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Abstract Influenza A viruses (IAV) are members of the Orthomyxoviridae family
of negative-sense RNA viruses. The greatest diversity of IAV strains is found in
aquatic birds, but a subset of strains infects other avian as well as mammalian
species, including humans. In aquatic birds, infection is largely restricted to the
gastrointestinal tract and spread is through feces, while in humans and other
mammals, respiratory epithelial cells are the primary sites supporting productive
replication and transmission. IAV triggers the death of most cell types in which it
replicates, both in culture and in vivo. When well controlled, such cell death is
considered an effective host defense mechanism that eliminates infected cells and
limits virus spread. Unchecked or inopportune cell death also results in
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immunopathology. In this chapter, we discuss the impact of cell death in restricting
virus spread, supporting the adaptive immune response and driving pathogenesis in
the mammalian respiratory tract. Recent studies have begun to shed light on the
signaling pathways underlying IAV-activated cell death. These pathways, initiated
by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected
cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of
ZBP1-mediated cell death signaling following IAV infection.

1 Introduction

Influenza A virus (IAV) is a segmented negative-sense RNA virus of the family
Orthomyxoviridae. Eight genome segments are packaged in ribonucleoprotein
(RNP) complexes to form the capsid that is enclosed within a lipid bilayer envelope
derived from host cell membranes. The virion envelope contains two virus-encoded
glycoproteins, hemagglutinin (HA or H), and neuraminidase (NA or N).
Eighteen HA and eleven NA variants have been serologically distinguished and
used to identify IAV subtypes (e.g., H1N1, H5N1, and H7N9). IAV is unique in
that these subtypes undergo antigenic drift over time. In addition, co-infection of
cells with two different subtypes can result in exchange of genome segments
between subtypes and generation of reassortants bearing new combinations of
genome segments. Such reassortment can result in antigenic shift. IAV enjoys a
wide species distribution, with the broadest subset of viral strains infecting aquatic
birds, the primary reservoir of IAV diversity. In aquatic birds, gastrointestinal
infection predominates, with few, if any, symptoms occurring during infection with
common subtypes. Transmission to other avian species, such as poultry, often
results in host adaptation and specialization, including replication in the respiratory
tract, producing new strains that lose their ability to infect or transmit within the
original avian species. This partitioning creates strains that become adapted to
specific hosts (Yoon et al. 2014).

Fewer IAV subtypes infect mammals than avian species; however, these also
display the same extreme partitioning, such that canine, equine, feline, porcine, and
human viruses are characterized by distinct subtypes that each exhibits reduced
fitness in other species (Yoon et al. 2014). This species restriction results from the
presence in respiratory epithelium of enzymes that are capable of HA cleavage and
activation (Bottcher-Friebertshauser et al. 2013). HA mediates virus binding to
specific sialic acid moieties on the surface of target cells, leading to
receptor-mediated endocytosis (Lakadamyali et al. 2004). Entry is completed from
within endosomes, where acidification triggers a conformational change in HA (this
is the step that requires HA to be appropriately cleaved), resulting in fusion of the
virion envelope with the endosomal membrane and the deposition of viral RNPs
into the cell cytoplasm. From here, RNPs are trafficked to the nucleus, where the
viral RNA-dependent RNA-polymerase complex produces positive-sense RNAs

42 P. G. Thomas et al.



that not only serve as mRNA precursors for synthesis of new virus proteins, but also
as template RNAs for production of negative-sense viral genomes (te Velthuis and
Fodor 2016).

The newly produced viral proteins and genomes assemble into progeny virions
at the plasma membrane (Rossman and Lamb 2011). As the nascent virions bud
from the cell, the envelope NA protein cleaves sialic acids to which the budding
virus is bound, releasing free virions. The frontline anti-IAV drug oseltamivir is an
NA inhibitor that arrests virus budding prior to release from the cell surface (Air
2012). Either inside the respiratory epithelial cell or on the cell surface, host pro-
teases carry out HA cleavage/activation, thereby rendering progeny virus competent
for successive rounds of infection.

In humans and other mammals, IAV infects epithelial cells lining the respiratory
tract, from the nasal passages to the soft palette and the lung airways down to the
alveolar epithelial cells (AECs) (Sanders et al. 2011). Transmission occurs pri-
marily as a result of viral replication in the upper respiratory tract, particularly the
soft palette (Lakdawala et al. 2015). Severe disease, in contrast, is often associated
with infection in the lower respiratory tract, such that the extent of lung involve-
ment correlates with disease outcomes in both humans and animals (Sanders et al.
2013; Soto-Abraham et al. 2009; Beigel et al. 2005; Watanabe et al. 2011; Belser
et al. 2010; Shieh et al. 2010; Fujita et al. 2014). Type I and type II AECs are the
primary replicative niches for IAV in mammalian lungs, although this depends on
both the virus strain and the host species (Cardani et al. 2017; Sanders et al. 2013;
Weinheimer et al. 2012; Rosenberger et al. 2014). Goblet cells, club cells, and
ciliated cells are also capable of being infected by IAV (Heaton et al. 2014; Edinger
et al. 2014). A schematic representation of the lower respiratory tract, showing
terminal bronchioles, alveoli, and their primary structural cell types, is shown in
Fig. 1. Sialic acid moieties on glycoproteins on the surface of these respiratory cell
types dictate their capacity to become infected by distinct strains of IAV. Among
mammals, pigs and ferrets share similar patterns of sialic acid distribution to
humans, making them appropriate models for studies of IAV transmission (Kuiken
et al. 2010; Thangavel and Bouvier 2014; and Wasik et al. 2017). In contrast, IAV
does not transmit efficiently in the mouse and typically requires some adaptation for
efficient replication. Despite these limitations, immune response parameters and
pathogenicity profiles in this model are largely consistent with human disease
(Samet and Tompkins 2017). Moreover, the vast repertoire of genetic and
immunological tools available in the mouse makes it by far the most extensively
used model for IAV studies in vivo.

