
ANIMATED HEADS: FROM 3D MOTION 
FIELDS TO ACTION DESCRIPTIONS 

Jan Neumann, Cornelia Fermüller and Yiannis Aloimonos 
Center /or Automation Research 

University 0/ Maryland 

College Park, MD 20742-3275, USA 

Uneumann, fer, yiannis)@cfar.umd.edu 

Abstract We demonstrate a method to compute three-dimensional (3D) motion 
fields on a face. Twelve synchronized and calibrated cameras are po­
sitioned around a talking person, and observe its head in motion. We 
represent the head as a deformable mesh, which is fitted in aglobai 
optimization step to silhouette-contour and multi-camera stereo data 
derived from all images. The non-rigid displacement of the mesh from 
frame to frame, the 3D motion field, is determined from the spatio­
temporal derivatives in all the images. We integrate these cues over 
time, thus producing an animated representation of the talking head. 
Our ability to estimate 3D motion fields points to a new framework for 
the study of action. The 3D motion fields can serve as an intermediate 
representation, which can be analyzed using geometrical and statisti­
cal tools for the purpose of extracting representations of generic human 
actions. 

1. INTRODUCTION 
What does it mean to understand an action? One understands an 

action if one is able to imagine perjorming an action with images that 
are sufficient for serving as a guide in actual performance. To he ahle 
to visualize or virtualize an action in our mental theater, we have to 
develop a spatio-temporal action description of the ohject in space that 
is performing the action. What are the key points in figuring out the 
nature of action representations? 

1 Action representations are view independent. We are ahle to rec­
ognize and visualize actions regardless of viewpoint. 
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2 Action representations capture dynarnic information which is man­
ifested in a long image sequence. Put simply, it is not possible to 
understand an action on the basis of a small sequence of frarnes 
( viewpoints ) . 

3 Action representations are made up of a combination of shape and 
movement. 

To gain insights on action representations we consider them in a hierar­
chy. First there is the image data, that is, videos of humans in action. 
Considering the cue of motion, then our image data arnounts to a se­
quence of normal flow fields computed from the videos. The second 
kind of representations are intermediate descriptions encoding informa­
tion about 3D space and 3D motion, estimated from the input (video). 
These representations consist of a whole range of descriptions of differ­
ent sophistication encoding partially the space-time geometry, and they 
are view and scene dependent. Finally, we have representations encod­
ing the characteristics of actions, and these representations are view and 
scene independent. The most sophisticated intermediate representation 
for the specific action in view that could be obtained is then a sequence 
of evolving 3D motion fields (also known as range fiow (Spies et al., 
2000) or scene fiow (Vedula et al., 1999)). Acquiring this representation 
is no simple matter, but it can be achieved by employing a very large 
number of viewpoints (e.g., for a general overview about human motion 
modeling see (Aggarwal and Cai, 1999) and (Gavrila, 1999)). 

As an exarnple for an interesting action, we will examine facial expres­
sions. Several image sequences of a talking and moving head were si­
multaneously recorded by a large number of carneras. From these image 
sequences a three-dimensional mesh model of the head was constructed 
and the trajectories of the mesh vertices in space-time, the evolving 
motion fields, were determined. 

Due to the large number of possible applications, for example in the 
field of human-computer-interaction or in entertainment (e.g., "Motion 
Capturing"), a lot of work has been done on the creation of 3D models 
of faces and the synthesized and recognition of facial expressions. Most 
approaches made use only of a few viewpoints at a time, thus they were 
not utilizing all the available constraints and information. For example, 
(Fua and Miccio, 1999) and (Pighin et al. , 1998) fitted a predefined 
animation model to image data from few views and (Vetter and Blanz, 
1998) used a single image in an analysis-by-synthesis loop. 

Other methods need complicated prior motion and face models (e.g., 
(Terzopoulos and Waters, 1993) and (Essa and Pentland, 1997) use a 
physics-based model with anatomically correct muscles) or tracking mark-
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ers on the face (.e.g, (Guenter et al., 1998)) to extract the facial expres­
sions. The difference to our approach is that we construct a full three­
dimensional model without manual intervention and without relying on 
any prior model. The 3D motion fiow on the head surface is computed 
directly from image derivatives, not on the basis of optical fiow. Stereo 
and motion estimation were combined into one framework similar as in 
(Zhang and Kambhamettu, 2000) and (Malassiotis and Strintzis, 1997). 
But in their work in contrast to our approach the scene is still param­
eterized in the image space of the base view, whereas we use the more 
natural object space parameterization. By moving the representation 
from image to object space, the algorithm can handle arbitrary camera 
arrangements and can make use of robust regularization constraints on 
the object surface, because physical tissue deforms in a continuous and 
smooth manner. The use of multi-camera setups for the computation 
of full 3D fiow has only recently become feasible due to sinking costs 
of image capture and computer equipment (for an example see Vedula 
et al., 2000). 

