Skip to main content

Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling

  • Chapter
  • First Online:
Behavioral Neurobiology of GABAB Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 52))

Abstract

γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adelfinger L, Turecek R, Ivankova K, Jensen AA, Moss SJ, Gassmann M, Bettler B (2014) GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization. Biochem Pharmacol 91:369–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dahan MI, Jalilian Tehrani MH, Thalmann RH (1994) Regulation of γ-aminobutyric acidB (GABAB) receptors in cerebral cortex during the estrous cycle. Brain Res 640:33–39

    CAS  PubMed  Google Scholar 

  • Anderson GR, Posokhova E, Martemyanov KA (2009) The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 54:33–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261

    CAS  PubMed  Google Scholar 

  • Arora D, Hearing M, Haluk DM, Mirkovic K, Fajardo-Serrano A, Wessendorf MW, Watanabe M, Lujan R, Wickman K (2011) Acute cocaine exposure weakens GABAB receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J Neurosci 31:12251–12257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T (2017) Inhibition of transient receptor potential melastatin 3 ion channels by G-protein βγ subunits. eLife 6:e26147

    PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S, Fam SR, Hall RA (2006) GABAB receptor association with the PDZ scaffold Mupp1 alters receptor stability and function. J Biol Chem 282:4162–4171

    PubMed  Google Scholar 

  • Balasubramanian S, Teissére JA, Raju DV, Hall RA (2004) Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. J Biol Chem 279:18840–18850

    CAS  PubMed  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    CAS  PubMed  Google Scholar 

  • Becher A, White JH, McIlhinney RAJ (2008) The γ-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. J Neurochem 79:787–795

    Google Scholar 

  • Benians A, Nobles M, Hosny S, Tinker A (2005) Regulators of G-protein signaling form a quaternary complex with the agonist, receptor, and G-protein. J Biol Chem 280:13383–13394

    CAS  PubMed  Google Scholar 

  • Benke D (2010) Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. Adv Pharmacol 58:93–111

    CAS  PubMed  Google Scholar 

  • Benke D, Honer M, Michel C, Bettler B, Mohler H (1999) γ-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution. J Biol Chem 274:27323

    CAS  PubMed  Google Scholar 

  • Benke D, Zemoura K, Maier PJ (2012) Modulation of cell surface GABA B receptors by desensitization, trafficking and regulated degradation. World J Biol Chem 3:61

    PubMed  PubMed Central  Google Scholar 

  • Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, Crawley JN, Curie A, Des Portes V, Hossain F, Gasparini F, Gomez-Mancilla B, Hessl D, Loth E, Scharf SH, Wang PP, Von Raison F, Hagerman R, Spooren W, Jacquemont S (2018) Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 17:280–299

    CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84:835–867

    CAS  PubMed  Google Scholar 

  • Bettler B, Tiao JY-H (2006) Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 110:533–543

    CAS  PubMed  Google Scholar 

  • Biermann B, Ivankova-Susankova K, Bradaia A, Abdel Aziz S, Besseyrias V, Kapfhammer JP, Missler M, Gassmann M, Bettler B (2010) The sushi domains of GABAB receptors function as axonal targeting signals. J Neurosci 30:1385–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binet V, Brajon C, Le Corre L, Acher F, Pin J-P, Prézeau L (2004) The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem 279:29085–29091

    CAS  PubMed  Google Scholar 

  • Blednov YA, Stoffel M, Chang S, Adron HR (2001) GIRK2 deficient mice: evidence for hyperactivity and reduced anxiety. Physiol Behav 74:109–117

    CAS  PubMed  Google Scholar 

  • Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RAJ, White JH, Barlow PN (2004) Structural analysis of the complement control protein (CCP) modules of GABAB receptor 1a. J Biol Chem 279:48292–48306

    CAS  PubMed  Google Scholar 

  • Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman K, Watanabe M, Kulik Á, Vida I (2013) Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J Neurosci 33:7961–7974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booker SA, Loreth D, Gee AL, Wyllie DJA, Watanabe M, Kind PC, Kos Kulik A, Vida I (2018) Postsynaptic GABABRs inhibit L-type calcium channels and abolish long-term potentiation in hippocampal somatostatin interneurons. Cell Rep 22:36–43

    CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    CAS  PubMed  Google Scholar 

  • Bowery NG, Brown DA (1997) The cloning of GABAB receptors. Nature 386:223–224

    CAS  PubMed  Google Scholar 

  • Bowery NG, Hudson AL (1979) Gamma-Aminobutyric acid reduces the evoked release of [3H]-noradrenaline from sympathetic nerve terminals [proceedings]. Br J Pharmacol 66:108P

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer SB, Clancy SM, Terunuma M, Revilla-Sanchez R, Thomas SM, Moss SJ, Slesinger PA (2009) Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci 29:15796–15809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyes J, Bolam JP (2003) The subcellular localization of GABA(B) receptor subunits in the rat substantia nigra. Eur J Neurosci 18:3279–3293

    PubMed  Google Scholar 

  • Bray JG, Mynlieff M (2009) Influx of calcium through L-type calcium channels in early postnatal regulation of chloride transporters in the rat hippocampus. Dev Neurobiol 69:885–896; erratum 897-912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814

    CAS  PubMed  Google Scholar 

  • Brock C, Boudier L, Maurel D, Blahos J, Pin J-P (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16:5572–5578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke KJ, Bender KJ (2019) Modulation of ion channels in the axon: mechanisms and function. Front Cell Neurosci 13:221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burmakina S, Geng Y, Chen Y, Fan QR (2014) Heterodimeric coiled-coil interactions of human GABAB receptor. Proc Natl Acad Sci U S A 111:6958–6963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Fischer QS, He Y, Zhang L, Liu H, Daw NW, Yang Y (2017) GABAB receptor-dependent bidirectional regulation of critical period ocular dominance plasticity in cats. PLoS One 12:e0180162

    PubMed  PubMed Central  Google Scholar 

  • Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zurn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci 110:743–748

    CAS  PubMed  Google Scholar 

  • Calver AR, Davies CH, Pangalos MN (2002) GABAB receptors: from monogamy to promiscuity. Neurosignals 11:299–314

    CAS  PubMed  Google Scholar 

  • Calver AR, Robbins MJ, Cosio C, Rice SQ, Babbs AJ, Hirst WD, Boyfield I, Wood MD, Russell RB, Price GW, Couve A, Moss SJ, Pangalos MN (2001) The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. J Neurosci 21:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell V, Berrow N, Dolphin AC (1993) GABAB receptor modulation of Ca2+ currents in rat sensory neurones by the G protein G(0): antisense oligonucleotide studies. J Physiol 470:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carling D (2005) AMP-activated protein kinase: balancing the scales. Biochimie 87:87–91