In this chapter, we will discuss the mechanisms of cell death in the respiratory
tract that occur during mammalian IAV infections, with a focus on contributions of
cell death to disease outcome.
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2 Role of Cell Death in IAV Immunity and Pathogenesis

2.1 Cell Death in Innate Control of Initial Replication
and Spread

Laboratory studies of IAV infections in naïve mice lacking any adaptive immune
memory toward IAV reveal that peak viral titers (in the whole lung) occur three to
five days after infection (Fig. 2). Virus titers decrease after this time, despite a lack
of any detectable adaptive immune response to IAV. Indeed, the earliest emergence
of adaptive immune effectors in the lung of naïve animals, including CD4+ T cells,
CD8+ T cells, and antiviral antibodies, takes place around five days after infection
(Doherty et al. 2006). Even in immune-deficient Rag2−/− mice, a slight but mea-
surable reduction in virus burden is apparent following peak titers three days after
infection, although these mice never resolve the infection and eventually succumb
to IAV (Wu et al. 2010). The initial control of virus load is, in large part, mediated
by type I (predominantly a/b) and type III (k) interferons (IFNs). These cytokines
not only reduce the amount of virus produced per infected cell, but together limit
spread of infection to neighboring, uninfected cells (Mordstein et al. 2008, 2010).
Type I and III IFNs are chiefly produced by RIG-I-like receptor (RLR) and Toll-like
receptor (TLR)-dependent signaling pathways, and exert their impact via the
induction of hundreds of IFN-stimulated genes (ISGs). Among these ISGs are those

Fig. 1 Structural cell types of the lower respiratory tract. Terminal bronchioles comprise of a
mix of ciliated cuboidal epithelial cells and non-ciliated club cells, which are secretory cells that
protect, detoxify, and repair airways. These bronchioles divide into alveolar ducts that terminate in
alveoli, comprised primarily of type I and type II AECs. Type I AECs are very thin epithelial cells
constituting the majority (>95%) of the alveolar epithelium and are responsible for gas exchange
during respiration. Type II AECs make up the rest of the alveolar structure and are interspersed
among type I AECs, typically at junctions of alveolar septal walls. These secretory cells produce
surfactant and are required for maintenance of alveolar structure and integrity
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encoding key components of the host cell death response to IAV, including ZBP1,
MLKL, and TRAIL (discussed in more detail later), indicating that promoting
programmed cell death of the infected cell is a key mechanism by which IFNs exert
their antiviral properties. Indeed, mathematical simulation (i.e., so-called target cell
limited models) of human and mouse IAV infection requires simple elimination of
available target cells to account for in vivo virus titer data, without need to invoke
other innate or adaptive antiviral clearance mechanisms (Baccam et al. 2006). Thus,
cell death likely constitutes the dominant mechanism by which innate immune host
defense defines the peak carrying capacity of virus titer, limits virus spread, and
brings IAV infection under control.

Although programmed cell death mechanisms restrict virus spread within the
lung airways, the death of epithelium is also a dominant driver of IAV
infection-associated morbidity and mortality (Davidson et al. 2014). In particular,
the loss of type I AECs (which are essential for gas exchange) above a threshold
level of *10% correlates with mortality of IAV-infected mice (Sanders et al.
2013). In humans, lesions in the lower respiratory tract are a consistent finding in
autopsies of fatal cases of the 2009 pandemic H1N1 virus (Mauad et al. 2010; Shieh
et al. 2010). Dying cells can overwhelm cell clearance and tissue repair mecha-
nisms, and reduce pulmonary function by promoting the recruitment of inflam-
matory cell types (e.g., monocytes, neutrophils) and by causing the leakage of fluid
(edema) into the lung. Indeed, the generalized inflammatory environment triggered
by cytokine production from infected epithelial cells and responding professional

