A Map-based Integration of Ontologies into an
Object-Oriented Programming Language

Kimio Kuramitsu

Abstract Today’s programmers have difficulties using ontology in their information-
centric applications, where ontology would be useful. This paper addresses the in-
tegration technique of ontologies into an object-oriented scripting language. Our
technique is based on the use of semantic mapping as a unified form of complicated
semantic relations in an ontology system for the class-subclass view of an object-
oriented programming modeling. This enables ordinary programmers to write ontol-
ogy reasoning, such as equivalence and subsumption, without any extended logical
constructors.

1 Introduction

The ontology technology has been widely accepted as an integral part of managing
the semantics of information on the Web and other information centric systems [3].
More recently, with the popularity of the Semantic Web, practical ontology lan-
guages and tools, such as Jena [4], have been developed to share ontology through
the Web. Despite of these growing concerns, there is still a huge difficulty receiving
ontology benefits, especially for most of programmers who are developing web and
information-rich applications where ontology would be potentially helpful.

One considerable reason is that the terminology of ontology is quit different from
that of object-oriented programming languages that today’s developers are very fa-
miliar with. Developers who want to use some APIs in an ontology tool, such as
Jena or Fact++, have to learn about logical constructors to use the existing ontology,
because they are mainly designed for KR experts to build their ontologies.

The purpose of this paper is to present a map-based approach to integrating the
use of ontology into well-known constructors in an object-oriented programming
language. In our approach, concepts and individuals are transparently mapped to
classes and its instances, and semantic reasoning such as equivalence and subsump-

Kimio Kuramitsu

Yokohama National University, Yokohama City, Japan, e-mail: kimio@ynu.ac.jp This work has
been supported in part by Grant-in-Aid for Japanese Scientific Research (1870002300) and
SCOPE-R funds (062103013).

Please use the following format when citing this chapter:

Kuramitsu, K., 2008, in IFIP International Federation for Information Processing, Volume 276; Artificial Intelligence
and Practice II; Max Bramer; (Boston: Springer), pp. 457461.

458 Kimio Kuramitsu

tion can be operated with new operators === or isa, which would be as friendly as
instanceof. This enables us to write semantic program naturally like:

Medicine m = "Amoxillin";
if (m isa Antibiotics || m === "Penicillin")

The strength of our map-based approach is in its ontology-language neutrality.
We use semantic mapping as a unified view to redefine complicated conceptual
relations in an ontology system. This allows us to use any type of classification-
based knowledge as a part of programmed codes without external logical operators.

We will show the map-based integration through our implemented scripting lan-
guage, Konoha'. Section 2 is an introduction of the use of ontologies in Konoha.
In Section 3, we define the semantic mapping that mediates two different worlds:
the ontology and the object-oriented modeling. In Section 4, we will review related
work. In Section 5, we conclude the paper.

2 Use of Ontologies with Konoha

Every programming language has primitive types, such as int and String, which
are used to represent very basic information values. However, they cannot carry
any semantics that identify the concepts of its information. For example, the class
String is available to represent a name of person, email, ISBN, and even an arbitrary
plain text, while it provides no help for identifying the meaning of its represented
string. Konoha allows us to extend primitive types, such as Int, Float, String, by
adding semantic identifiers, URN (Universal Resource Name). The using statement
is newly introduced to add a class to URN-specified semantic constraints.

Here is the first example, where the meaning of Celsius is added into Float.
A new class, named Float::C, is generated as a result, and its instance value is
associted with its semantics through the URN. (Note that, Float::C is a local name
and, in global, the class is identified with URN.)

>>> using Float::C http://unit/Celsius
>>> Float::C t = 20;

>>> t

20([C]

>>> t.class

Float{http://unit/Celsius}

Next, we suppose a vocabulary set, which is used to represent feeling temperature

such as “freezing”, ““chilly”, “cool”, “‘comfortable”.

>>> using String::feel http://vocabulary/FeelTemp
>>> String::feel ft = *feel:chilly *;*
>>> ft = "hello,world"; (==> InvaidValueException)

The class String::feel is not only semantically annotated, but also constrained in
the range of its instance values. The String::feel allows to take vocabulary strings
that are specifiedin http://vocabulary/FeelTemp.

1" Qur first prototyped implementation of Konoha is downloadable at
http://konoha.sourceforge.jp/.

A Map-based Integration of Ontologies into OOPL 459

The semantic-extended class, although it is helpful for programmers to remember
its meanings, is still meaningless in machine processing. That is, Konoha is able to
know that Float::C and String::feel are different, but not to know whether 20C is
“comfortable” or not. To obtain such a question, a reasoning system will be needed
here.

In Konoha, reasoning is a part of casting/mapping between two classes. If the
programmer wants to know whether 20C is comfortable, he or she can simply write
as follows:

>>> t = 20C;
>>> (String::feel)t
"comfortable"

Konoha has no its own reasoning system. When it recieves a request through the
mapping operation, it poses a map-based query, say, ? : —20C — String :: feel for
an external ontology system, which the associated URNs indicate to. Due to the
unified form of querying/answering, there is no additional library to connect the
external system.

3 Bridging Two Worlds
3.1 Class and Concept

The class, in an OO world, and the concept, in the KR world, are very similar, but
they differ in that a class is specified first and its objects are instantiated after the
class definition while individuals exist at first and its concept is reasoned later by
classification.