    CAS  PubMed  Google Scholar 

  • Carling D, Mayer FV, Sanders MJ, Gamblin SJ (2011) AMP-activated protein kinase: nature’s energy sensor. Nat Chem Biol 7:512–518

    CAS  PubMed  Google Scholar 

  • Carter TJ, Mynlieff M (2004) γ-Aminobutyric acid type B receptors facilitate L-type and attenuate N-type Ca2+ currents in isolated hippocampal neurons. J Neurosci Res 76:323–333

    CAS  PubMed  Google Scholar 

  • Castelli MP, Gessa GL (2016) Distribution and localization of the GABAB receptor. Springer, Cham, pp 75–92

    Google Scholar 

  • Chalifoux JR, Carter AG (2010) GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron 66:101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalifoux JR, Carter AG (2011) GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J Neurosci 31:4221–4232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W, Tu C, Cheng Z, Rodriguez L, Chen T-H, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D (2007) Complex formation with the type B γ-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. J Biol Chem 282:25030–25040

    CAS  PubMed  Google Scholar 

  • Charles K, Evans M, Robbins M, Calver A, Leslie R, Pangalos M (2001) Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat brain, spinal cord and dorsal root ganglion. Neuroscience 106:447–467

    CAS  PubMed  Google Scholar 

  • Chu DC, Albin RL, Young AB, Penney JB (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34:341–357

    CAS  PubMed  Google Scholar 

  • Ciruela F, Fernández-Dueñas V, Sahlholm K, Fernández-Alacid L, Nicolau JC, Watanabe M, Luján R (2010) Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 32:1265–1277

    PubMed  Google Scholar 

  • Clancy SM, Fowler CE, Finley M, Suen KF, Arrabit C, Berton F, Kosaza T, Casey PJ, Slesinger PA (2005) Pertussis-toxin-sensitive Gα subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol Cell Neurosci 28:375–389

    CAS  PubMed  Google Scholar 

  • Colecraft HM, Brody DL, Yue DT (2001) G-protein inhibition of N- and P/Q-type calcium channels: distinctive elementary mechanisms and their functional impact. J Neurosci 21:1137–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colecraft HM, Patil PG, Yue DT (2000) Differential occurrence of reluctant openings in G-protein–inhibited N- and P/Q-type calcium channels. J Gen Physiol 115:175–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin J-P (2011) The oligomeric state sets GABAB receptor signalling efficacy. EMBO J 30:2336–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly WM, Fyson SJ, Errington AC, McCafferty CP, Cope DW, Di Giovanni G, Crunelli V (2013) GABAB receptors regulate extrasynaptic GABAA receptors. J Neurosci 33:3780–3785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell G (2013) Roles of proteolysis in regulation of GPCR function. Br J Pharmacol 168:576–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273:26361–26367

    CAS  PubMed  Google Scholar 

  • Couve A, Kittler JT, Uren JM, Calver AR, Pangalos MN, Walsh FS, Moss SJ (2001) Association of GABAB receptors and members of the 14-3-3 family of signaling proteins. Mol Cell Neurosci 17:317–328

    CAS  PubMed  Google Scholar 

  • Couve A, Restituito S, Brandon JM, Charles KJ, Bawagan H, Freeman KB, Pangalos MN, Calver AR, Moss SJ (2004) Marlin-1, a novel RNA-binding protein associates with GABA receptors. J Biol Chem 279:13934–13943

    CAS  PubMed  Google Scholar 

  • Couve A, Thomas P, Calver AR, Hirst WD, Pangalos MN, Walsh FS, Smart TG, Moss SJ (2002) Cyclic AMP–dependent protein kinase phosphorylation facilitates GABAB receptor–effector coupling. Nat Neurosci 5:415–424

    CAS  PubMed  Google Scholar 

  • Cruz HG, Ivanova T, Lunn M-L, Stoffel M, Slesinger PA, Lüscher C (2004) Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nat Neurosci 7:153–159

    CAS  PubMed  Google Scholar 

  • David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupré DJ, Hebert TE (2006) Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 18:2172–2181

    CAS  PubMed  Google Scholar 

  • Deng P-Y, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S (2009) GABAB receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 63:230–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinamarca MC, Raveh A, Schneider A, Fritzius T, Früh S, Rem PD, Stawarski M, Lalanne T, Turecek R, Choo M, Besseyrias V, Bildl W, Bentrop D, Staufenbiel M, Gassmann M, Fakler B, Schwenk J, Bettler B (2019) Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing. Nat Commun 10:1331

    PubMed  PubMed Central  Google Scholar 

  • Dlouhá K, Kagan D, Roubalová L, Ujčíková H, Svoboda P (2013) Plasma membrane density of GABA B-R1a, GABA B-R1b, GABA-R2 and trimeric G-proteins in the course of postnatal development of rat brain cortex. Physiol Res 62:547–559

    PubMed  Google Scholar 

  • Doly S, Shirvani H, Gäta G, Meye FJ, Emerit M-B, Enslen H, Achour L, Pardo-Lopez L, Yang S-K, Armand V, Gardette R, Giros B, Gassmann M, Bettler B, Mameli M, Darmon M, Marullo S (2016) GABAB receptor cell-surface export is controlled by an endoplasmic reticulum gatekeeper. Mol Psychiatry 21:480–490

    CAS  PubMed  Google Scholar 

  • Dores MR, Trejo J (2012) Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. Mol Pharmacol 82:563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA, Kofuji P (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 94:10461–10466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drenan RM, Doupnik CA, Boyle MP, Muglia LJ, Huettner JE, Linder ME, Blumer KJ (2005) Palmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J Cell Biol 169:623–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drenan RM, Doupnik CA, Jayaraman M, Buchwalter AL, Kaltenbronn KM, Huettner JE, Linder ME, Blumer KJ (2006) R7BP augments the function of RGS7·Gβ5 complexes by a plasma membrane-targeting mechanism. J Biol Chem 281:28222–28231

    CAS  PubMed  Google Scholar 

  • Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin J-P, Prézeau L (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J Biol Chem 277:3236–3241

    CAS  PubMed  Google Scholar 

  • Fairfax BP, Pitcher JA, Scott MGH, Calver AR, Pangalos MN, Moss SJ, Couve A (2004) Phosphorylation and chronic agonist treatment atypically modulate GABAB receptor cell surface stability. J Biol Chem 279:12565–12573

    CAS  PubMed  Google Scholar 

  • Fajardo-Serrano A, Wydeven N, Young D, Watanabe M, Shigemoto R, Martemyanov KA, Wickman K, Luján R (2013) Association of Rgs7/Gβ5 complexes with girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons. Hippocampus 23:1231–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan QR, Guo WY, Geng Y, Evelyn MG (2017) Class C GPCR: obligatory heterodimerization of GABAB receptor. In: G-protein-coupled receptor dimers. Springer, Cham, pp 307–325