Fig. 2 Virus and host response dynamics during influenza infection. Influenza infection
proceeds in infected naïve mice and humans through three phases of host responses, beginning
with the early stages of virus growth and the ensuing innate immune response that initially controls
the infection (Phase 1). Viral titer peaks around 3–5 days after infection depending on the virus
strain and host, at which point adaptive immune effectors, including virus-specific CD8+ T cells
and antibodies start to accumulate in the infected lung (Phase 2). Although these effectors first
appear relatively early (starting around day 5), their accumulation is required to facilitate the
clearance of the virus, which is usually complete by two weeks after infection. Effectors linger
through the recovery phase, at which point titratable virus is undetectable but some viral antigen
may remain (Phase 3). This phase is characterized by lung remodeling and repair in an effort to
restore lung function to pre-infection levels
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inflammatory cells correlates with the severity of lung damage. More virulent,
rapidly growing influenza strains, such as avian H5N1 and H7N9 subtypes asso-
ciated with epizootic infections of humans, are more likely to cause such “cytokine
storms”. Variations have been noted between subtypes, with H5N1 inducing higher
levels of inflammatory cytokines than H7N9 (Meliopoulos et al. 2014; de Wit et al.
2014; Chan et al. 2013). The reconstructed 1918 pandemic H1N1 virus also dis-
played a pattern of rapid growth in macaques, accompanied by elevated levels of
cytokines, severe inflammation, and extensive alveolar cell death (Kobasa et al.
2007). This rapid growth was dependent on both HA and polymerase complex
function (Watanabe et al. 2013). Despite several features of exacerbated inflam-
mation in infected animals, the type I IFN response to the 1918 H1N1 strain was
remarkably blunted, compared to a conventional H1 IAV infection, suggesting that
the severe outcomes observed in experimental animals and seen during the
worldwide pandemic caused by this virus may have resulted from a profoundly
dysregulated immune signature that drove excess alveolar cell death. Thus, when
metered appropriately, cell death represents a host defense mechanism that limits
virus spread as well as immunopathology early in an infection. But when uncon-
trolled (e.g., during infection with highly-virulent strains of IAV), severe damage to
airway epithelia and consequent host mortality may occur, despite resolution of
infection. Such severe pathology is observed in mouse models, where destruction of
airway epithelium is a common feature of lethal IAV infection (Sanders et al. 2011,
2013; Kash et al. 2006; Brandes et al. 2013; Hogner et al. 2013), and in humans,
where death of lower pulmonary tract epithelium, marked by areas of bron-
chioalveolar necrosis, is a classic feature of IAV-induced acute respiratory distress
syndrome (ARDS) (Korteweg and Gu 2008; Mauad et al. 2010).

2.2 Cell Death During the Adaptive Immune Response
to IAV

The earliest cell-mediated immune responses against IAV are NK cell-dependent
which, through the production of IFN-c and other cytokines, recruit additional
inflammatory cells to sites of infection (Zamora et al. 2017) (Fig. 2). NK cells can
also directly kill infected cells via secretion of toxic granules (Jost and Altfeld
2013). The adaptive immune response to IAV is largely driven by surface
glycoprotein-directed antibodies (e.g., HA, NA) that mediate clearance of virus and
dictate immune memory. Virus-specific CD8+ T cells also contribute to the elim-
ination of infected epithelial cells and the ultimate clearance of replicating virus.
CD8+ T cells are primary mediators of cell death during the adaptive phase of
the anti-IAV immune response, although non-CD8+ T cell killing by
antibody-dependent cellular cytotoxicity is emerging as a contributor to this pro-
cess, with particular implications for the development of “universal” influenza
vaccines (Von Holle and Moody 2019). In mouse models of infection with
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attenuated strains of IAV, either anti-IAV antibodies or virus-specific CD8+ T cells
are competent to promote viral clearance. In more severe infections, however, CD8+

T cells are generally required for recovery (Doherty et al. 2006).
In naïve animals or humans, the CD8+ T cell response is first detected around

five days post-infection and IAV-specific CD8+ T cells accumulate to peak levels
by approximately ten days after infection (Fig. 2). Secondary recall responses in
previously exposed individuals are rapid, with lung resident or circulating
virus-specific T cells capable of responding within hours after infection and
peripheral cells recruited back to the lung within two days post-infection. In mice,
the peak of secondary T cell responses are also typically earlier, resulting in more
rapid virus clearance. Considering that the majority of humans will have had their
first influenza infection by the age of two, older children, adults, and certainly the
elderly, predominantly mount secondary-, tertiary-, or higher-level recall responses
to the annual cycles of IAV infection (Oshansky and Thomas 2012).

The mechanisms of antiviral activity by CD8+ T cells include cytokine pro-
duction, particularly IFN-c and TNF-a, each of which are made in large amounts.
Both these cytokines can prime target cells for apoptosis and necroptosis (Shinbori
et al. 2004; Kalliolias and Ivashkiv 2016; Thapa et al. 2013). The exquisite
specificity of CD8+ T cells, though, lies in their ability to selectively target infected
cells by recognition of virus-specific antigenic peptide-MHC complexes on the
surface of these cells, although collateral damage to nearby uninfected cells may
occur (van de Sandt et al. 2017). CD8+ T cells deploy a number of killing mech-
anisms, including the secretion of granules containing perforin and granzymes as
well as the engagement of death receptor pathways, including Fas/FasL and
TRAIL/TRAIL-R (Herold et al. 2008; Hufford et al. 2015). The relative importance
of these pathways is dependent on host and viral factors, such that they can be either
protective or pathological depending on the strain of virus and overall virus load
(Duan and Thomas 2016). Endogenous mechanisms of restraining CD8+ T cells
during the effector response, such as via expression of PD1 or other immune
checkpoints, are enhanced by severe infection and a highly inflamed environment.
In these scenarios, blocking PD1-PDL1 signaling results in increased CD8+ T cell
effector function, and is often accompanied by increased pathology, morbidity,
and/or mortality (Rutigliano et al. 2014; Erickson et al. 2012; McNally et al. 2013).

