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Abstract Embedded systems present severe limitations in terms of processing and
memory capabilities and are often powered by batteries, making energy an important
resource to be managed. This work explores energy as a parameter for Quality of
Service (QoS) of embedded systems. The goal is to guarantee the battery lifetime
specified by the application and yet preserve the deadlines of essential (hard real-
time) tasks. We propose equations to check at project-time if a given set of tasks are
schedulable. At execution-time, a preemptive scheduler for imprecise tasks based
on the EDF algorithm prevents the optional subtasks execution when ever there is
the possibility of deadline loss or battery exhaustion. A prototype was developed in
EPOS using power management mechanisms provided by the system.

1 Introduction

Embedded systems are computational platforms dedicated to execute an usually
known set of tasks with specific objectives. Typically, these systems present severe
limitations in terms of processing and memory capabilities. Some of them, due to
the mobile nature of their applications, are also powered by batteries with a limited
supply of energy. Considering all these limitations, it is important for the mobile
embedded system to be able to manage energy consumption without compromising
system’s performance.

Embedded systems hardware can rely on several mechanisms to manage energy
consumption. Among them, are techniques of DVS (Dynamic Voltage Scaling) and
resources hibernation. Some works in the literature explore the integration of these
techniques with approaches that guarantee quality of service (QoS). Most of these
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approaches, however, only seek to minimize energy consumption with the main
focus on traditional QoS metrics for processing, memory and communication. In
a previous work [10], we argue that it is not enough just ensure traditional QoS
metrics if, by doing so, the system runs out of battery and is unable to complete its
computations.

We consider energy as a QoS parameter to meet the battery lifetime specified by
the system developer, thus using QoS in terms of energy. In this work, the goal is not
only to reduce energy consumption, but to improve the application utility in a system
with limited energy charge, ensuring the battery lifetime and the deadlines of hard
real-time tasks. The proposed approach expects the developer to define the period
that the embedded system must be operational. By monitoring battery lifetime, the
scheduler is able to select the tasks that will be executed or it can decrease QoS
levels in order to reduce energy consumption and enhance system lifetime.

To achieve the proposed goal, the QoS control of applications was inspired by
imprecise computation [5]. Imprecise computation divides tasks into two subtasks:
one implementing a mandatory execution flow and another implementing an op-
tional flow. The mandatory flow is the hard real-time part of the task, and it must
always be executed with in its deadline. The optional flow is the best-effort part
of the task, which is only executed if the desired timing requirements can be met.
The imprecise computation scheduler does not execute the optional subtasks when
there is the possibility of any mandatory subtask deadline to be lost, thus reducing
the demand for system processing. Moreover, in our scheduler, we propose that the
optional subtasks be prevented from executing when the energy level will not be
sufficient to meet the time specified by application. This control creates more idle
periods in the system, and the scheduler can use power management techniques to
reduce the energy consumption of components during these idle periods.

The proposed scheduler is based on EDF (Earliest Deadline First) [4] scheduler,
which the tasks with the lowest deadlines have the highest priorities. A prototype
of this proposal was implemented in EPOS [6], a component-based embedded op-
erating system. EPOS provides a set of mechanisms for power management, such
as an infrastructure which allows applications to achieve appropriate power man-
agement [3] and a power manager with different operating modes that realize power
management for application [9]. Moreover, EPOS provides a battery monitoring sys-
tem, which informs the remaining energy in the platform.

2 Background

This work aims at guaranteeing that the batteries used in an embedded system can
last at least the time required by the application and yet preserving the deadlines
of essential tasks, i.e., the deadlines of hard real-time tasks. Our scheduler starts to
decrease QoS levels in order to save energy when it detects that batteries will not
last long enough to satisfy a previously defined expected system lifetime. The de-
creased control of application QoS levels is based on imprecise computation mech-
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anisms [5], which divide tasks into two subtasks: a mandatory one and an optional
one. The proposed scheduler is based on the EDF scheduling algorithm.

2.1 Imprecise Computation

Imprecise computation is a scheduling technique originally proposed to satisfy tim-
ing requirements of real-time tasks through decreasing levels of QoS. The control
of application QoS levels done by imprecise computation worsens quality of results
by not executing optional subtasks in order to guarantee that no mandatory subtask
deadlines will be lost.