    Google Scholar 

  • Fernández-Alacid L, Aguado C, Ciruela F, Martín R, Colón J, Cabañero MJ, Gassmann M, Watanabe M, Shigemoto R, Wickman K, Bettler B, Sánchez-Prieto J, Luján R (2009) Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J Neurochem 110:1363–1376

    PubMed  PubMed Central  Google Scholar 

  • Fowler CE, Aryal P, Suen KF, Slesinger PA (2007) Evidence for association of GABA B receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 580:51–65

    CAS  PubMed  Google Scholar 

  • Franek M, Pagano A, Kaupmann K, Bettler B, Pin JP, Blahos J (1999) The heteromeric GABA-B receptor recognizes G-protein alpha subunit C-termini. Neuropharmacology 38:1657–1666

    CAS  PubMed  Google Scholar 

  • Frangaj A, Fan QR (2018) Structural biology of GABAB receptor. Neuropharmacology 136:68–79

    CAS  PubMed  Google Scholar 

  • Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M (2017) Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 12:e0173889

    PubMed  PubMed Central  Google Scholar 

  • Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Mohler H (1999) GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11:761–768

    CAS  PubMed  Google Scholar 

  • Fritzius T, Bettler B (2019) The organizing principle of GABA B receptor complexes: physiological and pharmacological implications. Basic Clin Pharmacol Toxicol. https://doi.org/10.1111/bcpt.13241

  • Fritzius T, Turecek R, Seddik R, Kobayashi H, Tiao J, Rem PD, Metz M, Kralikova M, Bouvier M, Gassmann M, Bettler B (2017) KCTD hetero-oligomers confer unique kinetic properties on hippocampal GABAB receptor-induced K+ currents. J Neurosci 37:1162–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui M, Nakamichi N, Yoneyama M, Ozawa S, Fujimori S, Takahata Y, Nakamura N, Taniura H, Yoneda Y (2008) Modulation of cellular proliferation and differentiation through GABAB receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. J Cell Physiol 216:507–519

    CAS  PubMed  Google Scholar 

  • Gaillard S, Lo Re L, Mantilleri A, Hepp R, Urien L, Malapert P, Alonso S, Deage M, Kambrun C, Landry M, Low SA, Alloui A, Lambolez B, Scherrer G, Le Feuvre Y, Bourinet E, Moqrich A (2014) GINIP, a Gαi-interacting protein, functions as a key modulator of peripheral GABAB receptor-mediated analgesia. Neuron 84:123–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prézeau L, Pin JP (2001) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J 20(9):2152–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garaycochea J, Slaughter MM (2016) GABAB receptors enhance excitatory responses in isolated rat retinal ganglion cells. J Physiol 594:5543–5554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    CAS  PubMed  Google Scholar 

  • Gassmann M, Shaban H, Vigot R, Sansig G, Haller C, Barbieri S, Humeau Y, Schuler V, Müller M, Kinzel B, Klebs K, Schmutz M, Froestl W, Heid J, Kelly PH, Gentry C, Jaton A-L, Van der Putten H, Mombereau C, Lecourtier L, Mosbacher J, Cryan JF, Fritschy J-M, Lüthi A, Kaupmann K, Bettler B (2004) Redistribution of GABAB(1) protein and atypical GABAB responses in GABAB(2)-deficient mice. J Neurosci 24:6086–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber KJ, Squires KE, Hepler JR (2016) Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity programs in molecular and systems pharmacology. Mol Pharmacol 89:273–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbel MT, Becker KG, Henley JM (2005) Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiol Genomics 22:93–98

    CAS  PubMed  Google Scholar 

  • Gonchar Y, Pang L, Malitschek B, Bettler B, Burkhalter A (2001) Subcellular localization of GABA(B) receptor subunits in rat visual cortex. J Comp Neurol 431:182–197

    CAS  PubMed  Google Scholar 

  • Grabowska D, Jayaraman M, Kaltenbronn KM, Sandiford SL, Wang Q, Jenkins S, Slepak VZ, Smith Y, Blumer KJ (2008) Postnatal induction and localization of R7BP, a membrane-anchoring protein for RGS7 family-Gβ5 complexes in brain. Neuroscience 151:969

    CAS  PubMed  Google Scholar 

  • Grace CRR, Perrin MH, DiGruccio MR, Miller CL, Rivier JE, Vale WW, Riek R (2004) NMR structure and peptide hormone binding site of the first extracellular domain of a type B1 G protein-coupled receptor. Proc Natl Acad Sci U S A 101:12836–12841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grampp T, Notz V, Broll I, Fischer N, Benke D (2008) Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABAB receptors in cortical neurons. Mol Cell Neurosci 39:628–637

    CAS  PubMed  Google Scholar 

  • Guetg N, Aziz SA, Holbro N, Turecek R, Rose T, Seddik R, Gassmann M, Moes S, Jenoe P, Oertner TG, Casanova E, Bettler B (2010) NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc Natl Acad Sci 107:13924–13929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2019) GPCR signaling regulation: the role of GRKs and arrestins. Front Pharmacol 10:125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyorgy Lur A, Higley MJ, Lur G (2015) Glutamate receptor modulation is restricted to synaptic microdomains article glutamate receptor modulation is restricted to synaptic microdomains. Cell Rep 12:326–334

    PubMed  PubMed Central  Google Scholar 

  • Halls ML, Cooper DMF (2017) Adenylyl cyclase signalling complexes – pharmacological challenges and opportunities. Pharmacol Ther 172:171–180

    CAS  PubMed  Google Scholar 

  • Hammond C, Mott D (2015) The metabotropic GABAB receptors. In: Cellular and molecular neurophysiology. Academic Press, Boston, pp 245–267

    Google Scholar 

  • Hanack C, Moroni M, Lima WC, Wende H, Kirchner M, Adelfinger L, Schrenk-Siemens K, Tappe-Theodor A, Wetzel C, Kuich PH, Gassmann M, Roggenkamp D, Bettler B, Lewin GR, Selbach M, Siemens J (2015) GABA blocks pathological but not acute TRPV1 pain signals. Cell 160:759–770

    CAS  PubMed  Google Scholar 

  • Hannan S, Gerrow K, Triller A, Smart TGG (2016) Phospho-dependent accumulation of GABABRs at presynaptic terminals after NMDAR activation. Cell Rep 16:1962–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan S, Wilkins ME, Smart TG (2012) Sushi domains confer distinct trafficking profiles on GABAB receptors. Proc Natl Acad Sci U S A 109:12171–12176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison NL, Lange GD, Barker JL (1988) (−)-Baclofen activates presynaptic GABAB receptors on GABAergic inhibitory neurons from embryonic rat hippocampus. Neurosci Lett 85:105–109