Thus, as in the case of the early innate response, the effectiveness of the adaptive
response depends on the ability of T cells to clear infected cells without compro-
mising the ability of the lung to function or the capacity of the host to restore
normal function to areas where damage has occurred. The large number of infil-
trating T cells and their tremendous potency, however, makes this balance some-
what more precarious, and so it is perhaps not surprising that severe morbidity and
mortality often occurs after viral clearance when CD8+ T cells remain in circulation
in high numbers. One study suggests that the ultimate success or failure of adaptive
immunity in clearing virus without irretrievably compromising host lung function
can be determined by a viral “tipping point” at the onset of adaptive immune
effector infiltration (Hatta et al. 2010). Viruses that have successfully evaded innate
immune control, and/or that have proliferated aggressively and generated tissue
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damage as they have spread through the lung, will necessarily elicit a significantly
more robust adaptive response than will viruses that do not manifest these
behaviors. Above a critical tipping point, while the adaptive response may be
capable of eliminating all infected cells, such killing would only come at the cost of
irrevocable damage to the lung. Thus, the dynamic interplay of virus titers, the
innate response, induction of cell death and inflammation, and the ensuing adaptive
immune response combine to dictate eventual disease outcome.

3 Molecular Mechanisms of IAV-Induced Cell Death

It has been known for decades that IAV is a lytic virus. Epithelial cell lysis rep-
resents a major cause of influenza disease progression and pathogenesis, as well as
of susceptibility to secondary bacterial infections in the lower respiratory tract.
Indeed, the ability of IAV to kill infected cells underlies the standard plaque assay,
an established method of quantifying virus by counting localized areas of dead
cells, called plaques, in monolayers of infected cells. Before recent studies, this
death was attributed to apoptosis, autophagy, or simply to passive, unprogrammed
lysis of the infected cell (Yatim and Albert 2011; Herold et al. 2012). Of the
pathways of programmed cell death, apoptosis was the first to be implicated in
mediating the killing of IAV-infected cells (Herold et al. 2012). Over the years,
various studies have revealed roles for both extrinsic (i.e., mediated by death
receptors of the TNFR superfamily) and intrinsic (i.e., mitochondrial) pathways of
apoptosis in IAV-associated death of epithelial and immune cells in culture, and of
lung cell types in vivo (Herold et al. 2012). Type I IFNs and ISGs (e.g., PKR,
TRAIL) produced during active IAV infection potentiate IAV-induced apoptosis
(Balachandran et al. 2000a, b; Herold et al. 2012; Takizawa et al. 1996; Hogner
et al. 2013). Several viral proteins, including NS1, PB1-F2, and M2, modulate
apoptotic death outcomes (Herold et al. 2012; Yatim and Albert 2011). As IFNs
exacerbate IAV-induced apoptosis (Balachandran et al. 2000b; Hogner et al. 2013),
and as virus-encoded proteins such as NS1 delay or prevent IFN-mediated and other
apoptotic pathways (Krug 2015), apoptosis is primarily considered a cell-intrinsic
host defense mechanism that eliminates infected cells to prevent such cells from
becoming virus factories. Interestingly, IAV may take advantage of the apoptosis
machinery to boost replication, as caspase-3 deficiency compromises IAV repli-
cation (Wurzer et al. 2003). In line with these findings, the IAV protein PB1-F2 has
pro-apoptotic activity in certain settings (Kosik et al. 2013). IAV also activates an
autophagic response in infected cells, subject to modulation by M2 (Beale et al.
2014; Gannage et al. 2009). Collectively, these observations demonstrate a complex
interplay between IAV and the host apoptotic and autophagic machinery, and
suggest that, early in the virus life cycle, IAV impedes induction of cell death, via
blockade of both apoptosis and autophagy, to prolong cell viability and allow the
virus time to replicate. Later in the replicative cycle, IAV may promote cell death to
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not only eliminate immune and barrier cells that would otherwise limit viral spread,
but also to potentially render death of the infected cell as immunologically “silent”
as possible.

The mechanisms by which IAV regulates death receptor and mitochondrial
apoptosis, as well as the significance of autophagy and apoptotic death modalities to
IAV replication and pathogenesis have been comprehensively reviewed elsewhere
(Herold et al. 2012; Yatim and Albert 2011; Peteranderl and Herold 2017). Here,
we will focus on previously unrecognized pathways of IAV-activated cell death
mediated by the host sensor protein ZBP1 and its downstream effector receptor
interacting protein (RIP) kinase (RIPK)3.

3.1 Role of RIPK3 in IAV-Initiated Cell Death

RIPK3 is the mediator of a form of programmed necrotic cell death known as
necroptosis (Pasparakis and Vandenabeele 2015). Necroptosis is activated by virus
and microbial infections, and by RIP homotypic interaction motif (RHIM)-depen-
dent innate immune signaling pathways, most notably those initiated by TNF, IFNs,
and TLRs (Vanden Berghe et al. 2016). Once activated, RIPK3 assembles a
cytosolic signaling complex that contains, at a minimum, the additional proteins
RIPK1, FADD, caspase-8, and MLKL (Li et al. 2012; Moquin et al. 2013; Zhang
et al. 2016). Under conditions where FADD or caspase-8 activity is compromised,
RIPK3 phosphorylates and activates MLKL, which then oligomerizes and traffics to
the plasma membrane where it mediates pore formation, triggering cell swelling
and lysis (Zhang et al. 2016). Necroptosis causes the extensive release of DAMPs
into the extracellular space and is considered highly inflammatory and immuno-
genic (Pasparakis and Vandenabeele 2015; Silke et al. 2015; Aaes et al. 2016).
Notably, necrotic pathology is observed in mice during lethal IAV infection
(Sanders et al. 2011, 2013; Kash et al. 2006; Brandes et al. 2013) and in human
patients with severe IAV disease and ARDS (Korteweg and Gu 2008; Mauad et al.
2010).