With the division of each task into two parts, imprecise computation unites real-
time computing and best effort techniques for, respectively, the mandatory and op-
tional subtasks. The mandatory subtask of imprecise tasks generates imprecise re-
sults which reflect the minimum of QoS to guarantee that these results are useful.
These imprecise results have their quality enhanced when the optional subtask exe-
cutes, generating the precise results.

The imprecise computation showed us favorable to use in our proposal in relation
to energy. Suppose that a task consumes X energy units obligatorily. When it is
divided into mandatory subtask (Y energy units) and optional subtask (Z energy
units) the scheduler can save Z energy units if the optional subtask is not executed.

2.2 EDF

The EDF (Earliest-Deadline First) [4] algorithm is a real-time scheduling mech-
anism based on dynamic priorities and widely used in the literature. EDF dis-
tributes the highest priorities to the tasks with the shortest deadlines. At project-
time a schedulability test evaluates the possibility of any task lose its deadline. At
execution-time a preemptive scheduler selects to execute the highest priority task in
READY state.

An exact schedulability test of the EDF algorithm is presented below. The real-
time system considered contains n periodic and independent tasks, τ = {τ0,τ1, ...,
τn−1}. Each τi is characterized by three parameters, (Pi,Di,Ci), where Pi is the pe-
riod in which the task i is scheduled, Di is the max relative deadline of conclusion in
relation to instant of the task i release and Ci is the task i execution time in the worst
case which included times waiting by the priorities reversal. In this test is supposed
that ∀τi, Di = Pi . The utilization Ui of the task i in processing terms is represented
by equation Ui = Ci

Di
. The processor’s capacity is set to 1, i.e., 100%. A system

with ω processors has ω capacity. Thus, in order to tasks to be schedulable in the
EDF algorithm, the utilization sum of all the tasks must be less than or equal to the
processors’ capacity, i.e.,



124 Geovani Ricardo Wiedenhoft and Antônio Augusto Fröhlich

n

∑
i=1

(
Ci

Di

)
≤ ω (1)

where ω = 1 on a system with single-processor. If ∑n
i=1 Ui > ω , the processor will

be overloaded and the tasks will not be schedulable.

3 The Proposed Scheduling Strategy

Our scheduler, based on EDF, guarantees the execution of mandatory subtasks with
their deadlines respectively met, independently of the system energy level. How-
ever, the optional subtasks execution is not guaranteed. The optional subtasks are
executed only if the mandatory subtasks deadlines and the system’s batteries life-
time desired by application are met.

The objective of this scheduler is not only save the energy consumed in the sys-
tem — otherwise, the technique would simply never execute the optional subtasks
— but to meet the battery lifetime specified by the application and to meet the
mandatory subtasks deadlines with the execution of the maximum possible of the
optional subtasks, thus optimizing the application utility.

Figure 1 presents proposed scheduler algorithm, which the subtasks are treated
as tasks in terms of scheduling. π is the interval among battery charge measurements
that can be specified by the application programmer and must take into consideration
that each measurement consumes energy to be performed. This interval depends on
the battery power state found in the last measurement.

1: For every task that enters in READY state:
2: Determine the new absolute deadline in accordance with the elapsed time
3: Determine the priority based on absolute deadline
4: Add to the queue according to calculated priority
5:
6: For each π time units: /* π specified by the programmer and it depends on the energy state */
7: Measure the battery
8: Check if there is enough energy to meet the time required by application
9:
10: For each rescheduling:
11: Select the highest priority task in READY state
12: if, task is hard real-time, then
13: Execute the selected task
14: else, /* task is best effort */
15: if, there is enough energy to meet the system lifetime required, then
16: Execute the selected task
17: else, /* Battery does not have sufficient energy */
18: Use power management techniques
19:

Fig. 1 Proposed scheduler algorithm.
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3.1 Schedulability Tests at Project-Time

The proposed scheduler is based on the EDF algorithm, thus it is possible to fol-
low the same logic to calculate the tasks schedulability at project-time with a few
adjustments. Suppose that the real-time system considered has n periodic and inde-
pendent tasks, τ = {τ0,τ1, ...,τn−1}, where ∀τi, Di = Pi . In the imprecise computa-
tion model, each τi is divided into mandatory and optional subtasks with execution
times in the worst cases of µi and θi, respectively. Therefore, the total execution
time of τi, in the worst case, is Ci = µi +θi . In order to guarantee that no mandatory
subtasks deadlines will be lost, equation (2) must be respected.

n

∑
i=1

(
µi

Di

)
+σ ≤ ω (2)

Where ω = 1 for a system with a single-processor and σ represents the interfer-
ence in the worst cases, which includes: time spent in the operating system, context
switch, scheduler algorithm. Equation (2) must be met in order for the tasks to be
schedulable in relation to mandatory subtasks deadlines, otherwise, the processor is
overloaded.