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Kuriyama K (2002) In vivo evidence that GABAB receptors are negatively coupled to adenylate cyclase in rat striatum. J Neurochem 69:365–370

    Google Scholar 

  • Havlickova M, Prezeau L, Duthey B, Bettler B, Pin J-P, Blahos J (2002) The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol Pharmacol 62:343–350

    CAS  PubMed  Google Scholar 

  • Hearing M, Kotecki L, Marron Fernandez de Velasco E, Fajardo-Serrano A, Chung HJ, Luján R, Wickman K (2013) Repeated cocaine weakens GABAB-girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80:159–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels βγ G-protein py subunits. Nature 380:258–262

    CAS  PubMed  Google Scholar 

  • Hillenbrand M, Schori C, Schöppe J, Plückthun A (2015) Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proc Natl Acad Sci U S A 112:E1181–E1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirono M, Yoshioka T, Konishi S (2001) GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci 4:1207–1216

    CAS  PubMed  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    CAS  PubMed  Google Scholar 

  • Huang C-L, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:803–806

    CAS  PubMed  Google Scholar 

  • Iacovelli L, De Blasi A (2013) Molecular mechanisms that desensitize metabotropic glutamate receptor signaling: an overview. Neuropharmacology 66:24–30

    CAS  PubMed  Google Scholar 

  • Iwakiri M, Mizukami K, Ikonomovic MD, Ishikawa M, Hidaka S, Abrahamson EE, DeKosky ST, Asada T (2005) Changes in hippocampal GABABR1 subunit expression in Alzheimer’s patients: association with Braak staging. Acta Neuropathol 109:467–474

    CAS  PubMed  Google Scholar 

  • Jarvis SE, Magga JM, Beedle AM, Braun JE, Zamponi GW (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gbetagamma. J Biol Chem 275:6388–6394

    CAS  PubMed  Google Scholar 

  • Jeong SW, Ikeda SR (1998) G protein alpha subunit G alpha z couples neurotransmitter receptors to ion channels in sympathetic neurons. Neuron 21:1201–1212

    CAS  PubMed  Google Scholar 

  • Jia L, Chisari M, Maktabi MH, Sobieski C, Zhou H, Konopko AM, Martin BR, Mennerick SJ, Blumer KJ (2014) A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation. J Biol Chem 289:6249–6257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Linder ME, Blumer KJ (2011) Gi/o signaling and the palmitoyltransferase DHHC2 regulate palmitate cycling and shuttling of RGS7 family-binding protein. J Biol Chem 286:13695–13703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Su L, Zhang Q, He C, Zhang Z, Yi P, Liu J (2012) GABAB receptor complex as a potential target for tumor therapy. J Histochem Cytochem 60:269–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahanovitch U, Berlin S, Dascal N (2017) Collision coupling in the GABAB receptor-G protein-GIRK signaling cascade. FEBS Lett 591:2816–2825

    CAS  PubMed  Google Scholar 

  • Kanaide M, Uezono Y, Matsumoto M, Hojo M, Ando Y, Sudo Y, Sumikawa K, Taniyama K (2007) Desensitization of GABAB receptor signaling by formation of protein complexes of GABAB2 subunit with GRK4 or GRK5. J Cell Physiol 210:237–245

    CAS  PubMed  Google Scholar 

  • Kantamneni S, Corrêa SAL, Hodgkinson GK, Meyer G, Vinh NN, Henley JM, Nishimune A (2007) GISP: a novel brain-specific protein that promotes surface expression and function of GABA B receptors. J Neurochem 100:1003–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karls A, Mynlieff M (2015) GABAB receptors couple to Gα q to mediate increases in voltage-dependent calcium current during development. J Neurochem 135:88–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karschin C, Dissmann E, Stühmer W, Karschin A (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 16:3559–3570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasten CR, Boehm SL II (2015) Identifying the role of pre-and postsynaptic GABA(B) receptors in behavior. Neurosci Biobehav Rev 57:70–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998a) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998b) Human-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci 95:14991–14996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MJ, Qiu J, Rønnekleiv OK (2003) Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann N Y Acad Sci 1007:6–9

    CAS  PubMed  Google Scholar 

  • Kennedy JE, Marchese A (2015) Regulation of GPCR trafficking by ubiquitin. Prog Mol Biol Transl Sci 132:15–38

    PubMed  PubMed Central  Google Scholar 

  • Kim G, Jung S, Son H, Kim S, Choi J, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2014) The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus. BMB Rep 47:324–329

    PubMed  PubMed Central  Google Scholar 

  • Kins S, Lauther N, Szodorai A, Beyreuther K (2006) Subcellular trafficking of the amyloid precursor protein gene family and its pathogenic role in Alzheimer’s disease. Neurodegener Dis 3:218–226

    CAS  PubMed  Google Scholar 

  • Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakajima Y, Nakanishi S (2002) Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci 22:1280–1289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kittler JT, McAinsh K, Moss SJ (2002) Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol Neurobiol 26:251–268

    CAS  PubMed  Google Scholar 

  • Knight AR, Bowery NG (1996) The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology 35:703–712

    CAS  PubMed  Google Scholar 

  • Knott C, Maguire JJJ, Moratalla R, Bowery NGG (1993) Regional effects of pertussis toxin in vivo and in vitro on GABAB receptor binding in rat brain. Neuroscience 52:73–81

    CAS  PubMed  Google Scholar 

  • Kommaddi RP, Shenoy SK (2013) Arrestins and protein ubiquitination. Prog Mol Biol Transl Sci 118:175–204

    CAS  PubMed  Google Scholar 

  • Koppensteiner P, Melani R, Ninan I (2017) A cooperative mechanism involving Ca2+-permeable AMPA receptors and retrograde activation of GABAB receptors in interpeduncular nucleus plasticity. Cell Rep 20:1111–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koyrakh L, Luján R, Colón J, Karschin C, Kurachi Y, Karschin A, Wickman K (2005) Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci 25:11468–11478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R, Kulik Á, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R, Kulik A (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26:4289–4297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik Á, Vida I, Luján R, Haas CA, López-Bendito G, Shigemoto R, Frotscher M (2003) Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus. J Neurosci 23:11026–11035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto N, Wilkins ME, Fairfax BP, Revilla-Sanchez R, Terunuma M, Tamaki K, Iemata M, Warren N, Couve A, Calver A, Horvath Z, Freeman K, Carling D, Huang L, Gonzales C, Cooper E, Smart TG, Pangalos MN, Moss SJ (2007) Phospho-dependent functional modulation of GABAB receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 53:233–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labouèbe G, Lomazzi M, Cruz HG, Creton C, Luján R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K, Boyer SB, Slesinger PA, Lüscher C (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci 10:1559–1568