Saleh and colleagues first implicated RIPK3 in IAV-activated cell death
responses when they observed that mice lacking the E3 ubiquitin ligase cIAP2 were
hypersusceptible to IAV-triggered lethality (Rodrigue-Gervais et al. 2014). IAV
infection induces severe bronchiolar degradation via a RIPK3-dependent death
pathway in cIAP2-deficient mice. Crossing cIAP2-deficient mice onto a RIPK3-null
genetic background ameliorated pulmonary tissue damage and reversed hypersus-
ceptibility to IAV lethality. Eliminating expression of TRAIL and Fas ligand in the
hematopoetic compartment also ameliorated disease susceptibility, implicating
these death receptor ligands in activation of necroptosis during IAV infections.
Interestingly, neither the kinetics of virus clearance nor the adaptive immune
response to IAV were significantly altered in the absence of cIAP2, suggesting that
cIAP2 promoted disease primarily by lowering the threshold for RIPK3 activation
by Fas and TRAIL receptors. The authors speculated that activation of these death
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signals in epithelial cells was likely a “bystander” effect, arising more from Fas
ligand/TRAIL-expressing immune cells in the vicinity of the infection, than from
virus replication in the infected cells themselves (Rodrigue-Gervais et al. 2014).
Thus, whether IAV directly activates RIPK3 in infected cells remained unresolved.

We reported that RIPK3 is directly activated by IAV and is required for
IAV-induced death of fibroblasts as well as AECs (Nogusa et al. 2016). Activation
of RIPK3 required replication competent virus and resulted in robust formation of a
RIPK3 complex containing the FADD, RIPK1, and MLKL. From this death
complex, RIPK3 mediated not only necroptosis (via MLKL), but also a parallel
pathway of apoptosis, via RIPK1, FADD, and caspase-8 (Nogusa et al. 2016)
(Fig. 3). Although RIPK3 has been previously shown to activate apoptosis via a
RIPK1-FADD-caspase-8 axis (Cook et al. 2014; Mandal et al. 2014; Newton et al.
2014; Sun et al. 1999), those results were obtained primarily from overexpression
studies, when certain active site mutations were introduced into RIPK3, or when
RIPK3 kinase activity was blunted through the use of chemical inhibitors. Whether
RIPK3-activated apoptosis occurs in physiological scenarios, for example, during
an active virus infection, was unknown. Our finding that IAV triggers
RIPK3-dependent apoptosis in infected cells demonstrates that RIPK3 does indeed
induce apoptosis in physiological settings and positions this virus as the first
pathogen that activates both apoptosis and necroptosis downstream of RIPK3.
Remarkably, apoptosis and necroptosis are fully redundant mechanisms driving
infected cell death. Ablation of MLKL does not much alter the kinetics or the
magnitude of cell death. Instead, the form of death switches to apoptosis. Similarly,
deleting either RIPK1 or FADD switches death to pure necroptosis, without sig-
nificantly altering the degree or timing of death. Only when both apoptosis and
necroptosis downstream of RIPK3 are simultaneously inhibited is cell death
blocked. Notably, activation of necroptosis requires the protein kinase activity of
RIPK3, whereas induction of apoptosis depends on RHIM signaling and proceeds
independently of kinase function. Collectively, these findings demonstrate that IAV
triggers necroptosis without need for concurrent suppression of apoptosis and call
into question the prevalent idea in the field that necroptosis is a backup form of cell
death that is only activated when apoptosis pathways are disabled. Importantly,
RIPK3 is not expressed in most cell lines commonly used in IAV studies, including
HeLa cells and A549 cells (He et al. 2009; Koo et al. 2015), explaining why these
pathways of cell death were overlooked in earlier studies.

The results detailed above (Nogusa et al. 2016) were obtained from viability
analyses of cell populations in culture and do not provide insight into cell death
events at the single-cell level. It was therefore unclear whether RIPK3 activates
both apoptosis and necroptosis in the same cell, resulting in death with mixed
apoptotic and necroptotic features, or whether RIPK3 can activate only one path-
way at a time (on a per-cell basis), and activation of one pathway (e.g., apoptosis)
precludes activation of the other (in this example, necroptosis). Our recent
unpublished data support the idea that apoptosis and necroptosis are mutually
exclusive fates that do not occur in the same cell. These results, obtained from
examination of IAV-infected cells for evidence of apoptosis (i.e., the presence of
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cleaved caspases) or necroptosis (i.e., phosphorylated MLKL) at the single-cell
level by immunofluorescence, showed that the infected cell is positive for either
active caspases or phosphorylated MLKL; very rarely are both signals observed in
the same cell. Thus, once a particular cell fate downstream of RIPK3 is “selected,”
the other likely becomes unavailable. Post-translational modifications of RIPK3 or
its binding partners may represent one mechanism by which the cell commits to one
fate over the other; for example, the results from the Saleh laboratory suggest that
ubiquitylation of RIPK3 may favor downstream execution of apoptosis over
necroptosis (Rodrigue-Gervais et al. 2014). Such a scenario is not without pre-
cendent: in TNF signaling, ubiquitylation of RIPK1 is a chief determinant of
whether a cell activates NF-jB survival signaling or undergoes cell death (Weinlich
and Green 2014). The relative abundance of effector proteins available to RIPK3,
both stochastically on a per-cell level, as well as between individual pulmonary cell
types, is another factor that may determine both mode and magnitude of cell death.
Vaux and colleagues have shown that simple availability of apoptosis verus
necroptosis effectors can determine if RIPK3 will activate one form of death or the
other (Cook et al. 2014). Cells in which levels of FADD, RIPK1, and/or caspase-8
are more abundant than MLKL may therefore preferentially undergo apoptosis

