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Abstract It is time and resource intensive to derive test cases manually from the re-
quirements specification to fully verify that the embedded system design fulfills its
specification. However, automatic parsing to generate test cases is often not possible
due to the informal, non-machine readable structure of the specification document.
Formal specification languages would ease the parsing process, however they are
difficult to use and rarely accepted. A promising trade-off are semi-formal specifi-
cation languages, which are both easy-to-parse and easy-to-use.

This paper presents a novel approach developed in the SIMBA! project to tightly
integrate a semi-formal requirements specification document into the design flow
of embedded system designs. It considers the specification as a series of semi-
formal textual use cases and automatically generates specification-based SystemC
test cases. During a simulation with the System-under-Verification (SuV) the test
cases are executed to determine whether the SuV fulfills the specification. A demon-
stration is given by a case study of an RFID controller. It shows that errors in the
specification and discrepancies between the design and its specification are detected.
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1 Introduction

In today’s design of embedded systems, 70% of the entire design effort is spent on
functional verification. Functional verification is mainly driven by finding adequate
test cases to verify that the modeled system behaves according to its specification
[21]. Clearly, deriving test cases manually by reading the large system specification
document is very time and resource intensive and error-prone. On the other hand,
it is infeasible to perform this task automatically due to the informal non-machine
readable structure of the specification.

The approach presented here focuses on semi-formal description formats to spec-
ify requirements. A very promising and well-known semi-formal specification style
are textual use cases [4]. Although they are similar to graphical UML use cases
enhanced by UML sequence diagrams, they can be extended much more easily
to cover additional domain-specific information (e.g. by inserting additional fields
for non-functional requirements). Textual use cases are both widely accepted to
communicate with a customer and suitable for automatic post-processing. They
define the interaction and the behavior of a system under certain conditions (pre-
/postconditions, trigger) as a sequence of interaction steps with the environment
(=actors). Their structure is formal, table-based and composed of several fields for
the name, the pre-/postconditions and the interaction scenarios. However, within
each field the description is entirely informal. Thus, textual use cases are similar to
natural language but used in a structured way, which makes them easy-to-learn for
stakeholders from various domains.

A common textual use case description contains the following fields:

Actor (communicates with the specified system)
Pre-/postcondition and trigger

Main success scenario (i.e. main interaction sequence)
Extensions (i.e. alternative flows to the main scenario)

In this paper, we propose a novel design methodology (see Fig. 1) for the

specification-based functional verification of embedded system models by simu-
lation. We use simulation for verification without being concerned with the state-
space explosion problem as in static verification techniques. The main steps of our
approach as shown in Fig. 1 are highly automated and encompass both the error-
correction of the original specification document and the functional verification of
the system model. The generated test cases are based upon the SystemC Verification
Library (SCV) [20] and can be used to verify both transaction-level models and RTL
hardware designs [18].
The remainder of this paper is organized as follows: We start with an overview of
related work in section 2. In section 3 we present our methodology and describe its
implementation in section 4. Section 5 provides a case study of an Radio Frequency
Identification controller (=RFID tag) to present the applicability of our methodology
and its results. Finally we give a conclusion and list further work in section 6.
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Fig. 1 Novel highly automated approach from textual use cases to a SystemC testbench for func-
tional verification.

2 Related Work

Test case generation from the specification has been widely studied in the research
community. Most of them, like [24], [13] and [1] favor formal specification lan-
guages as UML or SDL. However, in the hardware domain, which constitutes an
important portion of embedded systems, most of the designs are specified in a
document-based way. UML and other formal specification languages are hardly
used and are considered as a large burden, which confronts time-to-market. Al-
though these specification formats are unambiguous, precise and consistent, it is
very difficult for stakeholders from various domains, who specify requirements, to
get familiar with these formats. In contrast, our approach is based on semi-formal
textual use case-based descriptions as defined in [4]. They are both widely accepted
and easy-to-use by stakeholders and suitable for automatic post-processing.

There are a number of approaches, which are dealing with textual use case-based
descriptions for test case generation. Most of them, like [9] and [10] focus on the for-
mal transformation of use cases to UML state, message sequence or activity charts,
which are then used to generate the test cases. Whereas, the automatic test case gen-
eration from UML charts is widely studied in the research community [16], [15],
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[11] the formal transformation of the use cases to UML charts, apart from the ap-
proaches stated below, is usually done by hand. However, this requires a lot of in-
teraction effort since the number of use cases can be very large. Our work resolves
this issue by generating the test cases directly from the use case specification with a
high degree of automation and without the need for a transformation to UML charts.
Significant approaches related to our work are [22], [5], [3] and [7]. In [22] and [7]
the use case specification of a computer system is used to automatically generate
test cases. However, only the first step consisting of transforming the use cases to
UML activity diagrams is described. Nevertheless, as described in [3], the gener-
ated activity diagrams lack relevant information on the used message types and the
connection to the SuV’s interface, which is required to derive the test cases automat-
ically from the diagrams. The same is true for [5], which requires the test designer
to specify the test purpose of each test he wants to execute. In contrast, our approach
automatically generates a verification environment consisting of stimuli generation
and response checking and randomly selects and executes the test cases.