    PubMed  Google Scholar 

  • Ladera C, del Carmen Godino M, Cabañero MJ, Torres M, Watanabe M, Luján R, Sánchez-Prieto J (2008) Pre-synaptic GABAB receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J Neurochem 107:1506–1517

    CAS  PubMed  Google Scholar 

  • Laffray S, Bouali-Benazzouz R, Papon M-A, Favereaux A, Jiang Y, Holm T, Spriet C, Desbarats P, Fossat P, Le Feuvre Y, Decossas M, Héliot L, Langel U, Nagy F, Landry M (2012) Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J 31:3239–3251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahaie N, Kralikova M, Prézeau L, Blahos J, Bouvier M (2016) Post-endocytotic deubiquitination and degradation of the metabotropic γ-aminobutyric acid receptor by the ubiquitin-specific protease. J Biol Chem 14:291

    Google Scholar 

  • Laviv T, Vertkin I, Berdichevsky Y, Fogel H, Riven I, Bettler B, Slesinger PA, Slutsky I (2011) Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. J Neurosci 31:12523–12532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leaney JL, Tinker A (2000) The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci 97:5651–5656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecca S, Pelosi A, Tchenio A, Moutkine I, Lujan R, Hervé D, Mameli M (2016) Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat Med 22:254–261

    CAS  PubMed  Google Scholar 

  • Lee C, Mayfield RD, Harris RA (2010) Intron 4 containing novel GABAB1 isoforms impair GABAB receptor function. PLoS One 5:e14044

    PubMed  PubMed Central  Google Scholar 

  • Lefkowitz RJ (2013) Arrestins come of age: a personal historical perspective. Prog Mol Biol Transl Sci 118:3–18

    CAS  PubMed  Google Scholar 

  • Lehtinen MJ, Meri S, Jokiranta TS (2004) Interdomain contact regions and angles between adjacent short consensus repeat domains. J Mol Biol 344:1385–1396

    CAS  PubMed  Google Scholar 

  • Leung LS, Peloquin P (2006) GABAB receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo. Hippocampus 16:388–407

    CAS  PubMed  Google Scholar 

  • Liu J, Maurel D, Etzol S, Brabet I, Ansanay H, Pin J-P, Rondard P (2004) Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem 279:15824–15830

    CAS  PubMed  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    CAS  PubMed  Google Scholar 

  • Luján R, Aguado C (2015) Localization and targeting of GIRK channels in mammalian central neurons. Int Rev Neurobiol 123:161–200

    PubMed  Google Scholar 

  • Luján R, Aguado C, Ciruela F, Cózar J, Kleindienst D, de la Ossa L, Bettler B, Wickman K, Watanabe M, Shigemoto R, Fukazawa Y (2017) Differential association of GABAB receptors with their effector ion channels in Purkinje cells. Brain Struct Funct 223:1565–1587

    PubMed  PubMed Central  Google Scholar 

  • Lujan R, Ciruela F (2012) GABAB receptors-associated proteins: potential drug targets in neurological disorders? Curr Drug Targets 13:129–144

    CAS  PubMed  Google Scholar 

  • Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K (2014) New insights into the therapeutic potential of Girk channels. Trends Neurosci 37:20–29

    PubMed  Google Scholar 

  • Luo B, Wang H-T, Su Y-Y, Wu S-H, Chen L (2011) Activation of presynaptic GABAB receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body. Hear Res 280:157–165

    CAS  PubMed  Google Scholar 

  • Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695

    PubMed  Google Scholar 

  • Lüscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11:301–315

    PubMed  PubMed Central  Google Scholar 

  • Maguire G, Maple B, Lukasiewicz P, Werblin F (1989) Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci U S A 86:10144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier PJ, Marin I, Grampp T, Sommer A, Benke D (2010) Sustained glutamate receptor activation down-regulates GABAB receptors by shifting the balance from recycling to lysosomal degradation. J Biol Chem 285:35606–35614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maity B, Stewart A, Yang J, Loo L, Sheff D, Shepherd AJ, Mohapatra DP, Fisher RA (2012) Regulator of G protein signaling 6 (RGS6) protein ensures coordination of motor movement by modulating GABAB receptor signaling. J Biol Chem 287:4972–4981

    CAS  PubMed  Google Scholar 

  • Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5:289–295

    CAS  PubMed  Google Scholar 

  • Malitschek B, Rüegg D, Heid J, Kaupmann K, Bittiger H, Fröstl W, Bettler B, Kuhn R (1998) Developmental changes of agonist affinity at GABABR1 receptor variants in rat brain. Mol Cell Neurosci 12:56–64

    CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27:97–106

    CAS  PubMed  Google Scholar 

  • Marron Fernandez de Velasco E, Hearing M, Xia Z, Victoria NC, Luján R, Wickman K (2015) Sex differences in GABABR-GIRK signaling in layer 5/6 pyramidal neurons of the mouse prelimbic cortex. Neuropharmacology 95:353–360

    CAS  PubMed  Google Scholar 

  • Martemyanov KA, Yoo PJ, Skiba NP, Arshavsky VY (2005) R7BP, a novel neuronal protein interacting with RGS proteins of the R7 family. J Biol Chem 280:5133–5136

    CAS  PubMed  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives M-L, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prézeau L, Trinquet E, Pin J-P (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    CAS  PubMed  Google Scholar 

  • McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16:379–391

    CAS  PubMed  Google Scholar 

  • Mcpherson KB, Leff ER, Li M-H, Meurice C, Tai S, Traynor JR, Ingram SL (2018) Regulators of G protein signaling (RGS) proteins promote receptor coupling to G protein-coupled inwardly-rectifying potassium (GIRK) channels. J Neurosci 38:8737–8744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menon-Johansson AS, Berrow N, Dolphin AC (1993) G(o) transduces GABAB-receptor modulation of N-type calcium channels in cultured dorsal root ganglion neurons. Pflugers Arch 425:335–343

    CAS  PubMed  Google Scholar 

  • Michaeli A, Yaka R (2010) Dopamine inhibits GABAA currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels. Neuroscience 165:1159–1169

    CAS  PubMed  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147:S46–S55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462

    CAS  PubMed  Google Scholar 

  • Møller TC, Moreno-Delgado D, Pin J-P, Kniazeff J (2017) Class C G protein-coupled receptors: reviving old couples with new partners. Biophys Rep 3:57–63

    PubMed  PubMed Central  Google Scholar 

  • Monnier C, Tu H, Bourrier E, Vol C, Lamarque L, Trinquet E, Pin J-P, Rondard P (2011) Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J 30:32–42