With the inclusion of the optional subtask execution time in equation (2), we can
determine if the tasks as a whole will be executed, mandatory and optional subtasks.
However, it is important to note that equation (3) is not a obligatory requirement in
our algorithm and only will be relevant when equation (2) is true, otherwise, the
tasks are not schedulable.

n

∑
i=1

(
µi +θi

Di

)
+σ ≤ ω (3)

Mandatory and optional subtasks are schedulable in relation to their deadlines
when equation (3) is respected. Otherwise, a certain fraction χ of optional subtasks
is discarded. Equation (4) presents how to find the fraction χ .

χ =
∑n

i=1

(
µi+θi

Di

)
+σ −ω

∑n
i=1

(
θi
Di

) (4)

The energy-related objective can be achieved by following the same kind of logic
presented thus far, but taking into account the tasks’ energy consumption rate. The τi
energy consumption in the wort case, Ei, is given by the sum of the energy consump-
tion in the mandatory and optional subtasks worst cases times Eµ i e Eθ i, respectively,
(Ei = Eµi +Eθ i). We suppose that, as with worst cases times, the worst cases energy
consumptions are previously known by the application developer. These values can
be obtained by energy profiling or another techniques. The maximum number of
possible executions ηi of τi in the time required by application Tt is given by di-
vision between the time required and the execution interval of τi, i.e., ηi = Tt

Pi
. Tt

is given by the application developer based on battery capacity. In order to meet at
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least the mandatory parts of the tasks, we have equation (5) which indicates if the
set of tasks will be schedulable with respect to energy.

n

∑
i=1

(
Eµ i×ηi

Et

)
+ ε ≤ 1 (5)

Where Et is the total energy of the system (battery specification), i.e., battery
capacity, ε represents energy consumption in the worst case of different factors such
as the energy consumed by the operating system, the context switch, the scheduler
algorithm itself. The battery’s capacity is set to 1, i.e., 100 %. Substituting ηi in the
equation (5) we have equation (6).

n

∑
i=1

(
Eµ i×Tt

Pi×Et

)
+ ε ≤ 1 (6)

The tasks are schedulable in relation to energy in our algorithm if equation (6)
is respected. Otherwise, the system will not meet the battery lifetime required by
application for this set of tasks. The inclusion of the energy consumed by optional
subtasks in equation (6) allows us to check if the tasks as a whole will be executed.
As discussed previously, this is not an obligatory requirement and equation (7) only
should be calculated if equation (6) is respected, i.e., mandatory subtasks met.

n

∑
i=1

((
Eµi +Eθ i

)×Tt

Pi×Et

)
+ ε ≤ 1 (7)

All mandatory and optional parts of the tasks are executed in relation to system
energy if equation (7) is respected. Otherwise, a certain fraction γ of optional sub-
tasks will not be executed because the system would not meet the battery lifetime
specified by the application. Equation (8) provides a fraction γ of optional subtasks
discarded in relation to energy.

γ =
∑n

i=1

(
(Eµi+Eθ i)×Tt

Pi×Et

)
+ ε−1

∑n
i=1

(
Eθ i×Tt
Pi×Et

) (8)

In this algorithm, the objective is to meet the two parameters in relation to time
and energy, i.e., the mandatory subtasks deadlines and battery lifetime specified by
the application, respectively. Thus, (9) is the full equation of our scheduler that must
be true in order to tasks will be schedulable.