3 Novel Approach

We propose a novel specification-based functional verification by simulation method-
ology that aims for:

e Check the specification to remove ambiguities and incorrect grammar.

e Automate the functional test case generation from textual use case specifications.

e Provide a functional verification by executing the test cases to determine the
discrepancies between the embedded system model and its specification.

As shown in Fig. 1 our approach starts with a semi-formal use case specification of
the System-under-Verification (SuV). The common textual use case descriptions [4]
are extended by additional fields to cover constants, like message types or time de-
lay constants. During the parsing of the use case specification we deal with typical
natural language issues [8]. Therefore, we define a grammar and a lexical subset of
the natural language to be used for specifying the use cases. This is done in collabo-
ration with our industry partner, who has strong experience with common grammar
structures and terms used for the specification. A list of guidelines is provided to
keep the stakeholder to the given grammar structure and focus on terms from the
lexical subset. It is not mandatory for the stakeholder to stick to these guidelines,
although it decreases the required user interaction significantly. The interactions are
also decreasing with the number of processed requirements as in the case of a miss-
ing term, which requires the user to specify the type of this unknown term. This
decision is remembered the next time this term is analyzed without the need for an
interaction by the user. After the parsing, the specification document is corrected
and it is used as the input for the SystemC testbench generator, which generates
the specification-based test cases. During a SystemC simulation these test cases are
applied to the SuV to check if it corresponds to the specification. Output messages
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Fig. 2 Our implementation uses JAXB to extract data from the specification. The CUP Parser
invokes the LR Parser and JFLEX to generate a syntax tree [2]. The semantic analyzer uses the
syntax tree to provide the input for the test case generator.

convey information on the test progress, the test coverage as well as the test results
to inform the verification engineer on-line about the current status of the simulation-
based verification.
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Fig. 3 Proposed algorithm for the random selection of the generated test cases during a SystemC
simulation.

4 Implementation

Figure 2 shows the implementation of our approach. JAXB [23] is used to generate
Java classes and fills the instances of these classes with information from the XML-
based use case specification. These instances are analyzed by the Java CUP parser
[12], which invokes JFlex [17] to identify the type of each term. The CUP parser
uses an LR-Parser [19] to check the grammar and generates a syntax tree [2] from
each phrase stored in the use case instances. This is used by the semantic analyzer
to determine the meaning of each term and to generate the error-corrected XML
specification. Finally, the Automatic Verification Platform Generator uses this XML
specification to generate the SystemC testbench.

The SystemC testbench selects and executes SystemC test cases during a simu-
lation and consists of the two threads: random test case selection and test execution.
The algorithm of the random test case selection thread is shown in Fig. 3. The en-
tire process in Fig. 3 is reiterated until each use case has been selected by a user-
specified number of times or the simulation is stopped by the verification engineer.
In each iteration our algorithm uses SCV constructs to randomly select a use case
from the list of use cases. This list is generated each time the Automatic Verifica-
tion Platform Generator reads the error-corrected XML specification input file and
generates the SystemC testbench module. Each use case may contain a list of pre-
decessor use cases. These are defined in the use case’s precondition statement and
are executed before the current use case is processed. Each use case contains a list
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of test cases, which correspond to the steps in its scenarios. Each test case may also
contain a list of alternative test cases specified in the extension scenarios. When a
use case is processed our algorithm goes through its test cases sequentially starting
at the first element in the list. For each test case it determines if the test case has a
list of alternative test cases. If so, it uses the SCV constructs to randomly select a
test case from the list for execution. Otherwise, the current test case is selected and
executed by the test execution thread, which generates the stimuli, estimates and
stores the SuV’s internal state, checks the SuV response and prints the test case’s
name and status for verification reporting. The test execution thread is a verifica-
tion state machine generated from the input XML use case specification as shown
in Fig. 4. For each step in the use case scenario, which corresponds to a test case,
the verification state machine contains a case block to execute this step. The case
block SET_-UP_TAG_1 _RECEIVES_ACTION in Fig. 4 corresponds to the specified
use case step

Tag receives Query Message with matching SL Flag

from Fig. 5 and generates the corresponding stimuli to apply this step to the
SuV. The case block SET_-UP_-TAG_10_-TRANSMITS _ACTION checks the system re-
sponse at step

Tag transmits 16bit Random Number

from Fig. 5. The functions marked as grey-tone are the corresponding transactor
functions. A transactor component is also automatically generated by our method-
ology and is inserted between the SystemC testbench module and the SuV to map
the test cases to the SuV. Since the interface of the SuV can change the transactor
is adapted by the verification engineer to connect it to the interface of the SuV. The
mapping of the transaction-level test cases to the SuV’s interface would go beyond
the topic of this paper and is not explained here any further.