    CAS  PubMed  Google Scholar 

  • Moran JM, Enna SJ, McCarson KE (2001) Developmental regulation of GABA(B) receptor function in rat spinal cord. Life Sci 68:2287–2295

    CAS  PubMed  Google Scholar 

  • Morishita R, Kato K, Asano T (1990) GABAB receptors couple to G proteins Go, G∗o and Gi1 but not to Gi2. FEBS Lett 271:231–235

    CAS  PubMed  Google Scholar 

  • Nehring RB, Horikawa HPM, El Far O, Kneussel M, Brandstätter JH, Stamm S, Wischmeyer E, Betz H, Karschin A (2000) The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. J Biol Chem 275:35185–35191

    CAS  PubMed  Google Scholar 

  • Nicoll RA (2004) My close encounter with GABAB receptors. Biochem Pharmacol 68:1667–1674

    CAS  PubMed  Google Scholar 

  • Nishikawa M, Hirouchi M, Kuriyama K (1997) Functional coupling of Gi subtype with GABAB receptor/adenylyl cyclase system: analysis using a reconstituted system with purified GTP-binding protein from bovine cerebral cortex. Neurochem Int 31:21–25

    CAS  PubMed  Google Scholar 

  • Odagaki Y, Koyama T (2001) Identification of galpha subtype(s) involved in gamma-aminobutyric acid(B) receptor-mediated high-affinity guanosine triphosphatase activity in rat cerebral cortical membranes. Neurosci Lett 297:137–141

    CAS  PubMed  Google Scholar 

  • Odagaki Y, Nishi N, Koyama T (2000) Functional coupling of GABAB receptors with G proteins that are sensitive to N-ethylmaleimide treatment, suramin, and benzalkonium chloride in rat cerebral cortical membranes. J Neural Transm 107:1101–1116

    CAS  PubMed  Google Scholar 

  • Oh P, Schnitzer JE (2001) Segregation of heterotrimeric G proteins in cell surface microdomains. Mol Biol Cell 12:685–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandi C, Posokhova E, Masuho I, Ray TA, Hasan N, Gregg RG, Martemyanov KA (2012) GPR158/179 regulate G protein signaling by controlling localization and activity of the RGS7 complexes. J Cell Biol 197:711–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlandi C, Sutton LP, Muntean BS, Song C, Martemyanov KA (2018) Homeostatic cAMP regulation by the RGS7 complex controls depression-related behaviors. Neuropsychopharmacology 44:642–653

    PubMed  PubMed Central  Google Scholar 

  • Ostrovskaya O, Xie K, Masuho I, Fajardo-Serrano A, Lujan R, Wickman K, Martemyanov KA (2014) RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. eLife 3:e02053

    PubMed  PubMed Central  Google Scholar 

  • Ostrovskaya OI, Orlandi C, Fajardo-Serrano A, Young SM, Lujan R, Martemyanov KA (2018) Inhibitory signaling to ion channels in hippocampal neurons is differentially regulated by alternative macromolecular complexes of RGS7. J Neurosci 38:10002–10015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, Martínez-Hernández J, Watanabe M, Moss SJ, Luján R, Lüscher C, Slesinger PA (2012) Methamphetamine-evoked depression of GABAB receptor signaling in GABA neurons of the VTA. Neuron 73:978–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D, Ristig D, Schuler V, Meigel I, Lampert C, Stein T, Prezeau L, Blahos J, Pin J, Froestl W, Kuhn R, Heid J, Kaupmann K, Bettler B (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21:1189–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil DN, Rangarajan ES, Novick SJ, Pascal BD, Kojetin DJ, Griffin PR, Izard T, Martemyanov KA (2018) Structural organization of a major neuronal G protein regulator, the RGS7-Gβ5-R7BP complex. eLife 7:e42150

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    PubMed  Google Scholar 

  • Perroy J, Adam L, Qanbar R, Chénier S, Bouvier M (2003) Phosphorylation-independent desensitization of GABAB receptor by GRK4. EMBO J 22:3816–3824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaff T, Malitschek B, Kaupmann K, Prézeau L, Pin JP, Bettler B, Karschin A (1999) Alternative splicing generates a novel isoform of the rat metabotropic GABA(B)R1 receptor. Eur J Neurosci 11:2874–2882

    CAS  PubMed  Google Scholar 

  • Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, Doutch J, Bullock AN (2017) Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J 474:3747–3761

    CAS  PubMed  Google Scholar 

  • Pontier SM, Lahaie N, Ginham R, St-Gelais F, Bonin H, Bell DJ, Flynn H, Trudeau L-E, McIlhinney J, White JH, Bouvier M (2006) Coordinated action of NSF and PKC regulates GABAB receptor signaling efficacy. EMBO J 25:2698–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potier B, Dutar P (1993) Presynaptic inhibitory effect of baclofen on hippocampal inhibitory synaptic transmission involves a pertussis toxin-sensitive G-protein. Eur J Pharmacol 231:427–433

    CAS  PubMed  Google Scholar 

  • Proft J, Weiss N (2015) G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 87:890–906

    CAS  PubMed  Google Scholar 

  • Puthiyedth N, Riveros C, Berretta R, Moscato P (2016) Identification of differentially expressed genes through integrated study of Alzheimer’s disease affected brain regions. PLoS One 11:e0152342

    PubMed  PubMed Central  Google Scholar 

  • Quallo T, Alkhatib O, Gentry C, Andersson DA, Bevan S (2017) G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons. eLife 6:e26138

    PubMed  PubMed Central  Google Scholar 

  • Raveh A, Cooper A, Guy-David L, Reuveny E (2010) Nonenzymatic rapid control of GIRK channel function by a G protein-coupled receptor kinase. Cell 143:750–760

    CAS  PubMed  Google Scholar 

  • Raveh A, Turecek R, Bettler B (2015) Mechanisms of fast desensitization of GABAB receptor-gated currents. Adv Pharmacol 73:145–165

    CAS  PubMed  Google Scholar 

  • Restituito S, Couve A, Bawagan H, Jourdain S, Pangalos MN, Calver AR, Freeman KB, Moss SJ (2005) Multiple motifs regulate the trafficking of GABAB receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 28:747–756

    CAS  PubMed  Google Scholar 

  • Reuveny E, Slesinger PA, Inglese J, Morales JM, Iñiguez-Lluhi JA, Lefkowitz RJ, Bourne HR, Jan YN, Jan LY (1994) Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 370:143–146

    CAS  PubMed  Google Scholar 

  • Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM, Comoletti D, Savas JN, Remaut H, Balschun D, Wierda KD, Slutsky I, Farrow K, De Strooper B, de Wit J (2019) Secreted amyloid-β precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science 363:eaao4827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richman RW, Strock J, Hains MD, Cabanilla NJ, Lau K-K, Siderovski DP, Diversé-Pierluissi M (2005) RGS12 interacts with the SNARE-binding region of the Cav2.2 calcium channel. J Biol Chem 280:1521–1528

