Computer and Network Security, volume 4846 of Lecture Notes in Computer Science, pages
126–141. Springer-Verlag, Berlin, December 2007.

5. BSA and IDC Global Software. 2005 piracy study, 2005. http://www.bsa.org.
6. Natali Helberger, Nicole Dufft, Stef van Gompel, Kristof Kerenyi, Bettina Krings,

Rik Lambers, Carsten Orwat, and Ulrich Riehm. Digital rights management and
consumer acceptability. Technical report, DG Information Society, December 2004.
http://www.indicare.org/soareport.

7. International Organization for Standardization. ISO/IEC 9798-3, Information technology —
Security techniques — Entity authentication — Part 3: Mechanisms using digital signature
techniques, 2nd edition, 1998.

8. M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol — OCSP. RFC 2560, Internet Engineering
Task Force, June 1999.

9. Oracle, 2007. http://www.oracle.com.
10. A. Sadeghi. Trusted computing — special aspects and challenges. In V. Geffert et al., edi-

tor, SOFSEM, volume 4910 of Lecture Notes in Computer Science, pages 98–117. Springer-
Verlag, Berlin, 2008.

11. A. Sadeghi, M. Wolf1, C. Stble, N. Asokan, and J. Ekberg. Enabling fairer digital rights
management with trusted computing. In J. Garay et al., editor, Information Security, 10th
International Conference, volume 4779 of Lecture Notes in Computer Science, pages 53–70.
Springer-Verlag, Berlin, 2007.

12. Sun Microsystems Inc. Licensing center, 2007. http://www.sun.com/software/licensingcenter/.
13. Trusted Computing Group. TPM Main, Part 1, Design Principles. Specification version 1.2

Revision 94, 2006.
14. Trusted Computing Group. TPM Main, Part 2, TPM Structures. Specification version 1.2

Revision 94, 2006.
15. Weblogic, 2007. http://www.bea.com.
16. Wikipedia. Dongle, 2007. http://en.wikipedia.org/wiki/Dongle.

and space with.