Fig. 3 Model of
ZBP1-induced cell death
following IAV infection.
Replicating IAV produces
viral RNAs that are sensed by
ZBP1 via its Za domains.
Once activated, ZBP1
associates with RIPK3 via
homotypic interactions
between the RHIMs of both
proteins. Downstream of
RIPK3, parallel pathways of
MLKL-driven necroptosis
and RIPK1/FADD/
caspase-8-mediated apoptosis
cooperate to eliminate the
infected cell. ZBP1 also
activates pyroptosis in
macrophages, via RIPK3 and
NLRP3. “ASC,”
apoptosis-associated
speck-like protein containing
a CARD; “KD,” serine/
threonine kinase domain;
“DD,” death domain; “DED,”
death effector domain; and
“Casp,” caspase
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when RIPK3 is activated; conversely, necroptosis may occur when MLKL avail-
ability exceeds those of the apoptosis effectors. Given the higher immunogenic and
inflammatory potential of necroptosis over apoptosis (Yatim et al. 2015), it will be
interesting to determine whether individual lung cell types are primed to undergo
one form of death versus the other upon IAV infection. Intriguingly, neither
pathway of cell death may operate in certain cell types: tenOever and colleagues
have shown that a subset of club cells survive IAV infection in vivo and contribute
to lung inflammation even after virus has been cleared (Heaton et al. 2014).
Similarly, activation of RIPK3 in alveolar macrophages does not trigger cell death.
In this setting, RIPK3 is required for optimal production of type I IFNs by RLRs
(Downey et al. 2017).

3.2 ZBP1 as a RIPK3-Activating Sensor of IAV

Activation of RIPK3 by IAV was found to proceed independently of known RNA
virus-sensing pathways, including PKR, RLRs, or TLRs, suggesting that an as-yet
undiscovered sensing mechanism was responsible for stimulating RIPK3 in
IAV-infected cells. In 2016, two groups, the Kanneganti laboratory and ours,
reported that the protein ZBP1 was essential for IAV-induced cell death in
fibroblasts, airway epithelial cells, and macrophages (Kuriakose et al. 2016; Thapa
et al. 2016). ZBP1 is a 411 a.a. (in mice) protein containing two tandem Za
domains (Za1 and Za2) toward its N-terminus followed by a centrally positioned
RHIM that mediates signal transduction and at least two additional RHIM-like
sequences (Kaiser et al. 2008; Rebsamen et al. 2009) that do not contribute to cell
death signaling during IAV infection (Thapa et al. 2016). ZBP1 was initially rec-
ognized as an IFN-inducible protein capable of binding Z-form double-stranded
nucleic acid via its Za domains (Schwartz et al. 2001; Fu et al. 1999). ZBP1 was
subsequently proposed to function as a sensor of cytosolic DNA, initiating an innate
signaling pathway leading to induction of NF-jB (Kaiser et al. 2008; Rebsamen
et al. 2009) and IFNs (Takaoka et al. 2007). Subsequent studies, however,
demonstrated that ZBP1-deficient cells and mice retained the ability to respond to
cytosolic DNA (Ishii et al. 2008). The cGAS–STING pathway is now recognized as
a dominant sensor of cytoplasmic DNA leading to type I IFN production (Li et al.
2013; Sun et al. 2013). ZBP1, instead, was found to mediate necroptosis following
infection with murine cytomegalovirus (MCMV), a herpesvirus with a DNA gen-
ome (Upton et al. 2010, 2012). Thus, ZBP1 is an instigator of cell death—not IFN
production—during virus infections. The identification of ZBP1 as necessary for
IAV-induced cell death is the first time this sensor has been shown to respond to an
RNA virus. Following IAV infection, ZBP1 complexes with RIPK3 and triggers
association of RIPK3 with both RIPK1 (for apoptosis) and MLKL (for necroptosis)
(Fig. 3). Consequently, ZBP1 was essential for activation of both caspase-8 and
MLKL downstream of RIPK3 (Thapa et al. 2016). In addition, ZBP1 activates a
RIPK3-independent pathway of apoptosis by direct RHIM-dependent recruitment
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of RIPK1 and subsequent DD-dependent recruitment of FADD, leading to the
activation of caspase-8 (Thapa et al. 2016). Moreover, Kanneganti and colleagues
showed that ZBP1 activates the NLRP3 inflammasome and induces pyroptosis in
IAV-infected macrophages (Kuriakose et al. 2016) (Fig. 3). Of note, NLRP3
inflammasome activation by other negative strand RNA viruses involves RIPK3
(Wang et al. 2014; Kuriakose et al. 2016), but the requirement for ZBP1 in
inflammasome activation appears unique to IAV (Kuriakose et al. 2016). In sum,
ZBP1 appears to be central to all major pathways of IAV-activated cell death in
primary cells; consequently, cells lacking ZBP1 are remarkably resistant to
IAV-triggered death, even more so than cells lacking RIPK3 (Thapa et al. 2016).