    CAS  PubMed  Google Scholar 

  • Robbins MJ, Calver AR, Filippov AK, Hirst WD, Russell RB, Wood MD, Nasir S, Couve A, Brown DA, Moss SJ, Pangalos MN (2001) GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J Neurosci 21:8043–8052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rost BR, Nicholson P, Ahnert-Hilger G, Rummel A, Rosenmund C, Breustedt J, Schmitz D (2011) Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion. J Cell Sci 124:3066–3073

    CAS  PubMed  Google Scholar 

  • Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22

    CAS  PubMed  Google Scholar 

  • Saghatelyan AK, Snapyan M, Gorissen S, Meigel I, Mosbacher J, Kaupmann K, Bettler B, Kornilov AV, Nifantiev NE, Sakanyan V, Schachner M, Dityatev A (2003) Recognition molecule associated carbohydrate inhibits postsynaptic GABAB receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci 24:271–282

    CAS  PubMed  Google Scholar 

  • Sakaba T, Neher E (2003) Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424:775–778

    CAS  PubMed  Google Scholar 

  • Sallese M, Salvatore L, D’urbano E, Sala G, Storto M, Launey T, Nicoletti F, Knöpfel T, De Blasi A (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. FASEB J 14:2569–2580

    CAS  PubMed  Google Scholar 

  • Sarker S, Xiao K, Shenoy SK (2011) A tale of two sites – how ubiquitination of a G protein-coupled receptor is coupled to its lysosomal trafficking from distinct receptor domains. Commun Integr Biol 4:528–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato PY, Chuprun JK, Schwartz M, Koch WJ (2015) The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 95:377–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter K, Grampp T, Fritschy J-M, Kaupmann K, Bettler B, Mohler H, Benke D (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. J Biol Chem 280:33566–33572

    CAS  PubMed  Google Scholar 

  • Schiff ML, Siderovski DP, Jordan JD, Brothers G, Snow B, De Vries L, Ortiz DF, Diversé-Pierluissi M (2000) Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature 408:723–727

    CAS  PubMed  Google Scholar 

  • Schuler V, Lüscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Käslin E, Korn R, Bischoff S, Kaupmann K, van der Putten H, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58

    CAS  PubMed  Google Scholar 

  • Schwarz DA, Barry G, Eliasof SD, Petroski RE, Conlon PJ, Maki RA (2000) Characterization of γ-aminobutyric acid receptor GABAB(1e), a GABAB(1) splice variant encoding a truncated receptor. J Biol Chem 275:32174–32181

    CAS  PubMed  Google Scholar 

  • Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K, Seddik R, Tiao JY, Rajalu M, Trojanova J, Rohde V, Gassmann M, Schulte U, Fakler B, Bettler B (2010) Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235

    CAS  PubMed  Google Scholar 

  • Schwenk J, Pérez-Garci E, Schneider A, Kollewe A, Gauthier-Kemper A, Fritzius T, Raveh A, Dinamarca MC, Hanuschkin A, Bildl W, Klingauf J, Gassmann M, Schulte U, Bettler B, Fakler B (2016) Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 19:233–242

    CAS  PubMed  Google Scholar 

  • Schwindinger WF, Mirshahi UL, Baylor KA, Sheridan KM, Stauffer AM, Usefof S, Stecker MM, Mirshahi T, Robishaw JD (2012) Synergistic roles for G-protein γ3 and γ7 subtypes in seizure susceptibility as revealed in double knock-out mice. J Biol Chem 287:7121–7133

    CAS  PubMed  Google Scholar 

  • Schwirtlich M, Emri Z, Antal K, Máté Z, Katarova Z, Szabó G (2010) GABAA and GABAB receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca2+. FASEB J 24:1218–1228

    CAS  PubMed  Google Scholar 

  • Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1:51–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Signorini S, Liao YJ, Duncan SA, Jan LY, Stoffel M (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A 94:923–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol Sci 20:66–73

    CAS  PubMed  Google Scholar 

  • Smit MJ, Iyengar R (1998) Mammalian adenylyl cyclases. Adv Second Messenger Phosphoprotein Res 32:1–21

    CAS  PubMed  Google Scholar 

  • Snow BE, Betts L, Mangion J, Sondek J, Siderovski DP (1999) Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci 96:6489–6494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR (2018) Genetic analysis of rare human variants of regulators of G protein signaling proteins and their role in human physiology and disease. Pharmacol Rev 70:446–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ (2004) cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 24:6115–6126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GD, Comps-Agrar L, Nørskov-Lauritsen LB, Pin J-P, Kniazeff J (2018) Allosteric interactions between GABAB1 subunits control orthosteric binding sites occupancy within GABAB oligomers. Neuropharmacology 136:92–101

    CAS  PubMed  Google Scholar 

  • Sutton LP, Orlandi C, Song C, Oh WC, Muntean BS, Xie K, Filippini A, Xie X, Satterfield R, Yaeger JDW, Renner KJ, Young SM, Xu B, Kwon H, Martemyanov KA, Martemyanov KA (2018) Orphan receptor GPR158 controls stress-induced depression. eLife 7:e33273

    PubMed  PubMed Central  Google Scholar 

  • Tabata T, Araishi K, Hashimoto K, Hashimotodani Y, van der Putten H, Bettler B, Kano M (2004) Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc Natl Acad Sci 101:16952–16957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18:3138–3146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma M (2018) Diversity of structure and function of GABAB receptors: a complexity of GABAB-mediated signaling. Proc Jpn Acad Ser B Phys Biol Sci 94:390–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma M, Revilla-Sanchez R, Quadros IM, Deng Q, Deeb TZ, Lumb M, Sicinski P, Haydon PG, Pangalos MN, Moss SJ (2014) Postsynaptic GABAB receptor activity regulates excitatory neuronal architecture and spatial memory. J Neurosci 34:804–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terunuma M, Vargas KJ, Wilkins ME, Ramirez OA, Jaureguiberry-Bravo M, Pangalos MN, Smart TG, Moss SJ, Couve A (2010) Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc Natl Acad Sci 107:13918–13923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Zhu M (2018) GABAB receptors augment TRPC3-mediated slow excitatory postsynaptic current to regulate cerebellar purkinje neuron response to type-1 metabotropic glutamate receptor activation. Cells 7:90