In building scene-independent representations for facial expressions, 
it is essential to separate the 3D motion fiow field into a component due 
changes of pose and a component due to the facial expression. Former 
approaches used simplified models such as planar models plus parallax 
for the head motion and affine motion models for the facial expressions 
(e.g., Bascle and Blake, 1998 and Black and Yacoob, 1997). By using the 
changing silhouettes and the rigid surface regions of the object to deter­
mine the rigid motion, we can compensate for the change in pose. After 
subtracting the rigid motion fiow component from the full fiow, we are 
left with the non-rigid residual motion describing the facial expression 
that can be analyzed or used for reanimation of other models. 

2. PRELIMINARIES AND DEFINITIONS 
We have established in our laboratory a multi-camera network con­

sisting of sixty-four cameras, Kodak ES-31O, providing images at a rate 
of up to eighty-five frames per second; the video is collected directlyon 
disk -the cameras are connected by a high-speed network consisting of 
sixteen dual processor Pentium 450s with 1 GB of RAM each (Davis 
et al., 1999). 

The camera configuration is parameterized by the camera positions 
Tk, the rotation matrices Rk that relate the camera coordinate system to 
the fiducial system, and the intrinsic camera parameters Kk (bold-face 
letters denote vectors, smallietters scalars, and large letters matrices). 
The calibration is done using images of a large calibration object. In 
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Figure 1 Calibrated Camera Setup with Example Input Views 

the following we assurne that the images have already been corrected 
for radial distortion. The image formation process is described by the 
conventional pinhole camera model, where the point P in fiducial world 
coordinates is related to its projection Pk in camera k as follows (z = 
[OOl]T): 

(1) 

The head surface is approximated by a closed mesh with vertices Vi and 
triangular facets F j . The world coordinates of Vi(t) = [Xi(t), Yi(t), Zi(t)] 
are dependent on time t. Since we formulate the structure and motion 
estimation in object space, the image information needs to be sampled in 
regular patterns on the mesh surface instead of in regular patterns on the 
images. Therefore, a set of regularly spaced sampling points is associated 
with each triangle. The number of sampling points is dependent on the 
visible area of the triangle in the different cameras. 

It is assumed that the head is the only moving object in all the image 
sequences, although this assumption is not essential and can be elimi­
nated by applying the algorithm in turn to each independently-moving 
object. The following sections describe the algorithm that computes the 
spatio-temporal representation of the moving and talking head (from 
now on called the "object"): 

• Section 3: Motion-based segmentation of the input images to 10-
cate the moving object, compute its silhouettes, and initialize the 
deformable 3D mesh. 
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• Section 4: Multi-camera stereo refinement of the deformable mesh 
where the search space is constrained by the silhouettes. 

• Section 5: Computation of the 3D motion field on the mesh surface 
from image derivatives based on the normal flow constraint. 

3. IMAGE SEGMENTATION 
We incrementally construct an image of the background by modeling 

the temporal evolution of the changing foreground pixels and the static 
background pixels. The magnitude of the temporal image derivatives 
and image statistics such as mean and variance are computed for each 
pixel on ten consecutive frames in the sequence and then used to segment 
the image into fore- and background. We integrate information over time 
to make the segment at ion more robust by applying order-statistic filters 
over small spatio-temporal volumes. After the initial segment at ion , 
we intersect the cone-shaped spaces formed by repro jecting the convex 
hulls of the head silhouettes into space. The intersection is a convex 
approximation of the head and it defines the initial 3D surface mesh. 
The mesh is now back-projected into each image and the segmentation 
is refined by fitting the mesh to all silhouette contours simultaneously. 

4. MULTI-CAMERA STEREO ESTIMATION 
Using only information from silhouettes, it is not possible to com­

pute more than the visual hull (Laurentini, 1994) of the object in view. 
Therefore, to refine our 3D surface estimate of the object, we adapt the 
vertices of the mesh to optimize the correlation between correspond­
ing image regions in the different camera views. The search range for 
the vertex positions is constrained by the displacement boundaries com­
puted in the silhouette estimation step in Section 3. To determine the 
visibility of each triangle, a z-buffer algorithm computes the index of the 
dosest triangle patch for each pixellocation. Next, a regular sarnpling 
point pattern is assigned to each mesh triangle as described before in 
Section 2, so that the sarnpling density of the dosest image is ab out one 
projected sarnpling point per pixel. 