Through systematic mutagenesis, we found that the Za1 domain and C-terminal
third of ZBP1 are not required for function, but that Za2 is essential. Mutations in
just two Za2 domain amino acids (N122 and Y126), shown previously to mediate
contact with DNA (Ha et al. 2008), abolished death signaling in IAV-infected cells
(Thapa et al. 2016). Studies with the ZBP1 Za2 mutant strongly suggested that
ZBP1 functions in cell death signaling by directly sensing IAV RNA (Thapa et al.
2016). Although ZBP1 was initially characterized as a DNA-binding protein
(Takaoka et al. 2007), Za domains from related proteins (e.g., ADAR-1) can
associate with the left-handed (Z-form) double helical form of RNA in vitro
(Athanasiadis 2012; Placido et al. 2007). Indeed, our in silico simulation predicts
that a putative complex between ZBP1 Za2 dimers and Z-RNA is almost identical
to the published ZBP1:Z-DNA crystal structure (Ha et al. 2008), and that the two
residues shown to contact Z-DNA, N122 and Y126, are also properly positioned to
make contacts with Z-RNA. Thus, ZBP1 may be a bifunctional protein capable of
binding both DNA and RNA. In IAV-infected cells, ZBP1 robustly and preferen-
tially associated with IAV genomic (i.e., negative polarity) RNAs (Thapa et al.
2016). These RNAs fell into two classes: (1) smaller (*500 bp) RNA species,
mapping to the very 3′ and 5′ ends of the polymerase gene segments; and
(2) somewhat longer RNAs (1000–1500 bp) representing full-length IAV gene
segments, most notably NA and NP. The Class I (500 bp) RNAs are internally
deleted subgenomic versions of the longer polymerase gene segments. These
truncated RNAs are formed when the IAV polymerase falls off its template RNAs
but re-engages further downstream along the same RNA strands. Subgenomic
vRNAs produced in this manner nonetheless retain their 3′ and 5′ packaging signals
and can be sorted into replication-incompetent defective interfering (DI) particles
(Nayak et al. 1985; Saira et al. 2013). It is noteworthy that the spectrum of IAV
vRNAs associated with ZBP1 bears striking similarity to those bound by the RNA
sensor RIG-I (Baum et al. 2010) indicating that these RNAs, especially if packaged
into DI particles (i.e., Class I), are likely improperly encapsidated and thus perhaps
more accessible to the host innate machinery. Indeed, Lopez and colleagues have
demonstrated that subgenomic vRNAs found in DI particles are naturally produced
during the course of virus infection in vivo and are primary instigators of immune
responses in infected lungs (Tapia et al. 2013). Whether some of these RNAs adopt
a Z-form double-stranded conformation remains to be determined.
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The findings described above suggest a model of ZBP1–RIPK3 cell death sig-
naling in which ZBP1 first senses genomic and subgenomic RNAs via its Za2
domain and dimerizes to provide a platform for RHIM-dependent recruitment of
RIPK3. ZBP1 then clusters RIPK3, which initiates cell death signaling (Thapa et al.
2016) (Fig. 3). ZBP1 is ubiquitylated upon IAV infection (Kesavardhana et al. 2017),
but how ubiquitylation regulates ZBP1 function and RIPK3 activation remains to be
determined. Interestingly, evidence has implicated ZBP1 sensing of newly synthe-
sized RNA, rather than DNA, during infection with the DNA viruses MCMV and
HSV1, suggesting that nascent viral RNAs may represent ligands for ZBP1 even for
DNA viruses (Maelfait et al. 2017; Sridharan et al. 2017; Guo et al. 2018)

In vivo, loss of ZBP1 rendered mice highly susceptible to intranasal infection by
IAV. ZBP1-deficient mice were unable to control virus replication or prevent virus
spread through the lung (Thapa et al. 2016; Momota et al. 2019). Similarly, loss of
RIPK3, or combined loss of apoptosis and necroptosis pathways (i.e., Mlkl−/
−Fadd−/− double-knockouts) downstream of RIPK3, rendered mice incapable of
controlling IAV replication in lungs, resulting in lethal infection (Nogusa et al.
2016). Strikingly, mice deficient only in MLKL resolved infection in a manner
largely indistinguishable from WT mice (Nogusa et al. 2016). Similarly, our
unpublished results show that mice harboring an inactivating mutation in
caspase-8, and therefore selectively incapable of supporting IAV-activated apop-
tosis, also mount robust antiviral responses that are comparable to wild-type ani-
mals. These results demonstrate that necroptosis and apoptosis are redundant with
each other for anti-IAV host defense. Only when both pathways are neutralized is
antiviral defense compromised. In Ripk3−/− mice, recruitment of T cells to the
infected lung was diminished, as were anti-IAV adaptive immune responses,
despite higher virus production in these animals (Nogusa et al. 2016). Notably,
phosphorylated MLKL, indicative of active necroptosis, is observed not only in
lung structural cells (such as AECs), but also in infiltrating immune cells, in vivo
(Wang et al. 2019). Thus, RIPK3-mediated cell death may promote virus clearance
not only by preventing infected cells from becoming “factories” for virus replica-
tion, but also by promoting adaptive immunity to IAV, such as via release of
immunogenic DAMPs from necroptotic cells (Yatim et al. 2017).