5 A Case Study of an Radio-Frequency Identification Controller

To demonstrate our methodology we have implemented it in the HW/SW co-design
tool SyAD® (System Architect Designer) [14]. SyAD® enables the development of
system-level HW/SW co-designs and supports a multi-language and multi-level co-
simulation framework of SystemC, VHDL, VHDL-AMS and MATLAB Simulink.

As a case study we have considered a use case-based specification of an Radio-
Frequency Identification controller (= RFID tag) state machine provided by our in-
dustrial cooperation partner. The specification document is derived from the con-
troller state diagram specified in the EPCGlobal Class-1 Generation-2 UHF RFID
protocol for communications [6]. The use case-based specification document cov-
ers the entire tag state diagram (see Fig. 6.19. in [6]) and encompasses 53 use case
scenarios. Fig. 5 shows a small excerpt from the use case-based specification docu-
ment. We applied our methodology implemented in SyADY to the entire use case
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int testbench::test_execution(){
switch(state){
case SET_UP_TAG_1_RECEIVES_ACTION :
transmit_Message->set_value(QUERY_MESSAGE, SL_FLAG);

break;
case ...

case SET_UP_TAG_10_TRANSMITS_ACTION :
message *received_message;
received_message, PC_EPC_CRC_MSG
if(check_message(received_message))
return TB_PASSED;
else
return TB_FAILED;
break;
}
}

Fig. 4 Automatically generated source code of the test execution thread.

Name: Set up Tag
Description: Use case accessed when tag enters the Reader field.
Scope: UHF RFID Tag (=Tag).
Primary actor: Interrogator (=Reader)
Precondition/Trigger: Tag (re)-enters the Reader Field
Main Success Scenario:
1. Tag receives Query command with matching SL Flag from Reader

10. Tag transmits 16bit Random number

11. Tag exits use case and goes to “Reply Tag” Use Case
Alternate Flows:

la. Tag receives Select command from Reader

LocNonfunctional Requir ts:
Timing Constraints: Step 1 until step 11 shall be done within t1.

Fig. 5 Use case derived from the protocol specification of an RFID controller state machine.

specification and discovered 6 syntax errors (due to invalid grammar and missing
verbs and articles) and added 8 unknown terms to the lexicon during the parsing
steps. In a next step our Automatic Verification Platform Generator generated the
SystemC testbench module consisting of 131 test cases derived from the use case
specification document. Fig. 6 demonstrates the results of the simulation of the Sys-
temC testbench with the SuV for 5, 10, 15 and 20 iterations of the SystemC test case
selection algorithm from Fig. 3. Use case 1 (UC 1) is executed most of all, since it is
in the precondition list of all other use cases. In contrast, UC 5 is less often executed
since it does not occur in the precondition list of any other use case. The ratio of
executed use case scenarios to the total number of use case scenarios specifies the
covered amount of the specification by the simulated test cases. The left diagram in
Fig. 3 shows a comparison of the number of identified errors and the verified portion
of the specification for 5, 10, 15 and 20 iterations. A 80% functional coverage de-
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Fig. 6 Simulation results for 5, 10, 15 and 20 iterations of the proposed test case selection algo-
rithm applied to the RFID controller model.

tects 14 errors and requires 20 iterations of the test case selection algorithm, which
results in more than 600 executed tests as illustrated in Fig. 3

6 Conclusion and Further Work

In this paper we presented a novel functional verification methodology for embed-
ded system designs. The methodology supports both the correction of errors in the
specification document and the automated test case generation from the specifica-
tion. The test cases are used to verify whether the system model fulfills its specifi-
cation (=functional verification) and close the gap between the specification and the
design.

Our approach focuses on textual case-based specifications, which are suitable for
black-box test case generation. We used a case study based on the semi-formal spec-
ification of a higher class RFID controller to demonstrate and prove our method-
ology. We showed that our methodology can be used to correct the specification
document and to automatically generate SystemC test cases, which are executed
randomly during simulation to determine the discrepancies between the design and
its specification. As a further step we plan to improve the verification reporting by
introducing functional coverage monitors into our design flow. This provides on-line
information on how much functionality has been verified.
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