We optimize orientation and position of each triangle by displacing 
each triangle vertex along the surface normal direction of the mesh and 
maximizing a similarity criterion arnong the triangle projections. The 
criterion to be optimized is the normalized cross-correlation between the 
projections of each triangle into all the cameras in which the triangle is 
visible (we denote this set of cameras as the set of "visible cameras"). 
For all combinations of normal displacements of the three vertices we 
compute the 3D coordinates of the sampling points on the triangle sur-
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face and project the sampling points into all the visible cameras. The 
image brightness of a projected sampling point is determined by bilinear 
interpolation. The cross-correlation is now computed between the corre­
sponding image brightness sampies for all pairs of cameras that mutually 
see the triangle. We combine the correlation scores from all the camera 
pairs by taking a weighted average with the weights depending on the 
angle between camera plane and triangle plane. 

The pairwise scores between all the cameras are also used to correct 
the visibility information. If abimodal distribution of high and low 
correlation scores can be detected, then it is possible to estimate which 
cameras are visible and whieh are not, and the occluded cameras can 
be excluded from the score. For each vertex we collect the normal dis­
placements corresponding to the highest correlation score for each of 
the surrounding triangles and determine the final normal displacement 
subject to global smoothness and rigidity constraints which have been 
added to regularize the solution. 

5. MOTION ESTIMATION 
Following the description of the photometrie properties of a surface 

in space in (Horn, 1986) and (Vedula et al., 1999), the head surface is 
assumed to have Lambertian reflectance properties, thus the brightness 
intensity of a pixel Pk in camera k is given by 

I(Pk; t) = -Ck . p(P) . [n(P; t) . s(P; t)] (2) 

with an albedo p(P) that is constant over time (dpjdt = 0) and where 
ck is the constant that describes the brightness gain for each camera, 
n is the normal to the surface at P, and s the direction of incoming 
light. Taking the derivative with respect to time on both sides, we get 
the following expression for the change of the image brightness I(Pk) at 
pixel location Pk in camera k: 

dI(Pk) = '\J I(Pk) . dPk + ala(Pk) = -Ck . p(P) . dd [n(P; t) . s(P; t)] (3) 
& & t t 

Since our sequences were recorded with a frame rate of 60 Hz and 
under fixed illumination, we can assume that ft [n . s] = 0, and we end 
up with the well-known normal flow constmint equation. 

_ aI(Pk) = '\J I(Pk) . dPk (4) 
at dt 

This equation gives us one constraint per measurement, we can only 
determine the component of the optic flow that is normal to the im­
age gradient, the normal flow. The estimation of the tangential flow 
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along the iS<rbrightness contour is ill-posed. Regularizing the problem 
by imposing image-based smoothness conditions on the solution to equa­
tion (4) introduces artifacts at depth discontinuities and biases due to 
inhomogeneous gradient distributions (Fermüller et al., 2000). 

Each normal flow vector in an image constrains the projection of the 
3D motion flow to lie along a line parallel to the iso-brightness contour 
in the image, the normal flow constraint line. Thus the 3D motion flow 
vector has to lie on the plane defined by the normal flow constraint line 
and the optical center of the camera. The component of the 3D motion 
along the iS<rbrightness contour on the object surface is not recoverable. 
This is the aperture problem revisited in 3D. Nevertheless, if we assurne 
that neighboring patches on the surface will move in an elastic manner, 
we can impose smoothness constraints on the motion of neighboring 
points. This smoothness assumption is physically justified as long as 
our mesh model has the same topology as the object in view, because 
nearly all real materials deform elastically when strain is applied. 

The mesh representation of the head defines a correspondence map 
between the cameras, and the full 3D motion flow at each mesh vertex is 
determined by combining the information from all the sampling points 
of the triangles neighboring the mesh vertex. To relate image derivatives 
and 3D motion flow using the normal flow constraint, we have to deter­
mine the Jacobian of the image formation equation (1) (R3 is third row 
of matrix R and K, R, T refer to the calibration parameters of camera 
k): 

dPk = 8Pk 8Pk = 8P K R(P - T) = (KR - PkR3) 8P (5) 
dt 8Pk 8t 8t R3(P - T) R3(P - T) 8t 

The derivative images are sampled at alilocations where the sampling 
points associated with each triangle are visible. Let a given triangle of 
the mesh be defined by the vertices VI, V2, V3, then for each sampling 
point P = ~j=I,2,3 Aj V j of this triangle we get the following constraint 
equation for each measurement: 