[
n

∑
i=1

(
µi

Di

)
+σ ≤ ω

]
∧

[
n

∑
i=1

(
Eµi×Tt

Pi×Et

)
+ ε ≤ 1

]
(9)

The mandatory subtasks have their executions guaranteed in our scheduler in
relation to time and energy if equation (9) is respected. The maximum fraction λ
possible of optional subtasks lost in relation to time and energy can be obtained by
equation (10).
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λ = max(χ ,γ) (10)

3.2 Schedulability Test at Execution-Time

In order to provide QoS in terms of energy and make better use the resources with
the optional subtasks execution it is necessary periodically to check at execution-
time if the battery lifetime specified by the application Ttκ in the instant κ can be
achieved. Therefore, Ttκ is recalculated in the instant κ according to the elapsed
time. The total energy of the system (battery charge) Etκ also must be recalculated
in the instant κ . The embedded systems platforms usually provide mechanisms to
get the battery charge. Equation (11) can be recalculated with the new values in
order to check if Ttκ can be met in the instant κ .

n

∑
i=1

(
Eµi×Ttκ

Pi×Etκ

)
+ ε ≤ 1 (11)

All mandatory subtasks are executed and optional subtasks will be scheduled if
equation (11) is respected because this equation indicates there is sufficient energy to
meet Ttκ . Otherwise, some optional subtasks will be discarded. The scheduler calls
a power manager in the time that the optional subtasks would be in execution. Thus,
it takes the idle time of the system in order to save energy. The optional subtasks
return to be executed when it is observed that equation (11) returns to be true.

4 Implementation

A prototype was developed in order to test the proposed scheduler using EPOS (Em-
bedded Parallel Operating System) [6]. EPOS is a framework of hierarchically or-
ganized components that generates application-specific runtime support systems.
To do that EPOS analyzes the set of dedicated applications it must support prior
to system generation time, thus configuring the system accordingly. Furthermore,
through the separation of system abstractions, hardware mediators and scenario as-
pects, EPOS allows the development of fully platform-independent applications.

In EPOS, every system component implements a uniform power management in-
terface [3]. This infrastructure allows applications to interact with the system to im-
plement proper energy consumption management for embedded systems. Through
the use that EPOS provides a low-overhead dynamic power manager [9]. This power
manager uses re-pluggable heuristics, allowing configuration and adaptability to
specific applications. The EPOS power manager has different operation modes, such
as the possibility to choose if the manager will be on or off, the possibility of con-
figuring only the desired components by the application for the power management,
and if the manager will be active or passive in the power management.
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EPOS also provides a battery charge monitor, which contributes to achieve the
objectives of this work. The EPOS monitor is based on the battery voltage observa-
tion in order to get the battery charge, because the battery characteristic is to have
its tension reduced as the use. However, there are some details to be observed, be-
cause the sampled voltage is not linearly related to battery discharge rate, the system
does not have the ability to convert all provided tension in usable resource and also
there is a minimum voltage that the system works. Thus, the monitor establishes a
discreet relationship between the voltage and battery charge through the division of
the obtained voltages in 10 time slices, which the voltages have different variations.
Each slice corresponds to a nominal capacity percentage of the used battery.

The EPOS monitor does not implement a constant tracking of the real battery
voltage, as each sampling consumes energy to be realized, in addition to consid-
erably overhead for the application. In order to reduce these effects, the monitor
uses a structure with information previously known which allows tracking the en-
ergy consumption in an approximate way. The information are in relation to specific
characteristics of the battery and energy consumption by the system hardware com-
ponents that will be monitored. The monitor verifies the battery charge through the
voltage in the beginning of the execution, and during the execution updates the value
with energy consumed by system peripherals.

We extended EPOS to support our scheduler with imprecise tasks and conditional
executions to time and energy parameters. The tasks model in EPOS was based on
monotone imprecise tasks. In this model, the monotone tasks improve the result
quality at the time in execution and the worst case do not change the result. Thus, the
mandatory subtasks generate results with the minimum QoS necessary to guarantee
that these results are useful, and the optional subtasks realize successive refinements
that results. The completion of these tasks can occur at any execution time without
cause integrity problems in the results. Thus, the scheduler can decide at any instant
to finalize the optional subtask execution. The application is responsible for the
results integrity by different methods such as the use of control bits or the use of last
data update timestamps.

The imprecise tasks implementation in EPOS was realized through the creation
of two threads: one containing execution flow to handle the mandatory part and
another with the execution flow to handle the optional part. The system creates these
threads in a transparent manner to the programmer. This approach only expects the
programmer to specify, when creating a imprecise thread, two entry points: one for
the mandatory subtask and another for the optional subtask with their parameters.