    PubMed Central  Google Scholar 

  • Tiao JY, Bradaia A, Biermann B, Kaupmann K, Metz M, Haller C, Rolink AG, Pless E, Barlow PN, Gassmann M, Bettler B (2008) The sushi domains of secreted GABAB1 isoforms selectively impair GABAB heteroreceptor function. J Biol Chem 283:31005–31011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turecek R, Schwenk J, Fritzius T, Ivankova K, Zolles G, Adelfinger L, Jacquier V, Besseyrias V, Gassmann M, Schulte U, Fakler B, Bettler B (2014) Auxiliary GABAB receptor subunits uncouple G protein βγ subunits from effector channels to induce desensitization. Neuron 82:1032–1044

    CAS  PubMed  Google Scholar 

  • Valdés V, Valenzuela JI, Salas DA, Jaureguiberry-Bravo M, Otero C, Thiede C, Schmidt CF, Couve A (2012) Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors. PLoS One 7:e44168

    PubMed  PubMed Central  Google Scholar 

  • Vernon E, Meyer G, Pickard L, Dev K, Molnar E, Collingridge GL, Henley JM (2001) GABAB receptors couple directly to the transcription factor ATF4. Mol Cell Neurosci 17:637–645

    CAS  PubMed  Google Scholar 

  • Vertkin I, Styr B, Slomowitz E, Ofir N, Shapira I, Berner D, Fedorova T, Laviv T, Barak-Broner N, Greitzer-Antes D, Gassmann M, Bettler B, Lotan I, Slutsky I (2015) GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc Natl Acad Sci U S A 112:E3291–E3299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang Y-P, Luján R, Jacobson LH, Biermann B, Fritschy J-M, Vacher C-M, Müller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Waard M, Liu H, Walker D, Scott VES, Gurnett CA, Campbell KP (1997) Direct binding of G-protein βλ complex to voltage-dependent calcium channels. Nature 385:446–450

    PubMed  Google Scholar 

  • Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    CAS  PubMed  Google Scholar 

  • White JH, McIllhinney RAJ, Wise A, Ciruela F, Chan W-YY, Emson PC, Billinton A, Marshall FH (2000) The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proc Natl Acad Sci 97:13967–13972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whorton MR, MacKinnon R (2013) X-ray structure of the mammalian GIRK2–βγ G-protein complex. Nature 498:190–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickman KD, Iñiguez-Lluhi JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE (1994) Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255–257

    CAS  PubMed  Google Scholar 

  • Witherow DS, Wang Q, Levay K, Cabrera JL, Chen J, Willars GB, Slepak VZ (2000) Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. J Biol Chem 275:24872–24880

    CAS  PubMed  Google Scholar 

  • Wojcik WJ, Neff NH (1984) Gamma-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol 25:24–28

    CAS  PubMed  Google Scholar 

  • Wong Y, Conklin B, Bourne H (1992) Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 255:339–342

    CAS  PubMed  Google Scholar 

  • Workman ER, Haddick PCG, Bush K, Dilly GA, Niere F, Zemelman BV, Raab-Graham KF (2015) Rapid antidepressants stimulate the decoupling of GABAB receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η. Mol Psychiatry 20:298–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Workman ER, Niere F, Raab-Graham KF (2013) mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling. Neuropharmacology 73:192–203

    CAS  PubMed  Google Scholar 

  • Wright R, Newey SE, Ilie A, Wefelmeyer W, Raimondo JV, Ginham R, Mcllhinney RAJ, Akerman CJ (2017) Neuronal chloride regulation via KCC2 is modulated through a GABAB receptor protein complex. J Neurosci 37:5447–5462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Sun D (2015) GABA receptors in brain development, function, and injury. Metab Brain Dis 30:367–379

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1995) GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca2+ influx. J Physiol 485:649–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Allen KL, Kourrich S, Colón-Saez J, Thomas MJ, Wickman K, Martemyanov KA (2010) Gβ5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling. Nat Neurosci 13:661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Zhang W, Rondard P, Pin J-P, Liu J (2014) Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Front Pharmacol 5:12

    PubMed  PubMed Central  Google Scholar 

  • Xue L, Sun Q, Zhao H, Rovira X, Gai S, He Q, Pin J-P, Liu J, Rondard P (2019) Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nat Commun 10:2765

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995) Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15:1441–1447

    CAS  PubMed  Google Scholar 

  • Zapata J, Moretto E, Hannan S, Murru L, Longatti A, Mazza D, Benedetti L, Fossati M, Heise C, Ponzoni L, Valnegri P, Braida D, Sala M, Francolini M, Hildebrand J, Kalscheuer V, Fanelli F, Sala C, Bettler B, Bassani S, Smart TG, Passafaro M (2017) Epilepsy and intellectual disability linked protein Shrm4 interaction with GABABRs shapes inhibitory neurotransmission. Nat Commun 8:14536

    PubMed  PubMed Central  Google Scholar 

  • Zemoura K, Balakrishnan K, Grampp T, Benke D (2019) Ca2+/calmodulin-dependent protein kinase II (CaMKII) β-dependent phosphorylation of GABAB1 triggers lysosomal degradation of GABAB receptors via mind bomb-2 (MIB2)-mediated Lys-63-linked ubiquitination. Mol Neurobiol 56:1293–1309

    CAS  PubMed  Google Scholar 

  • Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Ulrich Zeilhofer H, Benke D (2013) Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem 288:34897–34905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zemoura K, Trümpler C, Benke D (2016) Lys-63-linked ubiquitination of γ-aminobutyric acid (GABA), type B1, at multiple sites by the E3 ligase mind bomb-2 targets GABAB receptors to lysosomal degradation. J Biol Chem 291:21682–21693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Tan L, Ren Y, Liang J, Lin R, Feng Q, Zhou J, Hu F, Ren J, Wei C, Yu T, Zhuang Y, Bettler B, Wang F, Luo M (2016) Presynaptic excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell 166:716–728

    CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang W, Huang S, Sun Q, Wang Y, Hu Y, Sun N, Zhang Y, Jiang Z, Minato N, Pin J-P, Su L, Liu J (2015) GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. J Cell Sci 128:2302–2313

    CAS  PubMed  Google Scholar 

  • Zheng S, Abreu N, Levitz J, Kruse AC (2019) Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Nature 567:127–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E, Zhou M, McDonald P, Geng Y, Slesinger PA, Fan QR (2019) Structural basis for auxiliary subunit KCTD16 regulation of the GABA B receptor. Proc Natl Acad Sci 116:8370–8379

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Wickman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rose, T.R., Wickman, K. (2020). Mechanisms and Regulation of Neuronal GABAB Receptor-Dependent Signaling. In: Vlachou, S., Wickman, K. (eds) Behavioral Neurobiology of GABAB Receptor Function. Current Topics in Behavioral Neurosciences, vol 52. Springer, Cham. https://doi.org/10.1007/7854_2020_129

Download citation

Publish with us

Policies and ethics