_ 8I(Pk) = "" A' (VI( ). KR - PkR3) 8Pj (6) 
8t j~,3 3 Pk R3(P - T) 8t 

There is one equation per sampling point per visible image. To in­
tegrate these constraints, we stack these equations to form the m x n 
matrix L where m is the number of sampling points over all the triangles 
and their projections into all the visible cameras and n the number of 
vertices of the mesh times the three spatial dimensions. The matrices for 
the models presented are on the order of 100000 x 3000. To regularize 
the solution we add smoothness constraints as extra rows to L. 
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Since it is computationally infeasible to solve this large system di­
rect1y, we form the normal equations of the over-constrained system and 
solve them with a preconditioned conjugate gradient method with either 
the motion field of the previous frame or the solution to a rigid motion 
approximation as starting vectors. The second choice worked very weH 
to initialize the optimization, because most parts of a human head move 
rigidly. The magnitude of the residual non-rigid fiow is used to segment 
the mesh into rigidly and non-rigidly moving areas. This enables us to 
separate the motion field into two parts, one due to the change of pose 
and one due to the expression on the face. 

6. RESULTS 
For our experiments we used eleven cameras placed in a dome-like 

arrangement around the head of a person that was expressing surprise 
(Figure 1). After the initial structure estimation stage of our algorithm, 
we are able to synthesize texture-mapped views of the head from arbi­
trary viewing directions (Figures 2a-2c). The textures, coming always 
from the least oblique camera with respect to a given triangle, were not 
blended together to demonstrate the good agreement between adjacent 
texture region boundaries. This demonstrates that the spatial structure 
of the head was recovered very weH. 

The 3D motion fiow field for the current frame is computed and used 
to propagate the mesh to the next frame. The propagated mesh is refined 
by new stereo and silhouette data, before the next 3D motion fiow field 
is computed, and the process is repeated. The 3D motion field shown in 
(Figures 2d-2fl) was computed by integrating the 3D fiows of frames 40 
to 45. 

The rigid motion fiow was computed by parameterizing the 3D motion 
fiow vectors by the instantaneous rigid motion ßP jßt = v+w xP, where 
v and w are the instantaneous translation, and rotation (Horn, 1986). 
This parameterized fiow field was then fitted to the image derivative 
information in the images. By subtracting the rigid motion fiow from 
the fuH fiow, we extract the non-rigid fiow. It can be seen that the rigid 
motion part (the turning of the head to the upper left) is recovered weH, 
as the magnitude of the residual non-rigid fiow on the rigid part of the 
head (e.g., forehead, nose and ears) in Figure (2e) is significantly smaHer 
than the full fiow in Figure (2d). 

The non-rigid motion is also computed accurately, as we can easily 
see in the elose up of the mouth region (Figure 2f), how the mouth 
opens, and the skin of the jaw stretches recedes. Animations of the re-
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(a) Three Novel Views 

(c) Mapped Model 

(e) Non-Rigid 3D Motion Flow 

(b) from the Texture 

(f) Non-Rigid Flow 
elose Up of Mouth 

Figure 2 Results of 3D Structure and Motion Flow Estimation 

covered model and fiow fields can be found at the following web address: 
http://www.videogeometry.com/TalkingHeads. 
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7. CONCLUSION AND FUTURE WORK 
We presented an algorithm that computes an accurate spatio-temporal 

description of a non-rigidly moving human head. The description con­
sists of the spatio-temporal trajectories of the mesh vertices, the evolving 
motion fields. 

To see how these motion fields can be used, let us now consider the 
mapping from the 3D motion fields to the scene independent action 
representations. This mapping should be such that it extracts from a 
specific action quantities of a generic character common to all actions of 
the same type. These quantities most probably take the form of spatio­
temporal patterns in four dimensions. 

One way of obtaining such patterns is to perform statistics on a large 
enough sampIe (e.g., Reynard et al., 1996). Considering, a particular 
action (e.g., talking or dancing), we can obtain data in the multi-camera 
laboratory deseribed before for a large number of individuals. In each 
case we ean obtain a 3D motion field and thus are able to build up 
a large data base of 3D motion fields. To this database a number of 
statistical teehniques, such as principal eomponent analysis, can be ap­
plied to reduee the dimensionality of the space and deseribe it with a 
sm all number of parameters. Another way of obtaining these patterns 
would be to study invariances related to symmetry, and geometrie quan­
tities in space-time (e.g., angles, velocities, accelerations, periodicity, etc. 
(Bottema and Roth, 1979)). 

In our future work, we will apply the above mentioned statistical and 
geometrical methods to the evolving 3D motion fields and try to extract 
the action representations. To improve the presented algorithm we plan 
to incorporate explicit visibility updating into the stereo part of the 
algorithm and inelude further information such as range flow eonstraints 
(see Spies et al., 2000) between the eonseeutive stereo reconstruetions. 
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