The NLRP3 inflammasome has also been implicated in protection against IAV
(Thomas et al. 2009; Allen et al. 2009; Ichinohe et al. 2009), so
ZBP1-RIPK3-mediated activation of this inflammasome (Wang et al. 2014;
Kuriakose et al. 2016) may co-operate with apoptosis and necroptosis to mediate
virus clearance, alter the adaptive immune response, and promote healing of lung
tissue post-infection. Although NLRP3 inflammasome activation can be protective
during IAV infection, it may also contribute to pathology, depending on virus
subtype, severity of disease, and stage of infection (Tate and Mansell 2018;
Kuriakose and Kanneganti 2017). For example, activation of RIPK3 (Xu et al.
2017) and the NLRP3 inflammasome (Ren et al. 2017) are detrimental to animal
survival following infection with virulent strains of H7N9 IAV, where they drive
hyperinflammation that is ultimately fatal to the host. Similarly, ZBP1 promotes
pathology and lethality in an intratracheal model of IAV infection, where severe
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disease results from infection of the lower airways (Momota et al. 2019). Consistent
with the idea that NLRP3 inflammasome activity is required for antiviral host
defense during sublethal infection, but can mediate pathological inflammation in
severe or lethal disease, administration of an NLRP3-selective small molecule
inhibitor decreased animal survival when administered early (1–3 d.p.i.) upon
infection with a non-lethal dose of IAV, but improved survival outcomes when
given later (7–9 d.p.i) in the course of disease following a lethal dose of
H1N1 IAV, when pathogenic neutrophil-mediated hyperinflammation drives
morality (Brandes et al. 2013; Camp and Jonsson 2017; Narasaraju et al. 2011;
Pillai et al. 2016; Bradley et al. 2012). How the ZBP1–RIPK3 axis triggers the
NLRP3 inflammasome during IAV infections remains an area of active investiga-
tion. Caspase-8 signaling, rather than MLKL activity, has been proposed to link
RIPK3 to the NLRP3 inflammasome in IAV-infected cells (Kuriakose et al. 2016;
Kuriakose and Kanneganti 2018), as has been shown in other settings of NLRP3
activation by RIPK3 (Lawlor et al. 2015), but the mechanistic underpinnings of this
pathway still need to be identified.

4 Concluding Perspectives

Is ZBP1–RIPK3 signaling a determinant of host species restriction? The
RIPK3-driven cell death machinery, restricted to vertebrates, is poorly conserved
across the classes of this subphylum (Dondelinger et al. 2016). Among mammals,
ZBP1, RIPK3, and MLKL are absent in marsupials and MLKL appears missing in
carnivorous placentals (Dondelinger et al. 2016). Curiously, neither ZBP1 nor
RIPK3 are found in birds (Dondelinger et al. 2016). IAV infection in its natural
host, aquatic birds, is often asymptomatic or only associated with mild symptoms
(Yoon et al. 2014); it is therefore possible that the lack of ZBP1–RIPK3 signaling in
birds dampens immunogenic cell death responses and allows the maintenance of
gut epithelial integrity at levels that prevent severe disease during IAV infections.
When these viruses jump from birds to other species, they are frequently unfit for
replication or, in rare instances, cause extremely severe disease. Future studies will
need to examine whether ZBP1-RIPK3 death signaling in non-avian species is a
determinant of virus fitness in these species. Hypothetically, activation of the
ZBP1–RIPK3 signaling axis during cross-species infections may prevent estab-
lishment of productive infection by prematurely eliminating infected cells.
Alternatively, in sporadic cases of severe disease that is sometimes observed when
IAV strains jump from one species to another, sub-optimal activation of ZBP1–
RIPK3-mediated cell death may contribute to the rapid virus growth that drives
pathology in these settings.

Does necroptosis represent a new therapeutic entrypoint for IAV disease? We
have found that RIPK3-driven apoptosis can largely compensate for loss of
necroptosis in clearing IAV from the infected lung (Nogusa et al. 2016). As
necroptosis, but not apoptosis, requires the kinase activity of RIPK3, it can be
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selectively targeted with RIPK3 kinase inhibitors. The redundancy of necroptosis
with apoptosis for IAV clearance therefore represents an unexpected therapeutic
opportunity in IAV-induced diseases, including viral pneumonia and ARDS, in
which necrotic death is implicated in pathogenesis. A selective RIPK3 inhibitor will
be expected to ameliorate the deleterious effects of necroptosis, underscored by the
results of Saleh and colleagues (Rodrigue-Gervais et al. 2014), without impeding
virus clearance via apoptosis. Current RIPK3 inhibitors either trigger toxic con-
formational changes in RIPK3 (Mandal et al. 2014) or are not selective for this
kinase (e.g., ponatinib (Najjar et al. 2015; Fauster et al. 2015)), highlighting a need
for additional approaches targeting this kinase. We expect that a selective, non-toxic
RIPK3 inhibitor will offer therapeutic benefit in IAV disease without issues of drug
resistance affecting many current antivirals.
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