As our starting point, we have chosen to build the KR concept on top of the
class-first world. That is, all individuals are belonging to one existing concept from
the beginning. Let C be a concept name. We write C! for a set of individuals that
belongs to C. We say t € C! if a given t is an instance of C.

Here are examples of defining two concepts AmericanSeason and BritishSea-
son.

AmericanSeason’ = {spring, summer,fall,winter}
BritishSeason’ = {spring, summer,autumn,winter}

These two concepts seem to be very similar, because both of them have the same
individuals, such as spring, summer, and winter. However, by default, we re-
gard these individuals as homonyms, i.e., the same symbols having different mean-
ings. To identify conceptual differences between individuals, we write an instance
C.t fort e Cl.

3.2 Semantic Mapping
Between two concepts, there is no semantic relation by default. To add semantic
relation, we use semantic mapping, denoted C +— D.

To begin with, we focus on two instances C.x and D.y. We say C.x — D.y if C.x
is interpreted as D.y, the concept of C.x is broader than that of D.y, or, from the
perspective of relative information capacity [6], C.x is more informative than D.y.

460 Kimio Kuramitsu

In addition, we say C.x and D.y is semantically equivalent, denoted C.x = D.y, if
and only if C.x — D.y and D.y — C.x.

Next, we will extend the semantic mapping from two indeviduals to two con-
cepts.

Definition 1 (semantic mapping and equivalence)

Vx3dyCx—D.y C— D D—C
C—D , C=D (D

Note that for simplicity all semantic mappings in this paper are supposed to
be fotal, although partial mappings would be very common. In practice, we use
null, the null pointer widely used in programming languages, to represent a par-
tial mapping. We say no mapping if C.x — null, and we write C v/ D if for each
x € C! C.x — D.null. The class C,D are disjoint if C 2> D and D +/ C.

3.3 Subtyping System
The subtyping system, generally supported in object-oriented programming lan-
guages, allows us to organize classes in a class-subclass manner. We use a partial
order to represent the organized class-subclass relation; we write C < D for the class
declaration.

Konoha has the same grammar and transitivity property with Java for subtyping.

classCextendsD {...} Cc<D D~<E
C=<D , C<E)

3.4 Bridging Ontology

An ontology is a set of structured terms. The “structure” is given by mathemati-
cal relations, like C(r) and R(z,72). which are called respectively concept and role.
Although different class of ontology languages [1] introduce different variation of
roles, from the classification view they comonly provides three types of reasoned
relations.

e (equivalence) C =D,
o (subsumption) C C D
o (disjointness) C1ND = L

Note that we are interested only in these three relations due to the similarity with
the class-subclass relation in object-oriented programming languages.

Theorem 1. Our concept definition and semantic mapping contain C = D, C C D,
andCriD = 1.

Proofisketch). Let A be a finite set of terms in an ontology system. Suppose t € A.
If a unary relation C(t) is true, then we make a new instance C.t in C'. We always
say C.t = D.t because ¢ is identical on A. On the other hand, C(¢) is said to be true

A Map-based Integration of Ontologies into OOPL 461

if C C D and D(t) is true. Accordingly, we say C.t — D.t for all 7 that satisfies both
C(t) and CC D (,i.e., D(t) is true).

4 Related Work

There is a long history of representing knowledge representation in a LISP-style
syntax. It is not unnatural to combine deductive programming features, such as
Prolog, with such a LISP-style ontology description, or vice versa. More recently,
Go! [2] was designed to integrate an object-oriented prolog with its own ontol-
ogy description. However, the integration of a logic-based programming language
with ontology constructors requires different elaborations. ActiveRDF [7] showed
an ORM-style approach to the integration of RDF with Ruby, where Ruby classes
are generated dynamically by SPARQL queries. This enables us to use RDF/S se-
mantics transparently in Ruby classes. However, their mapping method is so direct
that it cannot map more reasoned relations, such as equivalence and subsumption.

5 Conclusion

Today’s programmers have difficulties using ontology in their information-centric
applications, where ontology would be useful. This paper addressed the map-based
integration of ontologies into an object-oriented scripting language. Our technique is
based on semantic mapping, a unified form of complicated semantic relations in an
ontology system for class-subclass view of an object-oriented programming model-
ing. Using Konoha, we showed a programmer is able to write ontology reasoning,
such as equivalence and subsumption, without any extended logical constructors.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (eds). The Descrip-
tion Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
2000.

2. Keith L. Clark and Frank G. McCabe Ontology Oriented Programming in Go! Journal of Ap-
plied Intelligence, 2005.

3. Michael Gruninger and Jintae Lee. Special issue: Ontology applications and design. Commu-
nications of the ACM, 45(2):39-41, 2002.

4. Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net/

5. K. Kuramitsu. Mappings As A Lightweight Ontology System for the World-Wide Web. In Proc.
of the Symposium on Professional Practice in Al / IFIP World Computer Congress (WCC2004),
2004.

6. RenéeJ. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The use of information capacity
in schema integration and translation. In Proceedings of 19th International Conference on Very
Large Data Bases, pages 120—133. Morgan Kaufmann, 1993.

7. Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker. ActiveRDF:
Object-Oriented Semantic Web Programming. In Proc. of WWW2007, 2007.

8. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks(eds.) OWL Web Ontology Language:
Semantics and Abstract Syntax, W3C Recommendation, 10 February, 2004.