The scheduler in execution always chooses the highest priority subtask in accor-
dance with the deadlines as our algorithm is based in EDF. The optional subtasks
are scheduled if there are not mandatory subtasks in READY state and if there is
energy enough to meet battery lifetime specified by the application, i.e., optional
subtasks have lower priorities than mandatory subtasks. When a mandatory sub-
task enters in READY state and its optional subtask is not yet finished the execution
in the previous period, the scheduler immediately suspends this optional subtask
execution. These characteristics prevent mandatory subtasks deadlines losses. The
optional subtasks contexts are always restarted in a new task period.
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The scheduler also updates at execution-time the Ttκ with elapsed time and the
Etκ using the EPOS energy monitor. Scheduler recalculates the equation (11) in
periods π with these new values in order to check if the system is able to sustain the
current workload without running out of battery before the required lifetime Ttκ is
achieved. π will depend on the last energy analysis. In the best case, equation (11) is
respected and optional subtasks can be scheduled. Otherwise, optional subtasks are
discarded and, taking advantage of the idle period created, the scheduler executes the
EPOS power manager in passive mode. In addition to saving energy by not execute
the optional subtasks, the power manager reduces the system energy consumption
through the use of power management techniques. The optional subtasks return to
execution when the scheduler identify Ttκ+ι can be met again in instant κ + ι .

5 Related Work

GRACE-OS [11] is an energy-efficient operating system for mobile multimedia ap-
plications. This system uses a cross-layer adaptation technique to guarantee QoS
on systems with adaptive software and hardware. It combines real-time scheduling
with DVS mechanisms to dynamically manage energy consumption. It was imple-
mented over the LINUX operating system and it only supports soft real-time tasks.
GRUB-PA [8] is somehow similar to GRACE-OS. The main difference is GRUB-
PA supports both soft and hard real-time tasks.

Niu [7] proposed to minimize energy consumed by soft real-time systems while
guaranteeing QoS requirements. This goal is achieved by a hybrid static/dynamic
scheduling algorithm that it uses DVS mechanisms and it partitions the set of tasks
in mandatory and optional tasks. In this work, the QoS requirements are qualified by
(m,k) constraints which it specifies that tasks must meet at least m deadlines in any
k consecutive task releases. In a similar work, Harada [2] proposed to resolve the
trade-off between QoS maximization and energy consumption minimization. It uses
an allocation of processor cycles and frequency with QoS guarantees and it divides
each task into mandatory and optional parts.

Other projects explore trade-off between application’s QoS and energy consump-
tion through adaptations in the applications aiming to meet the time specified by
application. ODYSSEY [1] uses that idea. It monitors the energy budget and with
this information it can select the correct state between energy saving and quality
of application. This work also demonstrates how the applications can dynamically
change their behavior (“fidelity” of the data) with the goal of saving energy.

ECOSYSTEM [12] is another operating system that supports application adapta-
tion. This system is based in a “currency” that the applications use to allocate (“to
pay”) system resources (e.g., access to memory, network or disks), called currentcy.
The system distributes currentcies periodically to tasks accordingly to an equation
that defines the discharge rate that the system battery can assume to force the system
to last for a defined period of time. This allows applications to adapt their execution
based on their currentcy balance. This model unifies the calculation of energy on
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the various hardware devices and it provides a satisfactory energy allocation among
the applications.

6 Conclusion

This work proposed an approach to exploit energy as a QoS parameter in order to
guarantee that battery lifetime can last time desired by mobile embedded system
and yet preserve the deadlines of hard real-time tasks. Our approach was inspired
by imprecise tasks concepts, according to tasks can be divided into mandatory and
optional parts. In this article, equations at project-time were presented with objective
the of application programmer to check if a set of tasks will be schedulable in our
algorithm in relation to two parameters desired, i.e., time and energy. At execution-
time, our scheduler based on EDF algorithm ensures the mandatory subtasks dead-
lines and recalculates the equation of energy in order to check if the required bat-
tery lifetime will be met. The optional subtasks are prevented from executing, i.e,
decreasing QoS levels if any required parameter will not be met. A prototype was
developed in EPOS, which allowed the execution of a power manager in idle periods
created by non-execution of the optional subtasks, thus reducing energy consump-
tion by stopping or slowing down system components during these idle periods.
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